首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an attempt to understand the factors involved in morphogenesis of a complex cell like a scale or bristle, the fine structure of the normal development of bristle cells in Drosophila melanogaster (Oregon R) has been studied and compared with that of the mutants sn3 and Sb. In the development of the normal bristle rounded bundles of longitudinally oriented fibrils lie just beneath the cell surface at regularly spaced intervals. Fiber bundles constitute about 20% of the cross sectional area. The cytoplasmic surface between these bundles is active in enveloping the nerve fiber associated with the bristle and in sending out cytoplasmic processes associated with which the longitudinally oriented bristle ridges form. Singed bristles are bent and twisted and the fiber bundles are present as flattened bands constituting only about 5% of the cross-sectional area. In Sb mutants the total cross-sectional area of fiber bundle material is the same as that in Oregon R, but fiber bundles are smaller and more numerous, being distributed over the larger surface of this thicker and shorter bristle. They constitute only 7% of the cross-sectional area of the bristle. In Sn3Sb mutants characteristics of each gene are exaggerated and an extremely short, wide, and irregular bristle is formed.  相似文献   

2.
The organization of cortical microtubules at wound sites in Nitella pseudoflabellata(A. Br. & Nordst.) em. R.D.W. and N. flexilis(L.) Ag. internodal cells was examined in relation to the regeneration of actin filament bundles in order to identify the mechanisms by which microtubules are oriented. Actin bundle regrowth occurs prior to that of microtubules, so it was considered possible that microtubule alignment is actin-dependent, perhaps mediated by cross-linking proteins. In all types of wounds investigated, subcortical actin bundles regenerated parallel to the direction of cytoplasmic streaming. Microtubule orientation patterns, however, varied according to the nature of wound formation and the type of wound wall eventually produced. In chloroplast-free windows induced by blue light irradiation, microtubule orientation varied according to the size of the window. Microtubules were randomized in 10- to 30-μm-wide windows where exposure to cytoplasmic flow is minimal, but were aligned more or less parallel to regenerated actin bundles in 80- to 100-μm-wide windows. Where co-alignment between microtubules and actin bundles was obvious after fluorescence labelling, electron micrographs revealed that microtubules and actin bundles were too widely spaced to account for any cross-linkages. Furthermore, treatments that inhibited or reduced cytoplasmic streaming without altering the direction of actin bundles caused randomization of microtubules previously oriented in the streaming direction, even in the presence of taxol. When evenly flat wound walls were induced by 10−4 M chlortetracycline, microtubules were co-aligned with nearby actin bundles at the surface of the wound wall. At wounds induced by treatment with 5 × 10−2 M CaCl2, however, microtubules were randomly oriented and preferentially located in the narrow clefts between the wound-wall protuberances, up to several micrometers away from the actin bundles near the wound-wall tips. These results indicate that microtubules regenerated in wounds are merely co-aligned with actin filament bundles because they are passively aligned by the hydrodynamic forces created by cytoplasmic flow. Received: 4 August 1998 / Accepted: 30 January 1999  相似文献   

3.
Chalazal endosperm haustorium in Rhinanthus serotinus consists of a single large binucleate cell. It originates from the primary endosperm cell dividing transversely into two unequal cells: a smaller micropylar cell and a larger chalazal cell. The chalazal cell undergoes a single mitotic division, then lengthens significantly during development and functions as a chalazal endosperm haustorium. In this paper, immunofluorescent techniques, rhodamine phalloidin assay, and electron microscopy were used to examine the actin and tubulin cytoskeleton during the development of the chalazal haustorium. During the differentiation stage, numerous longitudinally oriented bundles of microfilaments ran along the axis of transvacuolar strands in haustorium. Microtubules formed intensely fluorescent areas near the nuclear envelope and also formed radial perinuclear microtubule arrays. In the fully differentiated haustorium cell, the actin cytoskeleton formed dense clusters of microfilaments on the chalazal and micropylar poles of the haustorium. Numerous microfilament bundles occurred near wall ingrowths on the chalazal wall. There were numerous clusters of microfilaments and microtubules around the huge lobed polytenic haustorial nuclei. The microfilaments were oriented longitudinally to the long axis of the haustorium cell and surrounded both nuclei. The microtubules formed radial perinuclear systems which were appeared to radiate from the surface of the nuclear envelope. The early stage of degeneration of the chalazal haustorium was accompanied by the degradation of microtubules and disruption of the parallel orientation of microtubules in the chalazal area of the cell. The degree of vacuolization increased, autophagous vacuoles appeared and the number of vesicles decreased.  相似文献   

4.
Summary Continuous observation of organelles and other cytoplasmic inclusions in the older stretches of living pollen tubes of Iris pseudacorus shows that in the more attentuated parts of the protoplast they move along single, mainly longitudinally oriented fibrils, corresponding to those previously isolated from other species and shown to contain bundles of uniformly polarised actin microfilaments. The traffic associated with each fibril is unidirectional, but organelles move along them independently, sometimes with conspicuously different velocities. Larger columns of cytoplasm passing along the tube are associated with several such fibrils, as revealed in occasional discontinuities and also in columns isolated from the tube in suitable medium without fixation. The dimensions of the individual fibrils suggest that the bundles of actin microfilaments are not likely to be enclosed in a unit membrane corresponding to a tonoplast. If so, the nature of the continuous cavities traversed by numerous fibrils in the older parts of the pollen tube requires reappraisal, since these are more likely to be volumes of attentuated cytoplasm comparable with that of the central cavity of the sieve tube than vacuoles of the normal plant-cell type.  相似文献   

5.
Summary Fusiform cambial cells of the ash (Fraxinus excelsior L.), which are strongly elongated and vacuolated, contain a phragmosome which traverses the whole length of the cells during preprophase and karyokinesis and which remains present during cytokinesis until it is integrated in cell plate with adjacent cytoplasm.The phragmosome consists of a thin perforated cytoplasmic layer located in the plane of the future cell plate. Otherwise oriented transvacuolar cytoplasmic layers or strands are not present in these cells.The phragmosome contains cytoskeletal elements, namely microtubules and also microfilament bundles both of which are oriented mainly in longitudinal direction.The phragmosomal microtubules are a new category of microtubules associated with cell division; presumably they guide the centrifugally growing cell plate to the parental cell wall site previously marked by the preprophase band of microtubules.  相似文献   

6.
Dinoflagellates are of interest because their chromosomes resemble the nucleoplasm of prokaryotes both chemically and ultrastructurally. We have studied nuclear division in the dinoflagellate Gyrodinium cohnii (Schiller), using cells obtained from cultures undergoing phasic growth. Electron micrographs of serial sections were used to prepare three-dimensional reconstructions of nuclei and chromosomes at various stages of nuclear division. During division, a complex process of invagination of the intact nuclear envelope takes place at one side of the nucleus and results in the formation of parallel cylindrical cytoplasmic channels through the nucleus. These invaginations contain bundles of microtubules, and each of the bundles comes to lie in the cytoplasm of a cylindrical channel. Nuclear constriction occurs perpendicular to these channels without displacement of the microtubules. There are no associations between chromosomes and the cytoplasmic microtubules. In dividing cells most chromosomes become V-shaped, and the apices of the V's make contact with the membrane surrounding cytoplasmic channels. It is proposed that the membrane surrounding cytoplasmic channels in the dividing nucleus may be involved in the separation of daughter chromosomes. Thus, dinoflagellates may resemble prokaryotes in the manner of genophore separation as well as in genophore chemistry and ultrastructure.  相似文献   

7.
The effect of colchicine on myogenesis in vivo has been studied in the regenerating tadpole tail of the frog, Rana pipiens, and in the abdominal molting muscles of a blood-sucking bug, Rhodnius prolixus Stål. Colchicine is shown to disrupt microtubules in the differentiating muscle cells of both these organisms. The disruption of microtubules is correlated with a loss of longitudinal anisometry in the myoblasts and myotubes of the regeneration blastema in the tadpole tail. Before colchicine treatment, the myotubes contain longitudinally oriented myofibrils. After colchicine treatment, rounded, multinucleate myosacs containing randomly oriented myofibrils are present. It is suggested that the primary function of microtubules in myogenesis in the Rana pipiens tadpole is the maintenance of cell shape. The abdominal molting muscles of Rhodnius undergo repeated phases of differentiation and dedifferentiation of the sarcoplasm. However, the longitudinal anisometry of the muscle fibers is maintained in all phases by the attachments of the ends of the fibers to the exoskeleton, and microtubule disruption does not alter cell shape. The orientation of the developing myofibrils is also unaltered, indicating that the microtubules do not directly align or support the myofibrils in this system.  相似文献   

8.
The sub-thecal microtubular cytoskeleton of Amphidinium rhynchocephalum Anissimowa was investigated using indirect immunofluorescence microscopy and transmission electron microscopy. The majority of sub-thecal microtubules are longitudinally oriented and radiate from one of two sub-thecal transverse microtubular bands that lie adjacent to the anterior and posterior edge of the cingulum.Both transverse bands consist of 3–5 microtubules and are loop shaped with one end adjacent to the cell's right edge of the sulcus and the other end adjacent to the fibrous ventral ridge. The posterior transverse microtubular band (PTB) defines the posterior edge of the cingulum and gives rise to numerous posteriorly directed longitudinal microtubular bundles that consist of 1–3 microtubules per bundle. These bundles end at the posterior end of the cell. The PTB also gives rise to the cingular longitudinal microtubules that underlie the cingular groove and terminate at the anterior transverse microtubular band (ATB). The ATB defines the anterior edge of the cingulum and loops around the base of the epicone. This band gives rise to anteriorly directed longitudinal microtubular bundles that terminate in the small epicone of the cell. The longitudinal microtubular root of the flagellar apparatus is directed posteriorly and lies immediately beneath the theca but is distinct from the subthecal microtubule system. A narrow fibrous ridge is ventrally located to the cell's left between the exit apertures of the transverse and longitudinal flagella. In this position, the ventral ridge lies between and also connects with the anterior and posterior transverse microtubular bands. The ventral ridge is also associated with three microtubules that are distinct from other cytoskeletal microtubules. Our results demonstrate that the majority of sub-thecal microtubules originate from one of two microtubular bands associated with the cingulum. The possible role of the fibrous ventral ridge and its associated microtubules is also discussed.  相似文献   

9.
Teleost retinal rods elongate when exposed to light. Elongation is mediated by a narrow necklike region called the myoid. In the cichlid Sarotherodon mossambicus, the rod inner segment (composed of the myoid with adjacent ellipsoid) increases in length from 12 micrometers in the dark to 41 micrometers in the light. Long light-adapted myoids contain longitudinally oriented microtubules and bundles of parallel 60-A filaments that we have identified as actin by their ability to bind myosin subfragment 1. In short dark-adapted myoids, only microtubules are recognizable. Colchicine experiments reveal that light-induced rod elongation can occur in the absence of myoid microtubules. Intraocular injections of colchicine at concentrations that disrupt virtually all rod myoid microtubules do not block rod elongation. However, rod elongation is blocked by intraocular injections of cytochalasin B or cytochalasin D. The hierarchy of effectiveness of these drugs is consistent with their effectiveness in inhibiting actin assembly and in disrupting other actin-dependent motile processes. On the basis of ultrastructural observations and the results of these inhibitor studies, we propose that the forces responsible for rod elongation are dependent not on microtubules but on actin filament assembly.  相似文献   

10.
Infection of baby hamster kidney (BHK21-F) cells with the parainfluenza virus SV5 causes rapid and extensive cell fusion. Time-lapse cinematography shows that when cells fuse, their nuclei migrate straight to the center of the syncytium at rates of 1–2 µ/min. Nuclei are often arranged in long, tightly packed, parallel rows in syncytia derived from the fibroblastic BHK21-F cells. Polarization microscopy shows birefringent material between and parallel to these rows of nuclei, and electron microscopy shows bundles of cytoplasmic microtubules, ~250 A in diameter, and filaments, ~80 A in diameter, parallel to and between the rows of nuclei. Colchicine treatment causes disappearance of microtubules from BHK21-F cells and an apparent increase in the number of 80-A filaments. Although colchicine-treated, SV5-infected cells fuse, their nuclei do not migrate or form rows but remain randomly scattered through the syncytial cytoplasm. Incubation at 4°C does not disrupt microtubules in BHK21-F cells. Rows of nuclei have been isolated from SV5-induced syncytia, and the nuclei in them have been found to be intimately associated with microtubules but not with other cytoplasmic structures. These results suggest that microtubules demarcate cytoplasmic channels through which nuclei migrate and that they may also be involved in the mechanism of nuclear movement.  相似文献   

11.
The pellicular framework of Opalina obtrigonoidea consists of numerous longitudinal ribs parallel to the kineties. These ribs lie erect on the cell surface, and each is composed of striated longitudinal fibers. A membrane covers the ribs and the ectoplasm between them. Flagella, of conventional structure, emerge from the ectoplasm between the ribs. The two central fibers of each flagellum end at the cell surface; the nine peripheral fibers continue for about 400 mµ into the cell to form an open tubular kinetosome. From the anterolateral curvature of each kinetosome arise two rows of fibrils, each fibril oriented perpendicular to the cell surface and about 150 A in diameter. The two rows converge anteriorly and probably meet the next adjacent kinetosome. Minute granules or tubules, arranged in oblique rows and at least sometimes accompanied by very fine fibers, lie at the surface of the ectoplasm but show no detectable connection with the kinetosomes. The whole flagellar apparatus of Opalina thus bears a general resemblance to the infraciliature of some holotrich ciliates, but the degree of evolutionary relationship between them remains uncertain.  相似文献   

12.
THE FINE STRUCTURE OF GIARDIA MURIS   总被引:10,自引:1,他引:9       下载免费PDF全文
Giardia is a noninvasive intestinal zooflagellate. This electron microscope study demonstrates the fine structure of the trophozoite of Giardia muris in the lumen of the duodenum of the mouse as it appears after combined glutaraldehyde and acrolein fixation and osmium tetroxide postfixation. Giardia muris is of teardrop shape, rounded anteriorly, with a convex dorsal surface and a concave ventral one. The anterior two-thirds of the ventral surface is modified to form an adhesive disc. The adhesive disc is divided into 2 lobes whose medial surfaces form the median groove. The marginal grooves are the spaces between the lateral crests of the adhesive disc and a protruding portion of the peripheral cytoplasm. The organism has 2 nuclei, 1 dorsal to each lobe of the adhesive disc. Between the anterior poles of the nuclei, basal bodies give rise to 8 paired flagella. The median body, unique to Giardia, is situated between the posterior poles of the nuclei. The cytoplasm contains 300-A granules that resemble particulate glycogen, 150- to 200-A granules that resemble ribosomes, and fusiform clefts. The dorsal portion of the cell periphery is occupied by a linear array of flattened vacuoles, some of which contain clusters of dense particles. The ventrolateral cytoplasm is composed of regularly packed coarse and fine filaments which extend as a striated flange around the adhesive disc. The adhesive disc is composed of a layer of microtubules which are joined to the cytoplasm by regularly spaced fibrous ribbons. The plasma membrane covers the ventral and lateral surfaces of the disc. The median body consists of an oval aggregate of curved microtubules. Microtubules extend ventrally from the median body to lie alongside the caudal flagella. The intracytoplasmic portions of the caudal, lateral, and anterior flagella course considerable distances, accompanied by hollow filaments adjacent to their outer doublets. The intracytoplasmic portions of the anterior flagella are accompanied also by finely granular rodlike bodies. No structures identifiable as mitochondria, smooth endoplasmic reticulum, the Golgi complex, lysosomes, or axostyles are recognized.  相似文献   

13.
Thrombocyte adhesion following activation by a Formvar surface involves a morphologic transition resulting in a fully spread cell. Correlative SEM and whole mount TEM were used to study the cytoskeletal alterations that accompany changes in surface morphology during adhesion. Following initial adhesion, thrombocytes extend slender pseudopods containing longitudinally oriented bundles of filaments that are 13–22 nm in diameter. Concomitant with pseudopod extension, a cytoplasmic hyalomere, consisting of a dense filamentous network, extends between the pseudopods and ultimately results in a fully spread cell. Treatment of thromboyctes with cytochalasin B (10?5 M) caused clumping of the hyalomere filament network and retraction of the hyalomere. Examination of partially retracted cells revealed that pseudopod filament bundles were continuous with the contracting filamentous network. It is concluded that pseudopod filament bundles and cytoplasmic hyalomere filaments are interconvertible and that their organizational relationship changes in accordance with gross morphologic changes.  相似文献   

14.
1. The structure of the smooth muscle fibres in the longitudinal muscle coat of the body wall of Lumbricus terrestris has been investigated by phase contrast light microscopy and electron microscopy. 2. The muscle fibre is ribbon-shaped, and attached to each of its two surfaces is a set of myofibrils. These are also ribbon-shaped, and they lie with their surfaces perpendicular to the surfaces of the fibre, and their inner edges nearly meeting in the middle of the fibre. These fibrils are oriented at an angle to the fibre axis, and diminish greatly in width as they approach the edge of the fibre. The orientation of the set of fibrils belonging to one surface of the fibre is the mirror image of that of the set belonging to the other surface; thus, when both sets are in view in a fibre lying flat on one face, the fibre exhibits double oblique striation. A comparison of extended and contracted fibres indicates that as the fibre contracts, the angle made between fibre and fibril axes increases (e.g. from 5 to 30°) and so does the angle made between the two sets of fibrils (e.g. from 10 to 60°). 3. The myofibril, throughout its length, contains irregularly packed filaments, commonly 250 A in diameter, which are parallel to its long axis and remain straight in contracted muscles. Between them is material which probably consists of much finer filaments. Thus A and I bands are absent. 4. Bound to one face of each fibril, but not penetrating inside it, is a regularly spaced series of transverse stripes. They are of two kinds, alternating along the length of the fibril, and it is suggested that they are comparable to the Z and M lines of a cross-striated fibril. The spacing of these stripes is about 0.5 µ ("Z" to "Z") in extended muscles, and 0.25 µ in contracted muscles. A bridge extends from each stripe across to the stripeless surface of the next fibril.  相似文献   

15.
In view of reports that the nerve fibers of the sea prawn conduct impulses more rapidly than other invertebrate nerves and look like myelinated vertebrate nerves in the light microscope, prawn nerve fibers were studied with the electron microscope. Their sheaths are found to have a consistent and unique structure that is unlike vertebrate myelin in four respects: (1) The sheath is composed of 10 to 50 thin (200- to 1000-A) layers or laminae; each lamina is a cellular process that contains cytoplasm and wraps concentrically around the axon. The laminae do not connect to form a spiral; in fact, no cytoplasmic continuity has been demonstrated among them. (2) Nuclei of sheath cells occur only in the innermost lamina of the sheath; thus, they lie between the sheath and the axon rather than outside the sheath as in vertebrate myelinated fibers. (3) In regions in which the structural integrity of the sheath is most prominent, radially oriented stacks of desmosomes are formed between adjacent laminae. (4) An ~200-A extracellular gap occurs around the axon and between the innermost sheath laminae, but it is separated from surrounding extracellular spaces by gap closure between the outer sheath laminae, as the membranes of adjacent laminae adhere to form external compound membranes (ECM's). Sheaths are interrupted periodically to form nodes, analogous to vertebrate nodes of Ranvier, where a new type of glial cell called the "nodal cell" loosely enmeshes the axon and intermittently forms tight junctions (ECM's) with it. This nodal cell, in turn, forms tight junctions with other glial cells which ramify widely within the cord, suggesting the possibility of functional axon-glia interaction.  相似文献   

16.
The plasmalemma surface of poplar parenchyma cells observed by the freeze etching technique is characterized by 11 nm particles, primary pit fields, lomasome-like structures and fibrillar structures. The most remarkable feature is the occurrence of fibrillar structures, which are considered to be the imprint of underlying microtubules on the plasmalemma surface. The previously reported observation on the possible appearance of microtubules at the cytoplasmic surface inside the plasmalemma is questionable. Although the fibrillar structures run almost perpendicular to the main cell axis, longitudinally oriented ones are also found, the occurrence of which is discussed in relation to the orientation of the cellulose microfibrils.  相似文献   

17.
An examination of the developing cotton fiber: Wall and plasmalemma   总被引:6,自引:0,他引:6  
Summary The ultrastructure of developing cotton fibers has been examined using novel modifications of the techniques of surface replication, freeze-etching and thin-sectioning. The fiber surface was found to be coated with a lamellar cuticle, which is stretched and thinned as the fiber elongates. It is marked by bars which run parallel with the fiber long axis. Beneath the cuticle, the outermost microfibrils of the primary wall lie parallel with the fiber axis, while those adjacent to the plasma membrane are transverse. Primary wall microfibrils are present in bundles, disposed in left-handed and right-handed helices, which correspond with the fibrils observed optically. Microfibrils within bundles form in-phase waves, with wavelengths and amplitudes in the ranges 0.3–7 m and 0.01–0.1 m in primary and secondary walls respectively. As elongation proceeds bundles become displaced towards the cell axis. Microfibrils of the secondary wall, disposed around the cell as fast helices, are similarly bundled and wavy (though with a reduced amplitude). In surface-replicas, large (20–30 nm) granules are present on the cytoplasmic face of the wall which probably correspond with 20–40 nm low prominences visible on freeze-etch EF plasma membrane fracture faces. It is proposed that these may be microfibril-synthesizing centers. Plasma membranes fracture such that the membrane-associated-particles segregate 6040 between P and E fracture moieties, but the prominence and total number of these particles is reduced at the stage of secondary wall formation as compared with primary wall formation. Beneath the plasmalemma the axes of microtubules parallel secondary wall microfibril orientation. Cross-bridges, which stain heavily after glutaraldehyde/tannic acid fixation, link microtubules to plasma membrane. The use of butyl benzene to cement fragments of cotton fibers, employed in this work, may prove useful in other freeze-etch studies of long fibers which are readily ruptured during preparation.  相似文献   

18.
Tip-growth is a mode of polarized cell expansion where incorporation of new membrane and wall is stably restricted to a single, small domain of the cell surface resulting in the formation of a tubular projection that extends away from the body of the cell. The organization of the microtubule cytoskeleton is conserved among tip-growing cells of land plants: bundles of microtubules run longitudinally along the non-growing shank and a network of fine microtubules grow into the apical dome where growth occurs. Together, these microtubule networks control the stable positioning of the growth site at the cell surface. This conserved dynamic organization is required for the spatial stability of tip-growth, as demonstrated by the formation of sinuous tip-growing cells upon treatment with microtubule-stabilizing or microtubule-destabilizing drugs. Microtubule associated proteins (MAPs) that either stabilize or destabilize microtubule networks are required for the maintenance of stable tip-growth in root hairs of flowering plants. NIMA RELATED KINASE (NEK) is a MAP that destabilizes microtubule growing ends in the apical dome of tip-growing rhizoid cells in the liverwort Marchantia polymorpha. We hypothesized that both microtubule stabilizing and destabilizing MAPs are required for the maintenance of the stable tip-growth in liverworts. To identify genes encoding microtubule-stabilizing and microtubule-destabilizing activities we generated 120,000 UV-B mutagenized and 336,000 T-DNA transformed Marchantia polymorpha plants and screened for defective rhizoid phenotypes. We identified 119 mutants and retained 30 mutants in which the sinuous rhizoid phenotype was inherited. The 30 mutants were classified into at least 4 linkage groups. Characterisation of two of the linkage groups showed that MAP genes–WAVE DAMPENED2-LIKE (WDL) and NIMA-RELATED KINASE (NEK)–are required to stabilize the site of tip growth in elongating rhizoids. Furthermore, we show that MpWDL is required for the formation of a bundled array of parallel and longitudinally orientated microtubules in the non-growing shank of rhizoids where MpWDL-YFP localizes to microtubule bundles. We propose a model where the opposite functions of MpWDL and MpNEK on microtubule bundling are spatially separated and promote tip-growth spatial stability.  相似文献   

19.
Plasmodia of the acellular slime mold, Physarum polycephalum, reveal a complex and changing pattern of birefringence when examined with a sensitive polarizing microscope. Positively birefringent fibrils are found throughout the ectoplasmic region of the plasmodium. In the larger strands they may be oriented parallel to the strand axis, or arranged circularly or spirally along the periphery of endoplasmic channels. Some fibrils exist for only a few minutes, others for a longer period. Some, particularly the circular fibrils, undergo changes in birefringence as they undergo cyclic deformations. In the ramifying strand region and the advancing margin there is a tendency for fibrils of various sizes to become organized into mutually orthogonal arrays. In some plasmodia the channel wall material immediately adjacent to the endoplasm has been found to be birefringent. The sign of endoplasmic birefringence is negative, and its magnitude is apparently constant over the streaming cycle. The pattern of plasmodial birefringence and its changes during the shuttle streaming cycle of Physarum are considered in the light of several models designed to explain either cytoplasmic streaming alone or the entire gamut of plasmodial motions. The results of this and other recent physical studies suggest that both streaming and the various other motions of the plasmodium may very likely be explained in terms of coordinated contractions taking place in the fibrils which are rendered visible in polarized light.  相似文献   

20.
The excretory duct of pyriform glands in Araneus diadematus is connected to the secretory sac through an intermediary cell ring. Apices of these cells bear thick, long microvilli and cytoplasmic extensions containing microtubules in bundles, some of which are derived from normal basal bodies. These finger-like extensions lie between the cuticular intima and the secretory product; they are thought to protect the intima and to initiate moulding of the silk thread. Structural features of the duct cells suggest that the latter play a role in the control of the water content of the silk glue which is restricted to the last portion of the duct where numerous nerve endings are inserted between cells. It is evident that duct structure and chemical and physical characteristics of silk are correlated in all spider silk glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号