首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The proboscis musculature was studied in the nemertean Baseodiscus delineatus using confocal laser scanning and electron transmission microscopy. Three muscle layers were differentiated in the proboscis wall: the outer-longitudinal, the diagonal, and the inner-circular layer. The endothelium consists of two cell types: apical supportive cells with rudimentary cilia and subapical myocytes making up the inner-circular musculature of the proboscis. The supportive cells have thin processes attached to the basal extracellular matrix and their perikarya are spread over the apical surfaces of myocytes. The endothelium of B. delineatus is characterized by a folded basal layer of the extracellular matrix and by different heights of myocyte processes, giving an impression that the inner-circular musculature is multilayered. Comparative analysis shows that the diagonal musculature of Baseodiscus is not homologous to that of other heteronemerteans. An assumption is made that the inner-circular muscles have endothelial origin in all heteronemerteans.  相似文献   

3.
4.
The organization of the stomach in the compound styelid ascidian, Polyandrocarpa misakiensis, is described, and the morphology and cell types of the stomach is discussed from the phylogenetic viewpoint. The stomach is a sac-like organ whose wall is formed into longitudinal folds. The stomach consists of external and internal epithelium. The internal epithelium is simple columnar, except for the bottom of the folds. There are five cell types: absorptive cells, zymogenic cells, endocrine cells, ciliated mucous cells, and undifferentiated cells. The absorptive cells have numerous microvilli. The apical region of these cells is occupied by coated vesicles. The zymogenic cells have a conical outline and a few microvilli on their apical surfaces. There are secretory granules in the apical region of zymogenic cells. The endocrine cells have low cell height and electron-dense granules around the nucleus. Endocrine cells have one or two cilia and a few microvilli on the apical surfaces. The basolateral part of these cells often bulges into the adjoining cells. Immunoelectron microscopy revealed that some endocrine cells have serotonin-like immunoreactivity. The ciliated mucous cells are restricted to a single ventral groove. They have numerous microvilli and a few cilia on their apical surfaces. Moderately electron-dense granules are accumulated in the apical part of the ciliated mucous cells. Undifferentiated cells, filled with free ribosomes, form a pseudostratified epithelium in the base of each fold. The nucleus of undifferentiated cells has a prominent nucleolus. The pseudostratified epithelium of the pyloric caecum consists of electron-dense and electron-light cells.  相似文献   

5.
Summary The interpyramidal muscles of the lantern of Diadema setosum have been studied as an example of such muscles in regular echinoids. The light- and electron microscopic study proves that the interpyramidal muscle is nothing but a continuous, highly folded myoepithelium. Although it is a powerful and specialized comminator muscle its histological organization (a pseudostratified myoepithelium) is rather simple when compared with other echinoderm myoepithelia. It consists of only two cell types: 1) a single layer of well-developed myocytes and 2) monociliated adluminal cells that totally cover the myocytes and touch the basal lamina by thin basal processes. The interpyramidal muscle grows by addition of new folds to its upper region. Consecutive stages of the myoepithelial differentiation are found in each of the young folds. The origin of the cells which are necessarily added to the growing epithelium is unknown. The growth rate of the muscle is in accordance with the enlargement of the lantern ossicles. The respective data are discussed in detail.  相似文献   

6.
The Drosophila wing imaginal disc is subdivided into notum, hinge and blade territories during the third larval instar by formation of several deep apical folds. The molecular mechanisms of these subdivisions and the subsequent initiation of morphogenic processes during metamorphosis are poorly understood. Here, we demonstrate that the Dorsocross (Doc) T-box genes promote the progression of epithelial folds that not only separate the hinge and blade regions of the wing disc but also contribute to metamorphic development by changing cell shapes and bending the wing disc. We found that Doc expression was restricted by two inhibitors, Vestigial and Homothorax, leading to two narrow Doc stripes where the folds separating hinge and blade are forming. Doc mutant clones prevented the lateral extension and deepening of these folds at the larval stage and delayed wing disc bending in the early pupal stage. Ectopic Doc expression was sufficient to generate deep apical folds by causing a basolateral redistribution of the apical microtubule web and a shortening of cells. Cells of both the endogenous blade/hinge folds and of folds elicited by ectopic Doc expression expressed Matrix metalloproteinase 2 (Mmp2). In these folds, integrins and extracellular matrix proteins were depleted. Overexpression of Doc along the blade/hinge folds caused precocious wing disc bending, which could be suppressed by co-expressing MMP2RNAi.  相似文献   

7.
Morphometric, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations have displayed regional differences in the mare oviductal epithelium. The entire mucosa of the oviduct was lined with a pseudostratified epithelium, which consisted of two distinct cell types, ciliated and non-ciliated. Ciliated cells were predominant in the three different segments of the oviduct and their percentage increased from fimbriae to ampulla and significantly decreased in the isthmus. SEM revealed in the infundibulum finger-like mucosal folds, some of them interconnected, in the ampulla numerous and elaborated branched folds of the mucosa, whereas the isthmus displayed a narrow lumen, short and non-branched mucosal folds. In the ampulla and isthmus the majority of non-ciliated cells showed apical blebs provided or not of short microvilli. TEM displayed different ultrastructural features of ciliated and non-ciliated cells along the oviduct. Isthmus ciliated cells presented a more electron-dense cytoplasm than in infundibulum and ampulla cells and its cilia were enclosed in an amorphous matrix. The non-ciliated cells of infundibulum did not contain secretory granules but some apical endocytic vesicles and microvilli coated by a well developed glycocalyx. Non-ciliated cells of ampulla and isthmus contained secretory granules. Apical protrusions of ampulla displayed two types of secretory granules as well as occasional electron-lucent vesicles. Isthmus non-ciliated cells showed either electron-lucent or electron-dense cytoplasm and not all contained apical protrusions. The electron-dense non-ciliated cells displayed microvilli coated with a well developed glycocalyx. Three types of granules were observed in the isthmus non-ciliated cells. The regional differences observed along the epithelium lining the mare oviduct suggest that the epithelium of the each segment is involved in the production of a distinctive microenvironment with a unique biochemical milieu related to its functional role.  相似文献   

8.
The ontogeny of the proboscis in Nucclla lapillus was investigatedusing light and scanning electron microscopy. The proboscis develops by elongation of the body wall surroundingthe mouth, whilst the rhynchocoel is formed by imagination ofthe body wall surrounding the proboscis. Elongation of the snoutduring development of the proboscis results in the anteriormovement of the anterior oesophagus and part of the mid-oesophagus(the valve of Leiblein) which is drawn through the circum-oesophagealnerve ring. The acinous salivary glands and the radular sacalso come to lie anterior to the nerve ring. The mid-oesophagealgland of Leiblein and the glandular dorsal folds are not drawnthrough the nerve ring, and develop behind it. The anterioroesophagus elongates at a later stage of development to producethe oesophageal length required for extension of the adult proboscis.Modifications to this sequence of events, or changes in therate of growth of the various parts of the foregut, might accountfor the differences between the neogastropod and neotaenioglossanpleurembolic proboscis. The intraembolic proboscis found inthe Conoidea and the Pseudolivoidea may have been derived viaa modification of the developmental sequence which producesthe muricoidean pleurembolic proboscis. (Received 10 May 1996; accepted 15 August 1996)  相似文献   

9.
The human vocal folds are a complex layering of cells and extracellular matrix. Vocal fold extracellular matrix uniquely contributes to the biomechanical viscoelasticity required for human phonation. We investigated the adhesion of vocal fold stellate cells, a novel cell type first cultured by our laboratory, and fibroblasts to eight vocal fold extracellular matrix components: elastin, decorin, fibronectin, hyaluronic acid, laminin and collagen types I, III and IV. Our data demonstrate that these cells adhere differentially to said substrates at 5 to 120 min. Cells were treated with hyaluronidase and Y-27632, a p160ROCK-specific inhibitor, to test the role of pericellular hyaluronan and Rho-ROCK activation in early and mature adhesion. Reduced adhesion resulted; greater inhibition of fibroblast adhesion was observed. We modulated the fibronectin affinity exhibited by both cell types using Nimesulide, an inhibitor of fibronectin integrin receptors alpha5beta1 and alphavbeta3. Our results are important in understanding vocal fold pathologies, wound healing, scarring, and in developing an accurate organotypic model of the vocal folds.  相似文献   

10.
The organization of the oesophagus in the budding styelid ascidian, Polyandrocarpa misakiensis, is described. The oesophagus consists of external and internal epithelium, and there are loose connective tissue, blood sinuses, and a muscular layer between them. The internal epithelium is simple columnar, except for the bottom of three folds. The external epithelium is simple squamous. The internal epithelium contains four cell types, i.e., ciliated mucous cells, band cells, endocrine cells, and undifferentiated cells. The ciliated mucous cells have apical cilia and microvilli, and two types of mucous vesicle. The band cells also have apical cilia and electron-dense granules in the apical cytoplasm. The endocrine cells are bottle-shaped, and have electron-dense granules both above and below the nucleus. The undifferentiated cells form pseudostratified epithelium at the bottom of each fold, and they have nuclei with prominent nucleoli. One type of coelomic cell, which has retractile cytoplasm, often migrates in the internal epithelium. Near the stomach, there are many darkly stained round cells clustered around the posterior end of the oesophagus. These two types of coelomic cells may be involved in the defense mechanism against the invasion of foreign organisms. The basic organization of the oesophagus of P. misakiensis is similar to those of other ascidians. However, the presence of three folds is a characteristic of a solitary species, rather than of a colonial species. Although ascidians are chordate invertebrates, the organization of their oesophagus is not very complex, which might reflect their life style.  相似文献   

11.
Pharynx and intestine   总被引:1,自引:1,他引:0  
The alimentary canal of polychaetes consists of a foregut, midgut, and hindgut. The alimentary canal shows different specializations even in homonomously segmented polychaetes. The foregut gives rise to the buccal cavity, pharnyx and oesophagus, the midgut may be divided into a stomach and the intestine proper. Since polychaetes use a wide spectrum of food sources, structures involved in feeding vary as well and show numerous specializations. In the foregut these specializations may be classified as one of the following types: dorsolateral folds, ventral pharynx, axial muscular pharynx, axial non-muscular proboscis and dorsal pharynx. The latter, typical of oligochaetous Clitellata, occurs rarely in polychaetes. The structure, evolution and phylogenetic importance of these different types are described and discussed. Axial muscular and ventral pharynges may be armed with jaws, sclerotized parts of the pharyngeal cuticle. Terminology, structure, occurrence and development of the jaws are briefly reviewed. Special attention has been paid to the jaws of Eunicida including extinct and extant forms. Conflicting theories about the evolution of the jaws in Eunicida are discussed. The epithelia of the intestine may form a pseudostratified epithelium composed of glandular cells, absorptive cells and ciliated cells or only one cell type having similar functions. A conspicuous feature in the intestine of certain polychaetes is the occurrence of unicellular tubular structures, called enteronephridia. So far these enteronephridia are only known in a few meiofauna species.  相似文献   

12.
Ampullae of Lorenzini were examined from juvenile Carcharhinus leucas (831–1,045 mm total length) captured from freshwater regions of the Brisbane River. The ampullary organ structure differs from all other previously described ampullae in the canal wall structure, the general shape of the ampullary canal, and the apically nucleated supportive cells. Ampullary pores of 140–205 µm in diameter are distributed over the surface of the head region with 2,681 and 2,913 pores present in two sharks that were studied in detail. The primary variation of the ampullary organs appears in the canal epithelial cells which occur as either flattened squamous epithelial cells or a second form of pseudostratified contour‐ridged epithelial cells; both cell types appear to release material into the ampullary lumen. Secondarily, this ampullary canal varies due to involuted walls that form a clover‐like canal wall structure. At the proximal end of the canal, contour‐ridged cells abut a narrow region of cuboidal epithelial cells that verge on the constant, six alveolar sacs of the ampulla. The alveolar sacs contain numerous receptor and supportive cells bound by tight junctions and desmosomes. Pear‐shaped receptor cells that possess a single apical kinocilium are connected basally by unmyelinated neural boutons. Opposed to previously described ampullae of Lorenzini, the supportive cells have an apical nucleus, possess a low number of microvilli, and form a unique, jagged alveolar wall. A centrally positioned centrum cap of cuboidal epithelial cells overlies a primary afferent lateral line nerve. J. Morphol. 276:481–493, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
 Two different types of glandular system in the proboscidial epithelium of Riseriellus occultus have been investigated by transmission electron microscopy. As expected, most of the epithelial cells are glandular in nature. With regard to differences in the ultrastructure of these gland cells and in the formation and morphology of their secretory granules, we have categorized and described four types of gland cell, indicated as G1, G2, G3, and G4. Each gland cell has a completely intraepithelial body characterized by a prominent nucleus, developed rough endoplasmic reticulum, Golgi complexes, and numerous secretory granules at different stages of maturation. These four types of gland cell appear associated in pairs forming numerous glandular systems of two types (A, B). These glandular systems are restricted to the ventral surface of the proboscis and are scattered irregularly throughout its length. Each glandular system consists of two gland cells of different types. The gland cell necks in each glandular system extend together to the epithelial surface; they protrude onto this and form a papilla where they open in a common area. The epithelial supportive cells adjacent to the glandular systems have long, stout microvilli which have a core of tonofilaments. These tonofilaments gather into dense bundles which pass vertically through the supportive cells and attach to the extracellular matrix underlaying the cells by hemidesmosomes. Moreover, a single sensory process stands close to each papilla. The ultrastructural morphology of the type A glandular systems suggests that they have an adhesive function operating in a similar way to that of the duo-gland adhesive systems in other invertebrate groups, although they are not homologous with these. The spatial arrangement of the secreted products of the type B glandular systems suggests that these may contribute to increasing the grip of the proboscis on the prey. The secretory granules (=pseudocnids) of the type G3 gland cells are very likely an autapomorphy of the Anopla, providing a character by which the relationships within the Nemertea can be evaluated. Accepted: 9 October 1997  相似文献   

14.
The bovine ejaculatory duct is lined by a pseudostratified columnar epithelium. Two cell types are present: small basal cells and columnar principal cells in different functional states. The basal cells are able to accumulate lipid material. The principal cells are observed in a less active state and in a state of either increased endocytosis and fluid uptake or active spermiophagy. Endocytotically active cells are characterized by an apical brush border and a system of microvesicles, multivesicular bodies and lysosomal dense bodies. Cells involved in phagocytosis of spermatozoa are mostly provided with a smooth apical border, an expanded Golgi apparatus, many phagocytic vacuoles and condensing phagolysosomes.  相似文献   

15.
Comparative Ultrastructure and the Evolution of Nemertines   总被引:9,自引:1,他引:8  
Nemertines are traditionally viewed as acoelomates with bloodvascular systems and a specialized cavity housing an eversibleproboscis, or, as coelomates with modified coelomic cavitiesforming the rhynchocoel, lateral vessels and gonadal sacs. Comparativeultrastructural data such as cell polarity, the occurrence ofpodocytes and mesodermal cells with rudimentary cilia for proboscis,rhynchocoel, lateral and dorsal vessels, and gonadal liningsare consistent with their interpretation as modified coelomiccavities as found, analogously, in the higher leeches. Theseand additional data regarding musculature, connective tissue,glia-like cells and gametes for 13 species affirm that nemertinesare intermediate between full-blown coelomate and acoelomategrades of organization. A comparison of ultrastructural details,however, indicates that their acoelomate attributes evolvedsecondarily from a more typical coelomate condition.  相似文献   

16.
While the larval midgut of Manduca sexta has been intensively studied as a model for ion transport, the developmental origins of this organ are poorly understood. In our study we have used light and electron microscopy to investigate the process of midgut epithelial cell differentiation in the embryo. Our studies were confined to the period between 56 and 95 hr of embryonic development (hatching is at 101 hr at 25 degrees C), since preliminary studies indicated that all morphologically visible differentiation of the midgut epithelium occurs during this time. At 56 hr the midgut epithelium is organized into a ragged pseudostratified epithelium. Over the next 10 hr, the embryo molts and the midgut epithelium takes on a distinctive character in which the future goblet and columnar cells can be identified. With further differentiation, closed vesicles in the goblet cells expand and subsequently communicate to the outside by way of a valve. The columnar cells form numerous microvilli on their apical surfaces that extend over the goblet cells. Both cell types form basal folds from a series of plasmalemmal invaginations. Differentiation occurs concurrent with a six-fold elongation of these cells.  相似文献   

17.
18.
Stach, T. and Kaul, S. 2011. The postanal tail of the enteropneust Saccoglossus kowalevskii is a ciliary creeping organ without distinct similarities to the chordate tail. —Acta Zoologica (Stockholm) 92 : 150–160. The postanal tail of chordates is one of the key characters in chordate evolution and it has been suggested to be homologous to the postanal tail of harrimaniid enteropneusts. We present electron microscopic data of the ontogeny of the postanal tail in the enteropneust Saccoglossus kowalevskii. The postanal tail develops as a ventral posterior allometric outgrowth with a ventral extension of the telotroch. Transmission electron microscopy of serial sections reveals the epidermal organization of the postanal tail with the exception of short, bilaterally symmetric extensions of the paired metacoels. The epidermis cells are connected by apical junctions, rest basally on the extracellular matrix surrounding the mesoderm, and possess a basiepidermal nerve net. The ventral cells in the postanal tail are multiciliated and used for creeping. Dorsal cells are monociliated with numerous microvilli. Two types of glandular cells are present among the epidermis cells. The mesoderm cells contain myofilaments. We were unable to detect anatomical structures similar to the ones present in the postanal locomotory tail of chordates, such as notochord, neural tube, or endodermal strand. Thus, results of our anatomical study do not support homology of the postanal chordate tail and the postanal tail of harrimaniid enteropneusts.  相似文献   

19.
Shichun  Sun  Jingrang  Lu 《Hydrobiologia》1998,367(1-3):175-187
A new genus and species of heteronemertean, Yinia pratensis gen. nov. and sp. nov., collected from low salinity waters (salinity 0.2–0.4 ‰) at Changjiang River Estuary, is described and illustrated. The species possesses a proboscis with an outer circular and an inner longitudinal muscle layer, and is placed in family Lineidae sensu Gibson. The following combination of morphological features distinguishes the new species from any other genera in this family: proboscis with two muscle crosses; dermis without connective tissue layer between gland cells and body wall outer longitudinal muscle layer; rhynchocoel wall circular muscles not interweaving with adjacent body wall longitudinal muscles; foregut with circular somatic muscles and subepithelial gland cell layer; neurochord cells present in central nervous system; caudal cirrus missing; blood system developed into alimentary plexus extending almost the full length of the body. Another significant character is that the lobular excretory cells are extremely well developed which may represent adaptation to water of low salinity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The heart-kidney of Saccoglossus kowalevskii, which is situated within the anterior preoral proboscis coelom (protocoel), consists of the stomochord, pericardium, heart sinus, and glomerulus. The stomochord, a diverticulum of the gut, is characterized by vacuolated epithelial cells surrounded by basal lamina and connective tissue. The pericardium, a myoepithelium, lies dorsal to the central heart sinus. Opening into the protocoel and connecting with the outside via the proboscis pore is the protocoel duct, which is, in part, composed of multiciliated absorptive epithelial cells. Perfusion of the dorsal trunk vessel with vital dyes reveals a rapid flow of blood into the glomerular blood vessels. Examination of the permeability characteristics of the extracellular matrix underlying the glomerular podocytes reveals the movement of iron dextran (mol. wt 5000 daltons) from the central heart sinus into the protocoel. Iron dextran uptake by glomerular cells and protocoel lining cells is demonstrated. These results suggest that vascular fluid is filtered by the glomerulus, producing a primary urine in the protocoel which may be modified as it passes over the peritoneum, through the protocoel duct, and out of the proboscis pore. New data concerning the morphology of the stomochord are presented. The controversial homology between the hemichordate stomochord and the chordate notochord is addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号