首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relevant production of xylitol by Debaryomyces hansenii requires semiaerobic conditions since in aerobic conditions the accumulated reduced adenine dinucleotide coenzyme is fully reoxidized leading to the conversion of xylitol into xylulose. For oxygen transfer coefficient values from 0.24 to 1.88 min-1, in shake flasks experiments, biomass formation increased proportionally to the aeration rate as shown in the oxygen transfer coefficient and xylose concentration isoresponse contours. The metabolic products under study, xylitol and ethanol were mainly growth associated. However, for oxygen transfer coefficient above 0.5 min-1 higher initial xylose concentration stimulated the rate of production of xylitol. This fact was less evident for ethanol production. The direct relationship between increased biomass and products formation rate, indicated that the experimental domain in respect to the aeration rate was below the threshold level before the decreasing in metabolic production rates reported in literature for xylose-fermenting yeasts. The fact that ethanol was produced, albeit in low levels, throughout the experimental design indicated that the semiaerobic conditions were always attained. Debaryomyces hansenii showed to be an important xylitol producer exhibiting a xylitol/ethanol ratio above four and a carbon conversion of 54% for xylitol.Abbreviations KLa oxygen transfer coefficient - DO(T) dissolved oxygen (tension) - OUR oxygen uptake rate - NAD(H) oxidised (reduced) nicotinamide adenine dinucleotide - NADP(H) oxidised (reduced) nicotinamide adenine dinucleotide phosphate - CRC catabolic reduction charge - C oxygen concentration in the culture medium - C* oxygen concentration at saturation conditions - Yi response from experiment i - parameters of the polynomial model - x experimental factor level (coded units) - R2 coefficient of multiple determination - t time  相似文献   

2.
Polyols such as mannitol, erythritol, sorbitol, and xylitol are naturally found in fruits and vegetables and are produced by certain bacteria, fungi, yeasts, and algae. These sugar alcohols are widely used in food and pharmaceutical industries and in medicine because of their interesting physicochemical properties. In the food industry, polyols are employed as natural sweeteners applicable in light and diabetic food products. In the last decade, biotechnological production of polyols by lactic acid bacteria (LAB) has been investigated as an alternative to their current industrial production. While heterofermentative LAB may naturally produce mannitol and erythritol under certain culture conditions, sorbitol and xylitol have been only synthesized through metabolic engineering processes. This review deals with the spontaneous formation of mannitol and erythritol in fermented foods and their biotechnological production by heterofermentative LAB and briefly presented the metabolic engineering processes applied for polyol formation.  相似文献   

3.
Heterologous endo-beta-1,4-xylanase was produced by Pichia stipitis under control of the hypoxia-inducible PsADH2-promoter in a high-cell-density culture. After promoter induction by a shift to oxygen limitation, different aeration rates (oxygen transfer rates) were applied while maintaining oxygen-limitation. Initially, enzyme production was higher in oxygen-limited cultures with high rates of oxygen transfer, although the maximum xylanase activity was not significantly influenced. Amino acid supplementation increased the production of the heterologous endo-beta-1,4-xylanase significantly in highly aerated oxygen-limited cultures, until glucose was depleted. A slight second induction of the promoter was observed in all cultures after the glucose had been consumed. The second induction was most obvious in amino acid-supplemented cultures with higher oxygen transfer rates during oxygen limitation. When such oxygen-limited cultures were shifted back to fully aerobic conditions, a significant re-induction of heterologous endo-beta-1,4-xylanase production was observed. Re-induction was accompanied by ethanol consumption. A similar protein production pattern was observed when cultures were first grown on ethanol as sole carbon source and subsequently glucose and oxygen limitation were applied. Thus, we present the first expression system in yeast with a sequential double-inducible promoter.  相似文献   

4.
Summary The effect of oxygen availability on d-xylose and D-glucose metabolism by Pichia stipitis, Candida shehatae and Pachysolen tannophilus was investigated. Oxygen was not required for fermentation of d-xylose or d-glucose, but stimulated the ethanol production rate from both sugars. Under oxygen-limited conditions, the highest ethanol yield coefficient (Ye/s) of 0.47 was obtained on d-xylose with. P. stipitis, while under similar conditions C. shehatae fermented d-xylose most rapidly with a specific productivity (qpmax) of 0.32 h-1. Both of these yeasts fermented d-xylose better and produced less xylitol than. P. tannophilus. Synthesis of polyols such as xylitol, arabitol, glycerol and ribitol reduced the ethanol yield in some instances and was related to the yeast strain, carbon source and oxygen availability. In general, these yeasts fermented d-glucose more rapidly than d-xylose. By contrast Saccharomyces cerevisiae fermented d-glucose at least three-fold faster under similar conditions.Nomenclature qpmax maximum specific rate of ethanol production (g ethanol per g dry biomass per hour) - Ye/s ethanol yield (g ethanol per g substrate utilized) - Yp/s polyol yield (g polyol per g substrate utilized) - Yx/s biomass yield (g dry biomass per g substrate utilized) - max maximum specific growth rate (per hour)  相似文献   

5.
The new yeast Debaryomyces hansenii UFV-170 was tested in this work in batch experiments under variable oxygenation conditions. To get additional information on its fermentative metabolism, a stoichiometric network was proposed and checked through a bioenergetic study performed using the experimental data of product and substrate concentrations. The yeast metabolism resulted to be practically inactive under strict oxygen-limited conditions (qO2 = 12.0 mmol(O2) C-mol(DM)(-1) h(-1)), as expected by the impossibility of regenerating NADH2+. Significant fractions of the carbon source were addressed to both respiration and biomass growth under excess oxygen levels (qO2 > or = 55.0 mmol(O2) C-mol(DM)(-1) h(-1)), thus affecting xylitol yield (Y(P/S) = 0.41-0.52 g g(-1)). Semi-aerobic conditions (qO2 = 26.8 mmol(O2) C-mol(DM)(-1) h(-1)) were able to ensure the best xylitol production performance (Pmax = 76.6 g L(-1)), minimizing the fractions of the carbon source addressed either to respiration or biomass production and increasing Y(P/S) up to 0.73 g g(-1). An average P/O ratio of about 1.0 mol(ATP) mol(O)(-1) allowed estimation of the main kinetic-bioenergetic parameters of the biosystem. The overall ATP requirements of biomass were found to be particularly high and dependent on the oxygen availability in the medium as well as on the physiological state of the culture. Under semi-aerobic and aerobic conditions, they varied in the ranges 13.5-15.4 and 9.74-10.2 mol(ATP) C-mol(DM)(-1), respectively, whereas during the best semi-aerobic bioconversion they progressively increased from 5.68 to 24.7 mol(ATP) C-mol(DM)(-1). After a starting phase of adaptation to the medium, the cell achieved a phase of decelerated growth during which its excellent xylose-to-xylitol capacity kept almost constant after 112 h up to the end of the run.  相似文献   

6.
Oxygen-dependent xylitol metabolism in Pichia stipitis   总被引:1,自引:0,他引:1  
Pichia stipitis CBS 6054 was cultivated in chemostat cultures under aerobic and oxygen-limited conditions with xylitol alone, a mixture of xylitol and glucose and a mixture of xylitol and xylose. Xylitol metabolism was strictly respiratory and no ethanol was formed. Simultaneous feeding of xylitol and glucose and xylitol and xylose to oxygen-limited xylitol-pregrown cells resulted in ethanol formation. In vitro both pyruvate decarboxylase activity and alcohol dehydrogenase activity were present in cells metabolising xylitol under oxygen-limited conditions; however, this did not result in ethanol formation. Glucose, xylose and xylitol utilisation, respectively, were compared under anaerobic conditions with regard to growth rate, carbon source and oxygenation level during pre-cultivation. Irrespective of pre-growth conditions, xylitol was not metabolised under anaerobic conditions, whereas ethanol was formed from both xylose and glucose. Anaerobic xylose utilisation required induction of a xylose-utilising metabolic pathway during pre-cultivation. Received: 23 February 1999 / Received last revision: 20 July 1999 / Accepted: 1 August 1999  相似文献   

7.
The effect of oxygenation on xylitol production by the yeast Debaryomyces hansenii has been investigated in this work using the liquors from corncob hydrolysis as the fermentation medium. The concentrations of consumed substrates (glucose, xylose, arabinose, acetate and oxygen) and formed products (xylitol, arabitol, ethanol, biomass and carbon dioxide) have been used, together with those previously obtained varying the hydrolysis technique, the level of adaptation of the microorganism, the sterilization procedure and the initial substrate and biomass concentrations, in carbon material balances to evaluate the percentages of xylose consumed by the yeast for the reduction to xylitol, alcohol fermentation, respiration and cell growth. The highest xylitol concentration (71 g/L) and volumetric productivity (1.5 g/L.h) were obtained semiaerobically using detoxified hydrolyzate produced by autohydrolysis-posthydrolysis, at starting levels of xylose (S(0)) and biomass (X(0)) of about 100 g/L and 12 g(DM)/L, respectively. No less than 80% xylose was addressed to xylitol production under these conditions. The experimental data collected in this work at variable oxygen levels allowed estimating a P/O ratio of 1.16 mol(ATP)/mol(O). The overall ATP requirements for biomass production and maintenance demonstrated to remarkably increase with X(0) and for S(0) >or= 130 g/L and to reach minimum values (1.9-2.1 mol(ATP)/C-mol(DM)) just under semiaerobic conditions favoring xylitol accumulation.  相似文献   

8.
Chemostat study of xylitol production by Candida guilliermondii   总被引:1,自引:0,他引:1  
The mechanism of production of xylitol from xylose by Candida guilliermondii was studied using chemostat cultures and enzymatic assays. The maximum dilution rate in aerobic conditions was 0.34 1/h. No xylitol was produced. Under oxygen-limited conditions xylose uptake was impaired and glycerol accumulated but no xylitol was detected. Under transient oxygen limitation, caused by a gradual decrease in the agitation rate, onset of xylitol, acetate and residual xylose accumulation occurred simultaneously when q O2 dropped below 25 mmol/C-mmol cell dry weight (CDW) per hour. Ethanol and glycerol started to accumulate when q O2 dropped below 20 mmol/C-mmol CDW per hour. The highest in vitro enzyme activities were found at the lowest dilution rate studied (0.091/h) under aerobic conditions. The amount of active enzymes or cofactor availability did not limit the rate of xylose consumption. Our results confirm that a surplus of NADH during transient oxygen limitation inhibited the activity of xylitol dehydrogenase which resulted in xylitol accumulation. Phosphoglucoisomerase (E.C. 5.3.1.9.) and glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49) activities suggest re-shuttling of the metabolites into the pentose phosphate pathway. Received: 7 March 2000 / Received revision: 9 June 2000 / Accepted: 18 June 2000  相似文献   

9.
The physiology of Aspergillus niger was studied under different aeration conditions. Five different aeration rates were investigated in batch cultivations of A. niger grown on xylose. Biomass, intra- and extra-cellular metabolites profiles were determined and ten different enzyme activities in the central carbon metabolism were assessed. The focus was on organic acid production with a special interest in succinate production. The fermentations revealed that oxygen limitation significantly changes the physiology of the micro-organism. Changes in extra cellular metabolite profiles were observed, that is, there was a drastic increase in polyol production (erythritol, xylitol, glycerol, arabitol, and mannitol) and to a lesser extent in the production of reduced acids (malate and succinate). The intracellular metabolite profiles indicated changes in fluxes, since several primary metabolites, like the intermediates of the TCA cycle accumulated during oxygen limitation (on average three fold increase). Also the enzyme activities showed changes between the exponential growth phase and the oxygen limitation phase. In general, the oxygen availability has a significant impact on the physiology of this fungus causing dramatic alterations in the central carbon metabolism that should be taken into account in the design of A. niger as a succinate cell factory.  相似文献   

10.
Aims:  A two-stage fermentation strategy, based on batch cultures conducted first under non-oxygen-limited conditions, and later under oxygen-limited conditions, was used to improve alginate production by Azotobacter vinelandii (AT6), a strain impaired in poly-β-hydroxybutyrate (PHB) production.
Methods and Results:  The use of sucrose as carbon source, as well as a high oxygen concentration (10%), allowed to obtain a maximum biomass concentration of 7·5 g l−1 in the first stage of cultivation. In the second stage, the cultures were limited by oxygen (oxygen close to 0%) and fed with a sucrose solution at high concentration. Under those conditions, the growth rate decreased considerably and the cells used the carbon source mainly for alginate biosynthesis, obtaining a maximum concentration of 9·5 g l−1, after 50 h of cultivation.
Conclusion:  Alginate concentration obtained from the AT6 strain was two times higher than that obtained using the wild-type strain (ATCC 9046) and was the highest reported in the literature. However, the mean molecular mass of the alginate produced in the second stage of the process by the mutant AT6 was lower (400 kDa) than the polymer molecular mass obtained from the cultures developed with the parental strain (950 kDa).
Significance and Impact of the Study:  The use of a mutant of A. vinelandii impaired in the PHB production in combination with a two-stage fermentation process could be a feasible strategy for the production of alginate at industrial level.  相似文献   

11.
The growth characteristics of the sourdough yeast Candida milleri was studied in a carbon-limited aerobic chemostat culture on defined medium. The effect of glucose, xylose, and glucose-xylose mixture on metabolite production and on key enzyme activities was evaluated. Xylose as a sole carbon source was not metabolized by C. milleri. Glucose as a sole carbon source produced only biomass and carbon dioxide. When a glucose-xylose mixture (125:125 C-mM) was used as a carbon source, a small amount of xylose was consumed and a low concentration of xylitol was produced (7.20 C-mM). Enzymatic assays indicated that C. milleri does not possess xylitol dehydrogenase activity and its xylose reductase is exclusively NADPH-dependent. In glucose medium both NAD(+)- and NADP(+)-dependent aldehyde dehydrogenase activities were found, whereas in a glucose-xylose medium only NADP(+)-dependent aldehyde dehydrogenase activity was detected. The developed metabolic flux analysis corresponded well with the experimentally measured values of metabolite production, oxygen consumption (OUR), and carbon dioxide production (CER). Turnover number in generation and consumption of ATP, mitochondrial and cytosolic NADH, and cytosolic NADPH could be calculated and redox balance was achieved. Constraints were imposed on the flux estimates such that the directionality of irreversible reactions is not violated, and cofactor dependence of the measured enzyme activities were taken into account in constructing the metabolic flux network.  相似文献   

12.
We have constructed a tandem gene expression cassette containing three Ralstonia eutropha poly[(R)-3-hydroxybutyrate] (PHB) synthesis genes under the control of the Pichia pastoris glyceraldehyde-3-phosphate promoter and the green fluorescent protein (Gfp) under the control of the P. pastoris alcohol oxidase promoter. The inducible Gfp reporter protein has been used to rapidly isolate transformed strains with two copies of the entire expression cassette. The isolated strain exhibits Gfp induction kinetics that is twice as fast as that of the strains isolated without cell sorting. In addition, the sorted strains exhibited higher PHB contents in preliminary screening experiments. PHB synthesis was characterized in more detail in the sorted strain and was found to be dependent on culture conditions. It was observed that the specific PHB synthesis rate was dependent on the carbon source utilized and that the conditions of oxygen stress lead to increased fractional PHB content. When this strain is cultivated on glucose under oxygen-limited conditions, the cultures accumulated ethanol during the initial growth phase and then consumed the ethanol for the accumulation of PHB and biomass. While PHB was not synthesized during initial growth on glucose, significant levels of PHB were synthesized when ethanol was subsequently consumed. PHB was also synthesized under aerobic conditions when ethanol was the only carbon source. During growth on ethanol, the specific growth rate of the culture was reduced under oxygen-limited conditions but the specific PHB synthesis rate was relatively unaffected. Thus, the high accumulation of PHB which exceeded 30% of the cell dry weight appears to be the consequence of the decreased biomass growth rate under severe oxygen limitation.  相似文献   

13.
The titers of key enzymes of xylose metabolism were measured and correlated with the kinetics of xylitol production by Debaryomyces hansenii under different oxygen transfer rates (OTR) in a batch reactor. An OTR change from 2.72 to 4.22 mmol O2 l−1 min−1 resulted in a decrease in NADPH-dependent xylose reductase (XR) and NAD ± -dependent xylitol dehydrogenase (XDH) activities. For higher values of OTR (12.93 mmol O2 l−1 min−1, the XDH titer increased twofold whereas the XR titer did not show a significant change. At the lowest OTR (2.72 mmol O2 l−1 min−1), xylitol (and ethanol) production rates showed the highest values. However, xylitol specific productivity was twice as high as ethanol specific productivity. The titer of the NADPH-forming enzyme, glucose-6-phosphate dehydrogenase (GPDH), increased from 333 to 412 mU mg−1 when the OTR was increased. However, 6-phosphogluconate dehydrogenase (PGDH) activity remained unchanged and at a lower level, which indicates that this enzyme is responsible for the carbon flux control of the oxidative branch of the pentose phosphate pathway. The activity of the alcohol-forming enzyme was repressed at the higher amount of oxygen, decreasing its activity more than 50%. The changes in ADH suggested that two different metabolic regions under oxygen-limited conditions can be hypothesized for xylose metabolism by D. hansenii. For low OTR values (up to 4.22 mmol O2 l−1 min−1), a fermentative-type activity is displayed. At higher OTR values (above 4.22 mmol O2 l−1 min−1), no significant fermentative activity is reported.  相似文献   

14.
Galactosyl‐polyhydroxyalcohols are products of transgalactosylation occurring during lactose hydrolysis in the presence of polyols. Products of transgalactosylation (mainly galactooligosaccharides) are known for their health‐promoting properties. The aim of this research was to determine the conditions of the synthesis of selected gal‐polyols using enzymes from various sources: Kluyveromyces fragilis, Kluyveromyces lactis and Aspergillus oryzae. The highest amounts of galactosyl derivatives of polyol‐monomers (sorbitol, xylitol and erythritol), formed during the enzymatic hydrolysis of lactose with the use of the enzyme from K. lactis, were obtained using an initial solution of the molar ratio of lactose to polyol equal to 1:1.85. In the case of lactitol, this proportion amounted to 1:2.9. The best transgalactosylating properties in the course of the synthesis of gal‐sorbitol and gal‐erythritol were obtained with β‐galactosidase from K. fragilis; where the contents of galactosyl derivatives in dry matter accounted for 16.4 % [w/w] and 18.8 % [w/w], respectively. The quantities of derivatives of xylitol and lactitol obtained through the application of enzymes from K. lactis and K. fragilis were comparable – up to 14.7 % [w/w] of gal‐xylitol and up to 17.2 % [w/w] of gal‐lactitol. Enzymes from yeasts showed a larger affinity towards the synthesis of derivatives of polyol‐monomers, whereas the enzyme from mould synthesized trimers faster. An excessive addition of enzymes brought about an intensification of gal‐polyol hydrolysis and a decrease of their content in the hydrolysates. Thus, the amount of β‐galactosidase to be added should not exceed 2500 AUL/100 mL in gal‐erythritol synthesis, 1300 AUL/100 mL in gal‐xylitol synthesis, 4000 AUL/100 mL in gal‐sorbitol synthesis a well as 2600 AUL/100 mL in gal‐lactitol synthesis.  相似文献   

15.
Batch fermentations of Rhizobium trifolii 0403 were performed with dissolved oxygen (DO) control to determine the effect of DO on growth rate, and the production of exopolysaccharide and biomass. When DO was maintained between 4 and 20% of saturation, growth was exponential. The apparent specific growth rate, biomass and exopolysaccharide production did not vary significantly over this DO range. At oxygen transfer rates less than the minimum required for exponential growth, DO fell to below 1%. Growth under these conditions was linear and in direct relation to the oxygen transfer rate. Exopolymer production increased and biomass production decreased under oxygen-limited conditions.  相似文献   

16.
Cotton stalk is a widely distributed and abundant lignocellulosic waste found in Turkey. Because of its rich xylose content, it can be a promising source for the production of xylitol. Xylitol can be produced by chemical or biotechnological methods. Because the biotechnological method is a simple process with great substrate specificity and low energy requirements, it is more of an economic alternative for the xylitol production. This study aimed to use cotton stalk for the production of xylitol with Candida tropicalis Kuen 1022. For this purpose, the combined effects of different oxygen concentration, inoculum level and substrate concentration were investigated to obtain high xylitol yield and volumetric xylitol production rate. Candida tropicalis Kuen 1022 afforded different concentrations of xylitol depending on xylose concentration, inoculum level, and oxygen concentration. The optimum xylose, yeast concentration, and airflow rate for cotton stalk hydrolysate were found as 10.41 g L?1, 0.99 g L?1, and 1.02 vvm, respectively, and under these conditions, xylitol yield and volumetric xylitol production rate were obtained as 36% and 0.06 g L?1 hr?1, respectively. The results of this study show that cotton stalk can serve as a potential renewable source for the production of xylitol.  相似文献   

17.
Cell immobilization has shown to be especially adequate for xylitol production. This work studies the suitability of the air lift bioreactor for xylitol production by Debaryomyces hansenii immobilized in Ca-alginate operating in fed-batch cultures to avoid substrate inhibition. The results showed that the air lift bioreactor is an adequate system since the minimum air flow required for fluidization was even lower than that leading to the microaerobic conditions that trigger xylitol accumulation by this yeast, also maintaining the integrity of the alginate beads and the viability of the immobilized cells until 3 months of reuses. Maximum productivities and yields of 0.43 g/l/h and 0.71 g/g were achieved with a xylose concentration of 60 g/l after each feeding. The xylose feeding rate, the air flow, and the biomass concentration at the beginning of the fed-batch operation have shown to be critical parameters for achieving high productivities and yields. Although a maximum xylitol production of 139 g/l was obtained, product inhibition was evidenced in batch experiments, which allowed estimating at 200 and 275 g/l the IC50 for xylitol productivity and yield, respectively. The remarkable production of glycerol in the absence of glucose was noticeable, which could not only be attributed to the osmoregulatory function of this polyol in conditions of high osmotic pressure caused by high xylitol concentrations but also to the role of the glycerol synthesis pathway in the regeneration of NAD+ in conditions of suboptimal microaeration caused by insufficient aeration or high oxygen demand when high biomass concentrations were achieved.  相似文献   

18.
A mathematical model describing the kinetics of the sequential production of lactic acid and xylitol from detoxified-concentrated vine trimming hemicellulosic hydrolysates by Lactobacillus rhamnosus and Debaryomyces hansenii, respectively, was developed from the basic principles of mass balance in two stages considering as main reactions: (1) glucose and xylose consumption by L. rhamnosus; and (2) xylitol and arabitol production by D. hansenii. The model allows to evaluate the yields and productivities under microaerobic and oxygen restricted conditions (in particular the effects caused by purging the oxygen with nitrogen), which were particularly important during the xylose to xylitol bioconversion by yeasts. The model was tested using experimental data obtained from detoxified-concentrated hemicellulosic hydrolysates, after CaCO3 addition in both types of fermentation processes, without purges (microaerobic conditions) or purging oxygen with nitrogen (oxygen-limited conditions) after sampling in order to reduce the oxygen dissolved. L. rhamnosus was removed by microfiltration before adding D. hansenii at the beginning of the second stage. Mass balance-based and logistic functions were successfully applied to develop the model of the system which properly predicts the consumption of sugars as well as the metabolites produced and yields. The dynamics of fermentation were also adequately described by the developed model.  相似文献   

19.
Aims: To characterize the kinetics of growth, sugar uptake and xylitol production in batch and fed‐batch cultures for a xylitol assimilation‐deficient strain of Candida tropicalis isolated via chemical mutagenesis. Methods and Results: Chemical mutagenesis using nitrosoguanidine led to the isolation of the xylitol‐assimilation deficient strain C. tropicalis SS2. Shake‐flask fermentations with this mutant showed a sixfold higher xylitol yield than the parent strain in medium containing 25 g l?1 glucose and 25 g l?1 xylose. With 20 g l?1 glycerol, replacing glucose for cell growth, and various concentrations of xylose, the studies indicated that the mutant strain resulted in xylitol yields from xylose close to theoretical. Under fully aerobic conditions, fed‐batch fermentation with repeated addition of glycerol and xylose resulted in 3·3 g l?1 h?1 xylitol volumetric productivity with the final concentration of 220 g l?1 and overall yield of 0·93 g g?1 xylitol. Conclusions: The xylitol assimilation‐deficient mutant isolated in this study showed the potential for high xylitol yield and volumetric productivity under aerobic conditions. In the evaluation of glycerol as an alternative low‐cost nonfermentable carbon source, high biomass and xylitol yields under aerobic conditions were achieved; however, the increase in initial xylose concentrations resulted in a reduction in biomass yield based on glycerol consumption. This may be a consequence of the role of an active transport system in the yeast requiring increasing energy for xylose uptake and possible xylitol secretion, with little or no energy available from xylose metabolism. Significance and Impact of the Study: The study confirms the advantage of using a xylitol assimilation‐deficient yeast under aerobic conditions for xylitol production with glycerol as a primary carbon source. It illustrates the potential of using the xylose stream in a biomass‐based bio‐refinery for the production of xylitol with further cost reductions resulting from using glycerol for yeast growth and energy production.  相似文献   

20.
Xylitol consumption decreases counts of mutans streptococci. However, the mechanism behind this decrease is not well understood. We studied not only type strains and clinical isolates of mutans streptococci, but also other polysaccharide-forming oral streptococci. Growth inhibition and adherence of cells to a smooth glass surface—reflecting synthesis of water-insoluble polysaccharides were studied in the presence of 2% (0.13 mol/l) and 4% (0.26 mol/l) xylitol. The effect of xylitol was compared to a novel polyol sweetener, erythritol. Except for Streptococcus mutans 10449 and S. sobrinus OMZ 176, the glass surface adhesion of most polysaccharide-forming streptococci was reduced by the presence of both 4% xylitol and erythritol. For the S. mutans and S. sobrinus type strains, the growth inhibition with 4% xylitol and erythritol was 36–77% and for the clinical S. mutans isolates 13–73%. Of the other oral streptococci, only S. sanguinis was inhibited with 4% xylitol (45–55%). For both polyols, the magnitude of the growth inhibition observed was not associated with the magnitude of the decrease in adherence (xylitol: r = −0.18; erythritol: r = 0.49). In conclusion, both xylitol and erythritol can decrease polysaccharide-mediated cell adherence contributing to plaque accumulation through a mechanism not dependent on growth inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号