首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Liu Z  Li X  Chi Z  Wang L  Li J  Wang X 《Antonie van Leeuwenhoek》2008,94(2):245-255
The extracellular lipase structural gene was isolated from cDNA of Aureobasidium pullulans HN2-3 by using SMARTTM RACE cDNA amplification kit. The gene had an open reading frame of 1245 bp long encoding a lipase. The coding region of the gene was interrupted by only one intron (55 bp). It encodes 414 amino acid residues of a protein with a putative signal peptide of 26 amino acids. The protein sequence deduced from the extracellular lipase structural gene contained the lipase consensus sequence (G-X-S-X-G) and three conserved putative N-glycosylation sites. According to the phylogenetic tree of the lipases, the lipase from A. pullulans was closely related to that from Aspergillus fumigatus (XP_750543) and Neosartorya fischeri (XP_001257768) and the identities were 50% and 52%, respectively. The mature peptide encoding cDNA was subcloned into pET-24a (+) expression vector. The recombinant plasmid was expressed in Escherichia coli BL21(DE3). The expressed fusion protein was analyzed by SDS-PAGE and western blotting and a specific band with molecular mass of about 47 kDa was found. Enzyme activity assay verified the recombinant protein as a lipase. A maximum activity of 0.96 U/mg was obtained from cellular extract of E. coli BL21(DE3) harboring pET-24a(+)LIP1. Optimal pH and temperature of the crude recombinant lipase were 8.0 and 35 °C, respectively and the crude recombinant lipase had the highest hydrolytic activity towards peanut oil.  相似文献   

2.
Bacterial spot caused by Xanthomonas spp. is an important tomato and pepper disease worldwide. Recent outbreaks of bacterial spot disease in Central Brazil and Canada have been attributed to Xanthomonas gardneri, which is also recognized as group D of Xanthomonas campestris pv. vesicatoria. Carotenoid-like pigments called xanthomonadins, which are diagnostic for yellow Xanthomonas spp., were extracted from X. gardneri. It was shown that the model plant Arabidopsis thaliana, member of the Brassicaceae family, can develop disease symptoms in response to different isolates of X. gardneri. Secretion of enzymes has been shown to play an important role in pathogenicity for different pathogens, and to begin to understand the interaction of X. gardneri and A. thaliana, a biochemical analysis of secreted proteins in the presence of A. thaliana leaves was performed. Different enzymatic activities such as for cellulase, α-arabinofuranosidase, pectinase, invertase and xylanase were assayed. In the presence of leaves, cellulase activity was highest after 60 and 72 h of growth and α-arabinofuranosidase activity was detected between 12 and 72 h of growth. Pectinase, invertase and xylanase activities were not detected. Cellulase and α-arabinofuranosidase activities may be important for X. gardneri acquisition of plant nutrients through degradation of cellulose fibers and hemicellulose of the cell wall, respectively, to the invasion of the host tissue and/or may generate signal molecules that are recognized by the plant. This is the first study to address how X. gardneri responds to host plant tissue.  相似文献   

3.
Effects of different sugars on pullulan production, UDP-glucose level, and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase in Aureobasidium pullulans Y68 were examined. It was found that more pullulan was produced when the yeast strain was grown in the medium containing glucose than when it was cultivated in the medium supplementing other sugars. Our results demonstrate that when more pullulan was synthesized, less UDP-glucose was left in the cells of A. pullulans Y68. However, it was observed that more pullulan was synthesized, the cells had higher activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glycosyltransferase. Therefore, high pullulan yield is related to high activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase in A. pullulans Y68 grown on different sugars. A pathway of pullulan biosynthesis in A. pullulan Y68 was proposed based on the results of this study and those from other researchers. This study will be helpful to metabolism-engineer the yeast strain to further enhance pullulan yield.  相似文献   

4.
The strain of Trichoderma reesei Rut C-30 was subjected to mutation after treatment with N-methyl-N′-nitro-N-nitrosoguanidine (NG) for 6 h followed by UV irradiation for 15 min. Successive mutants showed enhanced cellulase production, clear hydrolysis zone and rapid growth on Avicel-containing plate. Particularly, the mutant NU-6 showed approximately two-fold increases in activity of both FPA and CMCase in shake flask culture when grown on basal medium containing peptone (1%) and wheat bran (1%). The enzyme production was further optimized using eight different media. When a mixture of lactose and yeast cream was used as cellulase inducer, the mutant NU-6 yielded the highest enzyme and cell production with a FPase activity of 6.2 U ml−1, a CMCase activity of 54.2 U ml−1, a β-glucosidase activity of 0.39 U ml−1, and a fungal biomass of 12.6 mg ml−1. It deserved noting that the mutant NU-6 also secreted large amounts of xylanases (291.3 U ml−1). These results suggested that NU-6 should be an attractive producer for both cellulose and xylanase production.  相似文献   

5.
The diversity of cellulases and xylanases secreted by Cellulomonas flavigena cultured on sugar cane bagasse, Solka-floc, xylan, or glucose was explored by two-dimensional gel electrophoresis. C. flavigena produced the largest variety of cellulases and xylanases on sugar cane bagasse. Multiple extracellular proteins were expressed with these growth substrates, and a limited set of them coincided in all substrates. Thirteen proteins with carboxymethyl cellulase or xylanase activity were liquid chromatography/mass spectrometry sequenced. Proteins SP4 and SP18 were identified as products of celA and celB genes, respectively, while SP20 and SP33 were isoforms of the bifunctional cellulase/xylanase Cxo recently sequenced and characterized in C. flavigena. The rest of the detected proteins were unknown enzymes with either carboxymethyl cellulase or xylanase activities. All proteins aligned with glycosyl hydrolases listed in National Center for Biotechnology Information database, mainly with cellulase and xylanase enzymes. One of these unknown enzymes, protein SP6, was cross-induced by sugar cane bagasse, Solka-floc, and xylan. The differences in the expression maps of the presently induced cultures revealed that C. flavigena produces and secretes multiple enzymes to use a wide range of lignocellulosic substrates as carbon sources. The expression of these proteins depends on the nature of the cellulosic substrate.  相似文献   

6.
Different strains of the saprophytic yeast-like fungus Aureobasidium pullulans (Ascomycota: Dothideales) exhibit different biochemical characteristics, while their ubiquitous occurrence across diverse habitats and environmental conditions makes them an easily accessible source for biotechnological exploitation. They are useful in agricultural and industrial applications. Their antagonistic activities against postharvest pathogens make them suitable bioagents for the postharvest preservation of fruits and vegetables, while they possess antimicrobial activities against bacteria and fungi. Additionally, A. pullulans appears to be a potent source of single-cell protein. Many strains of A. pullulans harbor a wide range of industrially important enzymes, while the trademark exopolysaccharide pullulan that they produce has been extensively studied and is currently used in many applications. They also produce poly (β-l-malic acid), heavy oil liamocins, siderophore, and aubasidan-like β-glucan which are of interest for future applications. Ongoing studies suggest that A. pullulans holds many more interesting properties capable of further potential biotechnological applications.  相似文献   

7.
8.
A new Penicillium ulaiense strain showed carboxymethylcellulase, pectinase, protease on skim milk and naringinase activities, but no xylanase, cellulase, lipase, amylase, protease on gelatin, and ligninase activities. Studies in liquid medium showed low quantities of pectinases. No mycotoxins were detected.  相似文献   

9.
Intra-specific diversity of 200 Aureobasidium pullulans strains isolated from different sources and their relatives Kabatiella lini CBS 125.21 T and Hormonema prunorum CBS 933.72 T were studied by assessment of macromorphological, and physiological tests, sodium dodecyl sulfate-polyacrylamide gel electrophoresis technique (SDS–PAGE) of whole-cell proteins as well as enterobacterial repetitive intergenic consensus (ERIC)-, repetitive extragenic palindromic (REP)- and BOX-PCR techniques (collectively known as rep-PCR). Rep-PCR is an efficient procedure for discrimination of A. pullulans in terms of simplicity and rapidity. RFLP-PCR technique was applied for the identification of A. pullulans isolates and distinction from related species. This technique was insufficient for investigation of intra-specific diversity. The tested strains of A. pullulans could be divided into two groups based on their macromorphological, protein patterns obtained after SDS-PAGE as well as rep-PCR patterns. The first group of strains shared similar characteristics and was very different from the second one, designated as “complex group”, consisting of strains with very little similarities within the group. Phenetic analysis of ERIC banding patterns failed to group the isolates on the basis of their substrate or geographical origin. Using 18S rDNA gene sequence analysis of selected isolates, three strains: HoHe3 km, A. pullulans DSM 62074 and H. prunorum CBS 933.72 T were distinguished from all other analysed members of genera Aureobasidium and Kabatiella. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
The anaerobic fungus Anaeromyces mucronatus KF8 grown in batch culture on M10 medium with rumen fluid and microcrystalline cellulose as carbon source produced a broad range of enzymes requisite for degradation of plant structural and storage saccharides including cellulase, endoglucanase, xylanase, α-xylosidase, β-xylosidase, α-glucosidase, β-glucosidase, β-galactosidase, mannosidase, cellobiohydrolase, amylase, laminarinase, pectinase and pectate lyase. These enzymes were detected in both the intra- and extracellular fractions, but production into the medium was prevalent with the exception of intracellular β-xylosidase, chitinases, N-acetylglucosaminidase, and lipase. Xylanase activity was predominant among the polysaccharide hydrolases. Extracellular production of xylanase was stimulated by the presence of cellobiose and oat spelt xylan. Zymogram of xylanases of strain KF8 grown on different carbon sources revealed several isoforms of xylanases with approximate molar masses ranging from 26 to 130 kDa.  相似文献   

12.
An extracellular xylanase XynI of glycoside hydrolase family 11 from the dimorphic fungus Aureobasidium pullulans ATCC 20524 possesses an N-terminal extension of 34 amino acids (Ohta et al., J. Biosci. Bioeng. 92:262–270, 2001). The N-terminal extension includes three sites (Ala-X-Ala-X-Ala-X-Ala) that are potentially cleavable by signal peptidase I of Escherichia coli. The A. pullulans xynI signal sequence was fused in frame to the mature protein region of the equivalent xylanase gene xynA from the filamentous fungus Penicillium citrinum. The gene fusion xynI::A was inserted into the plasmid pET-26b(+) to yield pEXP401. An E. coli BL21(DE3) transformant harboring the pEXP401 exhibited xylanase activity (per ml of the culture) of 16.8 U in the fraction of culture supernatant as well as 4.29 U in the fraction of cell-free extract after 12 h of growth with isopropyl-β-d-thiogalactopyranoside at 30°C. N-terminal amino acid sequence analysis of the secreted recombinant proteins revealed cleavage at four distinct sites within the N-terminal extension of XynI, two of which conformed to the Ala-X-Ala motif prior to the cleavage site. The XynA proteins secreted into the culture medium showed high specific activities from 506 to 651 U/mg, which were twofold higher than that of the native enzyme.  相似文献   

13.
Summary A locally isolated strain of Aspergillus foetidus MTCC 4898 was studied for xylanase (EC 3.2.1.8) production using lignocellulosic substrates under solid state fermentation. Corncobs were found as the best substrates for high yield of xylanases with poor cellulase production. The influence of various parameters such as temperature, pH, moistening agents, moisture level, nitrogen sources and pretreatment of substrates were evaluated with respect to xylanase yield, specific activity and cellulase production. Influence of nitrogen sources on protease secretion was also examined. Maximum xylanase production (3065 U/g) was obtained on untreated corncobs moistened with modified Mandels and Strenberg medium, pH 5.0 at 1 5 moisture levels at 30 °C in 4 days of cultivation. Submerged fermentation under the same conditions gave higher yield (3300 U/g) in 5 days of cultivation, but productivity was less. Ammonium sulphate fractionation yielded 3.56-fold purified xylanase with 76% recovery. Optimum pH and temperature for xylanase activity were found to be 5.3 and 50 °C respectively. Kinetic parameters like Km and Vmax were found to be 3.58 mg/ml and 570 μmol/mg/min. Activity of the enzyme was found to be enhanced by cystiene hydrochloride, CoCl2, xylose and Tween 80, while significantly inhibited by Hg++, Cu++ and glucose. The enzyme was found to be stable at 40 °C. The half life at 50 °C was 57.53 min. However thermostability was enhanced by glycerol, trehalose and Ca++. The crude enzyme was stable during lyophilization and could be stored at less than 0 °C.  相似文献   

14.
Over 300 yeast strains isolated from different marine environments were screened for their ability to produce siderophore. Among them, only the yeast strain HN6.2 which was identified to be Aureobasidium pullulans was found to produce high level of the siderophore. Under the optimal conditions, this yeast strain could produce 1.1 mg/ml of the siderophore. The crude siderophore produced by the yeast strain HN6.2 was able to inhibit cell growth of Vibrio anguillarum and Vibrio parahaemolyticus, isolated from the diseased marine animals.  相似文献   

15.
Iron is a key trace element important for many biochemical processes and its availability varies with the environment. For human pathogenic fungi iron acquisition can be particularly problematical because host cells sequester free iron as part of the acute‐phase response to infection. Fungi rely on high‐affinity iron uptake systems, such as reductive iron assimilation (RIA) and siderophore‐mediated iron uptake (non‐RIA). These have been extensively studied in pathogenic fungi that exist outside of host cells, but much less is known for intracellular fungal pathogens. Talaromyces marneffei is a dimorphic fungal pathogen endemic to Southeast Asia. In the host T. marneffei resides within macrophages where it grows as a fission yeast. T. marneffei has genes of both iron assimilation systems as well as a paralogue of the siderophore biosynthetic gene sidA, designated sidX. Unlike other fungi, deletion of sidA or sidX resulted in cell type‐specific effects. Mutant analysis showed that T. marneffei yeast cells also employ RIA for iron acquisition, providing an additional system in this cell type that differs substantially from hyphal cells. These data illustrate the specialized iron acquisition systems used by the different cell types of a dimorphic fungal pathogen and highlight the complexity in siderophore‐biosynthetic pathways amongst fungi.  相似文献   

16.
A xylanase producer, Bacillus pumilus SB-M13, was isolated from soil and identified using various tests based on carbohydrate fermentation preferences and fatty acid analysis. Xylanase gene, isolated using PCR amplification, was partially sequenced and it showed 89–94% sequence similarity to the xylanase genes of other B. pumilus strains. Xylanase with very low level of cellulase was produced on agricultural byproducts. The enzyme has been purified 186-fold by hydrophobic interaction chromatography and biochemically characterized. It has a molecular weight of 24.8 kDa and pI of 9.2. Xylanolytic activity is stable at alkaline pH and highest activity is observed at 60 °C and pH 7.5. Enzyme K m and k cat values were determined as 1.9 mg/mL and 42,600 U/mg, respectively. In aqueous-two-phase system, xylanase always partitioned to the top phase. Basic pH, low PEG concentration, salt addition, and presence of microbial cells enhanced xylanase partitioning. A maximum sevenfold purification, 10-fold concentration and 100% xylanase recovery were obtained, separately, by adjusting system parameters. A fourfold concentrated xylanase was obtained with 70% enzyme recovery only in one step ATPS process without cell harvesting.  相似文献   

17.
云南高原湖泊抚仙湖和星云湖的酵母菌胞外酶活性   总被引:1,自引:1,他引:0  
【背景】高原湖泊因其海拔高、气压低、辐射强、氧气含量低,是一类特殊环境,而其中的微生物是高原湖泊生态系统物质循环与能量流动的重要参与者,其胞外酶活性的表现决定其适应这一特殊环境的方式与能力。【目的】对分离自云南高原湖泊抚仙湖和星云湖湖水的酵母菌进行产胞外酶活性的筛选,以期获得具有潜在应用价值的活性菌株。【方法】在5°C和25°C培养温度下,采用平板筛选法对两个湖泊酵母菌进行产胞外蛋白酶、纤维素酶、淀粉酶、脂肪酶、几丁质酶、木聚糖酶、植酸酶、菊粉酶、漆酶、锰依赖过氧化物酶和木质素过氧化物酶活性的筛选。【结果】抚仙湖和星云湖的所有测试酵母菌菌株至少都能产1种胞外酶,且主要产植酸酶、菊粉酶和淀粉酶;其次为脂肪酶、纤维素酶、木聚糖酶、锰依赖过氧化物酶和木质素过氧化物酶;产几丁质酶、蛋白酶和漆酶的酵母菌很少,星云湖酵母菌都不产漆酶。培养温度为5°C时,抚仙湖和星云湖的酵母菌产5种及5种以上胞外酶的活性菌株数均多于25°C。【结论】抚仙湖和星云湖的酵母菌产胞外酶菌株多样性丰富,胞外酶种类多样,产酶酵母菌可能参与高原湖泊生态系统的物质循环;筛选得到的产胞外酶菌株为开发与利用高原湖泊酶资源提供了良好的种质资源,具有进一步研究的价值。  相似文献   

18.
Serine proteinase inhibitors (IP’s) are proteins found naturally in a wide range of plants with a significant role in the natural defense system of plants against herbivores. The question addressed in the present study involves assessing the ability of the serine proteinase inhibitor in combating nematode infestation. The present study involves engineering a plant serine proteinase inhibitor (pin2) gene into T. durum PDW215 by Agrobacterium-mediated transformation to combat cereal cyst nematode (Heterodera avenae) infestation. Putative T0 transformants were screened and positive segregating lines analysed further for the study of the stable integration, expression and segregation of the genes. PCR, Southern analysis along with bar gene expression studies corroborate the stable integration pattern of the respective genes. The transformation efficiency is 3%, while the frequency of escapes was 35.71%. χ2 analysis reveals the stable integration and segregation of the genes in both the T1 and T2 progeny lines. The PIN2 systemic expression confers satisfactory nematode resistance. The correlation analysis suggests that at p < 0.05 level of significance the relative proteinase inhibitor (PI) values show a direct positive correlation vis-à-vis plant height, plant seed weight and also the seed number.  相似文献   

19.
Although the bys-like family of genes has been conserved from yeast to humans, it is not apparent to what extent the function of Bys-like proteins has been conserved across phylogenetic groups. Human Bystin is thought to function in a novel cell adhesion complex involved in embryo implantation. The product of the yeast bys-like gene, Enp1, is nuclear and has a role in pre-ribosomal RNA (pre-rRNA) splicing and ribosome biogenesis. To gain insight into the function of the Drosophila melanogaster bys-like family member, termed bys, we examined bys mRNA expression and the localization of Bys protein. In embryos, bys mRNA is expressed in a tissue-specific pattern during gastrulation. In the larval wing imaginal disc, bys mRNA is expressed in the ventral and dorsal regions of the wing pouch, regions that give rise to epithelia that adhere to one another after the wing disc everts. The bys mRNA expression patterns could be interpreted as being consistent with a role for Bys in events requiring cell-cell interactions. However, embryonic bys mRNA expression patterns mirror those of genes that are potential targets of the growth regulator Myc and encode nucleolar proteins implicated in cell growth. Additionally, in Schneider line 2 (S2) cells, an epitope-tagged Bys protein is localized to the nucleus, suggesting that Drosophila Bys function may be conserved with that of yeast Enp1.Edited by D.A. Weisblat  相似文献   

20.
The difference in antagonistic activity against the causal agent of grey mould (Botrytis cinerea) of tomato between Aureobasidium strains belonging to three different species, namely A. pullulans, A. melanogenum and A. subglaciale, was evaluated by in vitro and in vivo assays. In the yeast–pathogen direct interaction experiment, all the strains significantly reduced B. cinerea growth, with A. melanogenum the least efficient species (17.8% of reduction) compared to A. pullulans and subglaciale (22 and 27.8%). The non-volatile metabolites produced by all three species reduced mycelial growth between 95 and 100%. These metabolites were characterised by FT-IR spectroscopy as polysaccharides, lytic enzymes, siderophores and antibiotics. The inhibitory effect of Aureobasidium strains on pathogenic enzymes such as xylanase, polygalacturonase and pectinase was measured showing A. pullulans strains as capable of strong inhibition of xylanase, an enzyme directly related to the virulence of necrotrophic pathogens such as B. cinerea. Our data demonstrate that the different species of Aureobasidium isolated from a range of non-conventional environments exerted variable efficacy against B. cinerea, with A. pullulans as the most active species followed by A. subglaciale and A. melanogenum as ineffective and not suitable for biocontrol applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号