首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is proposed for identification of kinetic parameters when diffusion of substrates is limiting in reactions catalyzed by immobilized enzymes. This method overcomes conventional sequential procedures, which assume immobilization does not affect the conformation of the enzyme and, thus, consider intrinsic and inherent kinetics to be the same. The coupled equations describing intraparticle mass transport are solved simultaneously using numerical methods and are used for direct estimation of kinetic parameters by fitting modeling results to time-course measurements in a stirred tank reactor. While most traditional procedures were based on Michaelis-Menten kinetics, the method presented here is applicable to more complex kinetic mechanisms involving multiple state variables, such as ping-pong bi-bi. The method is applied to the kinetic resolution of (R/S)-1-methoxy-2-propanol with vinyl acetate catalyzed by Candida antarctica lipase B. A mathematical model is developed consisting of irreversible ping-pong bi-bi kinetics, including competitive inhibition of both enantiomers. The kinetic model, which fits to experimental data over a wide range of both substrates (5-95%) and temperatures (5-56 degrees C), is used for simulations to study typical behavior of immobilized enzyme systems.  相似文献   

2.
Sucrose phosphate synthase was partially purified from spinach leaves and the effects and interactions among glucose-6-P, inorganic phosphate (Pi), and pH were investigated. Glucose-6-P activated sucrose phosphate synthase and the concentration required for 50% of maximal activation increased as the concentration of fructose-6-P was decreased. Inorganic phosphate inhibited sucrose phosphate synthase activity and antagonized the activation by glucose-6-P. Inorganic phosphate caused a progressive increase in the concentration of glucose-6-P required for 50% maximal activation from 0.85 mm (minus Pi) to 9.9 mm (20 mm Pi). In the absence of glucose-6-P, Pi caused partial inhibition of sucrose phosphate synthase activity (about 65%). The concentration of Pi required for 50% maximal inhibition decreased with a change in pH from 6.5 to 7.5. When the effect of pH on Pi ionization was taken into account, it was found that per cent inhibition increased hyperbolically with increasing dibasic phosphate concentration independent of the pH. Sucrose phosphate synthase had a relatively broad pH optimum centered at pH 7.5. Inhibition by Pi was absent at pH 5.5, but became more pronounced at alkaline pH, whereas activation by glucose-6-P was observed over the entire pH range tested. The results suggested that glucose-6-P and Pi bind to sites distinct from the catalytic site, e.g. allosteric sites, and that the interactions of these effectors with pH and concentrations of substrate may be involved in the regulation of sucrose synthesis in vivo.  相似文献   

3.
The inhibition patterns of inorganic phosphate (Pi) on sucrose phosphate synthase activity in the presence and absence of the allosteric activator glucose-6-P was studied, as well as the effects of phosphoglucoisomerase on fructose-6-P saturation kinetics with and without Pi. In the presence of 5 millimolar glucose-6-P, Pi was a partial competitive inhibitor with respect to both substrates, fructose-6-P and uridine diphosphate glucose. In the absence of glucose-6-P, the inhibition patterns were more complex, apparently because of the interaction of Pi at the activation site as well as the catalytic site. In addition, substrate activation by uridine diphosphate glucose was observed in the absence of effectors. The results suggested that Pi antagonizes glucose-6-P activation of sucrose phosphate synthase by competing with the activator for binding to the modifier site.

The fructose-6-P saturation kinetics were hyperbolic in the absence of phosphoglucoisomerase activity, but became sigmoidal by the addition of excess phosphoglucoisomerase. The sigmoidicity persisted in the presence of Pi, but sucrose phosphate synthase activity was decreased. The apparent sigmoidal response may represent the physiological response of sucrose phosphate synthase to a change in hexose-P concentration because sucrose phosphate synthase operates in the cytosol in the presence of high activities of phosphoglucoisomerase. Thus, the enzymic production of an activator from a substrate represents a unique mechanism for generating sigmoidal enzyme kinetics.

  相似文献   

4.
The catalytic bimodality of mammalian phosphoglycerate mutase   总被引:1,自引:0,他引:1  
Rabbit muscle phosphoglycerate mutase, presumed to manifest an absolute cofactor requirement for activity, has been found to express catalysis (3 +/- 1% of optimum) in the absence of added D-glycerate-2,3-P2. Isotope experiments indicate that this catalysis proceeds through a binary phosphoryl enzyme-glycerate intermediate which dissociates into free enzyme and monophosphoglycerate. 32P-Labeled phosphoglycerate mutase is formed by reaction with either D-32P-glycerate-3-P or D-U32P-glycerate-2,3-P2. In each case, the acid lability and alkali stability of the covalent adduct, phosphoenzyme, is consistent with a phosphohistidyl residue having been formed within the active site. D-[U-14C]Glycerate reacts with phosphoenzyme to generate D-[U-14C]monophosphoglycerate which, in turn, can react further with phosphoenzyme to yield D-[U-14C]glycerate-2,3-P2. The pH profile for the cofactor-independent activity exhibits an optimum at 6.0 as opposed to 7.0 when D-glycerate-2,3-P2 is present in the reaction medium. Bisubstrate kinetics (pH 7.0, 23 degrees C) with D-glycerate-3-P concentration as the variable, yields a family of reciprocal plots which is in accord with a modified ping-pong mechanism when D-glycerate-2,3-P2 concentrations are greater than 10(-1) Km (where Km = 0.33 microM). Progressively diminishing concentrations (much less than Km) of D-glycerate-2,3-P2 produce curvilinear reciprocal plots that approach linearity as a limit in accordance with single substrate kinetics.  相似文献   

5.
The kinetics of rat liver glucose-6-phosphatase (EC 3.1.3.9) were studied in intact and detergent-disrupted microsomes from normal and diabetic rats at pH 7.0 using two buffer systems (50 mM Tris-cacodylate and 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) and glucose-6-P varied from 20 microM to 10 mM. Identical data were obtained when the phosphohydrolase activity was quantified by a colorimetric determination of Pi or by measuring 32Pi formed during incubations with [32P]glucose-6-P. In every instance the initial rate data displayed excellent concordance with that expected for a reaction obeying Michaelis-Menten kinetics. The present findings agree with recently reported results of Traxinger and Nordlie (Traxinger, R. R., and Nordlie, R. C. 1987) J. Biol. Chem. 262, 10015-10019) that glucose-6-phosphatase activity in intact microsomes exhibits hyperbolic kinetics at concentrations of glucose-6-P above 133 microM, but fail to confirm their finding of sigmoid kinetics at substrate concentrations below 133 microM. We conclude that glucose-6-P hydrolysis conforms to a hyperbolic function at concentrations of glucose-6-P existing in livers of normal and diabetic rats in vivo.  相似文献   

6.
A calf pregastric esterase immobilized in a hollow-fiber reactor was employed to hydrolyze milkfat, thereby producing a lipolyzed butteroil. The reaction kinetics can be modeled by a two-parameter model of the general Michaelis-Menten form based on a ping-pong bi-bi mechanism; the rate of enzyme deactivation can be modeled as a first-order reaction. The initial concentration of accessible glyceride bonds, [G](O), was estimated by complete saponification of the substrate butteroil as 2400 mM. An extra sum of squares test indicated that not only the parameters of the kinetic generalized Michaelis-Menten model, but also the deactivation-rate constant varied significantly with pH. The optimum pH, for lypolysis is near 6.0 at a temperature of 40 degrees C because at this pH the rate of deactivation of the esterase is minimized.  相似文献   

7.
L J Wong  K F Sheu  S L Lee  P A Frey 《Biochemistry》1977,16(5):1010-1016
Galactose-1-P uridylyltransferase catalyzes the interconversion of UDP-galactose and galactose-1-P with UDP-galactose and glucose-1-P by a double displacement pathway involving a uridylyl-enzyme intermediate. The amount of radioactivity incorporated into the protein by uracil-labeled UDP-glucose is decreased by the presence of UDP-galactose, which completes with UDP-glucose for uridylylating the enzyme. The amount of glucose-1-P released upon reaction of the enzyme with UDP-glucose indicates that the dimeric enzyme contains more than one active site per molecule, 1.7 on the average for the most active preparation obtained. This suggests that there is one uridylylation site per subunit and that the subunits are similar or identical. The ureidylyl-enzyme is stable to mild alkaline conditions, 0.10 M NaOH at 60 degrees C for 1 h, but is very sensitive to acid, being largely hydrolyzed after 12 h at pH 3.5 and 4 degrees C. The principal radioactive product resulting from hydrolysis of [uracil-2-14C]uridylyl-ens of the uridylyl-enzyme under the latter conditions is [l]ump. The hydrolytic properties of the uridylyl-enzyme show that the uridylyl moiety is bonded to the protein through a phosphoramidate linkage. Complementary studies on the effects of group selective reagents on the activity of the enzyme suggest that the active site nucleophile to which the uridylyl group is bonded may be a histidine residue. The enzyme is rapidly inactivated by diethyl pyrocarbonate at pH 6 and 0 degrees C and reactivated by NH2OH. UDP-glucose at 0.5 mM fully protects the enzyme against diethyl pyrocarbonate while 70 mM galactose-1-P has only a slight protective effect. Uridylyl-enzyme in inactivated by diethyl pyrocarbonate at no more than 2% of the rate for free enzyme. The enzyme is not inactivated by NaBH4 or by NaBH4 in the presence of UDP-glucose. It is not inhibited by 1 mM pyridoxal phosphate or by 0.5 mM 5-nitrosalicylaldehyde at pH 8.6 and it is not inactivated by NaBH4 in the presence of pyridoxal phosphate. The enzyme is inactivated by 5 to 50 muM p-hydroxymercuribenzoate at pH 8.5, but substrates exert no detectable protective effect against this reagent. It is concluded that the enzyme contains at least one essential sulfhydryl group which is not located in the active site in such a way as to be shielded by substrates.  相似文献   

8.
1. Glycogen synthase I (activity ratio approximately equal to 1) was purified over 10,000-fold from rabbit renal medulla. 2. The purified synthase was stimulated about 1.5-fold by glucose-6-P and other divalent anions when assayed at pH 7.7 and near saturating UDPGlc. When assayed at physiological UDPGlc (75-100 microM), the enzyme was stimulated about 5-fold by glucose-6-P. 3. At pH 7.7 the activation by either Na2SO4 or glucose-6-P was due to an increase in V and a decrease in S0.5 for UDPGlc. At pH. 6.9, activation was due to a decrease in S0.5. 4. At low UDPGlc, synthase activity was inhibited by adenine nucleotides and the inhibition was partially relieved by glucose-6-P, UDP inhibited in a competitive manner with respect to UDPGlc. 5. These results suggest that the activity of renal medullary synthase I may be regulated by cellular metabolites.  相似文献   

9.
1. A method is described for the purification of a form of 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (tryptophan) that probably differs from that of the native enzyme. 2. The kinetics of the reaction catalysed by 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (tryptophan) shows that the reaction proceeds via a ping-pong bi-bi mechanism, with activation by phosphoenolpyruvate (P-Prv), the first substrate, and inhibition by erythrose 4-phosphate (Ery-P) the second substrate. At low substrate concentrations, KP-Prv is 0.1 mM and KEry-P is 0.13 mM. 3. The substrates phosphoenolpyruvate and erythrose 4-phosphate and the product inorganic phosphate can protect the purified enzyme against heat denaturation, whereas the inhibitor, tryptophan, has no effect, although it binds to the enzyme in the absence of other ligands. 4. Product inhibition by inorganic phosphate is linear non-competitive with respect to phosphoenolpyruvate (Ki, slope = 22 mM and Ki, intercept = 54 mM) and substrate-linear competitive with respect to erythrose 4-phosphate (Ki, slope = 25 mM). 5. The enzyme has an activity optimum at pH 7.3 and a tryptophan inhibition optimum at pH 6.4, Trp 0.5 is 4 microM. Inhibition by tryptophan is non-competitive with respect to phosphoenolpyrovate and substrate-parabolic competitive with respect to erythrose 4-phosphate. 6. The role of the enzyme in metabolic regulation is discussed.  相似文献   

10.
A type C hexokinase (ATP:D-hexose-6-phosphotransferase EC 2.7.1.1) was partially purified from the liver of the frog Calyptocephalella caudiverbera. The enzyme is inhibited by glucose levels in the range of normal blood sugar concentrations. The extent of the inhibition by glucose depends on the concentration of ATP, being most marked between 1 and 5 mM ATP. Fructose, although a substrate, was not inhibitory of its own phosphorylation. The inhibitory effect of high glucose levels exhibited a strong, reversible pH dependence being most marked at pH 6.5. At pH 7.5 the inhibition by high glucose levels was a function of the enzyme concentration, the effect being stronger at high enzyme concentrations, whereas no inhibition was observed when assaying very diluted preparations. At all enzyme concentrations studied, high levels of glucose caused no inhibition at pH 8.5, whereas at pH 6.5 strong inhibition was always observed. Short times of photooxidation of hexokinase C as well as incubation with low concentrations of p-chloromercuribenzoate resulted in the loss of the inhibition by excess of glucose. Glucose-6-phosphate was found to be a strong inhibitor of hexokinase C but only at high glucose levels. The inhibitory effect of glucose-6-P follows sigmoidal kinetics at low (about 0.02 mM) glucose concentrations, the Hill coefficient being 2.3. The kinetics of the inhibition became hyperbolic at high (greater than 0.2 mM) glucose levels. These results suggest that the inhibition of hexokinase C by excess glucose is due to the interaction of glucose with a second, aldose-specific, regulatory site on the enzyme. The modification of the inhibitory effect by ATP, glucose-6-P, enzyme concentration, and pH, all of them at physiological levels, indicates a major role for hexokinase C in the regulation of glucose utilization by the liver.  相似文献   

11.
Ribose-1,5-bisphosphate is synthesized in a reaction that uses ribose-1(or 5)-P as the phosphoryl acceptor and the acyl-P of 3-phosphoglyceryl phosphate as the donor. Glucose-1,6-bisphosphate is synthesized in a similar reaction. The relative activity with the two substrates remains unchanged over almost 300-fold purification of the enzyme, indicating that glucose-1,6-bisphosphate synthase catalyzes both reactions. The relative V/Km values for alternative phosphoryl acceptors are ribose-1-P (1); glucose-1-P (0.30); mannose-1-P and ribose-5-P (0.11); glucose-6-P (0.10); 2-deoxyglucose-6-P (0.03); and 2-deoxyribose-5-P (0.02). Fructose-1- and 6-phosphates are not substrates. The synthesis of both ribose-1,5-bisphosphate and glucose-1,6-bisphosphate is inhibited by physiologically significant levels of fructose-1,6-bisphosphate, glycerate-2,3-bisphosphate, glycerate-3-phosphate, citrate, and inorganic phosphate. Ribose-1,5-bisphosphate is a strong activator of brain phosphofructokinase.  相似文献   

12.
When screening an Escherichia coli gene library for myo-inositol hexakisphosphate (InsP6) phosphatases (phytases), we discovered that the agp-encoded acid glucose-1-phosphatase also possesses this activity. Purified Agp hydrolyzes glucose-1-phosphate, p-nitrophenyl phosphate, and InsP6 with pH optima, 6.5, 3.5, and 4.5, respectively, and was stable when incubated at pH values ranging from 3 to 10. Glucose-1-phosphate was hydrolyzed most efficiently at 55 degrees C. while InsP6 and p-nitrophenyl phosphate were hydrolyzed maximally at 60 degrees C. The Agp exhibited Km values of (0.39 mM, 13 mM, and 0.54 mM for the hydrolysis of glucose-1-phosphate, p-nitrophenyl phosphate, and InsP6, respectively. High-pressure liquid chromatography (HPLC) analysis of inositol phosphate hydrolysis products of Agp demonstrated that the enzyme catalyzes the hydrolysis of phosphate from each of InsP6, D-Ins(1,2,3,4,5)P5, Ins(1,3,4,5,6)P5, and Ins(1,2,3,4,6)P5, producing D/L-Ins(1,2,4,5,6)P5. D-Ins(1,2,4,5)P4, D/L-Ins(1,4,5,6)P4 and D/L-Ins(1,2,4,6)P4, respectively. These data support the contention that Agp is a 3-phosphatase.  相似文献   

13.
Phosphohexose isomerase from amyloplasts of immature wheat endosperm was purified 133-fold. The enzyme had a molecular weight of 130 kDa and maximum activity at pH 8.6. It showed normal hyperbolic kinetics for both fructose-6-P and glucose-6-P with Km of 0.12 mM and 0.44 mM, respectively. pH had a great influence on Km for fructose-6-P. Using glucose-6-P as the substrate, the equilibrium was reached at 23% fructose-6-P and 77% glucose-6-P and an equilibrium constant of about 3.0. The delta F calculated from the apparent equilibrium constant was +742 cal.mol-1. The activation energy calculated from the Arrhenius plot was 7450 cal.mol-1. None of the sulphydryl reagents at 2.5 mM concentration inactivated the enzyme. The enzyme was competitively inhibited by 6-phosphogluconate, ribose-5-P and ribulose-5-P with Ki values of 0.18, 0.14, and 0.13 mM, respectively. The probable role of the enzyme in starch biosynthesis in amyloplasts is discussed.  相似文献   

14.
Purification and characterization of human erythrocyte uridylyl transferase   总被引:1,自引:0,他引:1  
A new method for the purification of human erythrocyte uridylyl transferase (UDPglucose: alpha-D-galactose-1-phosphate uridylyltransferase EC 2.7.7.12) is described. It consists of a hydrophobic purification step associated with hydroxyapatite chromatography and provided for the first time a purification of more than 45 000-fold with a high activity (15 I.U/mg) and a yield of 32%. We show that the enzyme is a dimer and has a molecular weight of 88 000. It can be resolved into three bands by isoelectric focusing with an apparent pI between 5.0 and 5.4. It could be shown by steady-state initial rate measurements that the interconversion of the two substrates of human transferase (Gal-1-P and UDP-glucose) follows ping-pong bi-bi kinetics, with Km values of 0.2 and 0.065 mM, respectively.  相似文献   

15.
The aminoacylation of three modified tRNAIle species with isoleucine and with valine by isoleucyl-tRNA synthetase has been investigated by initial rate kinetics. For aminoacylation of tRNAIle-C-C-3'dA with isoleucine, a bi-bi uni-uni ping-pong mechanism has been found by bisubstrate kinetics and inhibition by products and by 3'dATP; for aminoacylation with valine a bi-uni uni-bi ping-pong mechanism. For isoleucylation of tRNAIle-C-C-A(3'NH2) bisubstrate kinetics, inhibition by products and by isoleucinol show a random uni-bi uni-uni-uni ping-pong mechanism; for valylation of this tRNA a bi-bi uni-uni ping-pong mechanism is observed by bisubstrate kinetics and product inhibition. tRNAIle-C-C-2'dA was aminoacylated under modified conditions with isoleucine in a bi-bi uni-uni ping-pong mechanism with a rapid equilibrium segment as observed by bisubstrate kinetics, inhibition by AMP, by P[NH]P as product analog and by isoleucinol. Aminoacylation with valine is achieved in a rapid-equilibrium sequential random AB, ordered C mechanism indicated by bisubstrate kinetics and inhibition by 3'dATP and valinol. All six reactions exhibit orders of substrate addition and product release which are different from those observed in aminoacylation of the natural tRNAIle-C-C-A. The Km values of the three substrates and the kcat values of the six reactions are given. For aminoacylation at the terminal 2'OH group of the tRNA differences of 13.38 and 13.17 kJ in binding energies between valine and isoleucine have been calculated which result in discrimination factors of 181 and 167. For aminoacylation at the terminal 3'-OH group a difference of only 4.43 kJ and a low discrimination factor of only 6 is observed. Thus maximal discrimination between the cognate and the noncognate amino acid is only achieved in aminoacylation at the 2'-OH group and conclusions drawn from experiments with modified tRNAs concerning 2',3'-specificity have led to correct results in spite of different catalytic cycles in aminoacylation of the natural and the modified tRNAs. The stability of Ile-tRNAIle-C-C-2'dA and Val-tRNAIle-C-C-2'dA, the lesser stability of Val-tRNAVal-C-C-2'dA and the instability of Thr-tRNAVal-C-C-2'dA are consistent with postulations for a 'pre-transfer' proofreading step for isoleucyl-tRNA synthetase and a 'post-transfer' hydrolytic editing step for valyl-tRNA synthetase at the terminal 3'OH group of the tRNA.  相似文献   

16.
1. Frog liver has enzymatic systems able to interconvert glycogen synthase. 2. D to I conversion is achieved in vitro by incubation at 30 degrees C. ATP, ADP, inorganic phosphate and glycogen are inhibitors of this conversion, whereas glucose-6-P and Mg2+ stimulate it. 3. I to D conversion in vitro depends on ATP-Mg2+. Cyclic-AMP activates this conversion, while glucose-6-P inhibits it. 4. Injection of glucose, ribose, mannose, fructose, galactose, and cortisone into frogs increase liver percentage of I activity. 5. Glucagon and adrenaline decrease percentage of I activity.  相似文献   

17.
Metabolism of glucose by unicellular blue-green algae   总被引:32,自引:0,他引:32  
Summary A facultative photo- and chemoheterotroph, the unicellular bluegreen alga Aphanocapsa 6714, dissimilates glucose with formation of CO2 as the only major product. A substantial fraction of the glucose consumed is assimilated and stored as polyglucose (probably glycogen). The oxidation of glucose proceeds through the pentose phosphate pathway. The first enzyme of this pathway, glucose-6-phosphate dehydrogenase, is partly inducible. In addition, the rate of glucose oxidation is controlled, at the level of glucose-6-phosphate dehydrogenase function, by the intracellular level of an intermediate of the Calvin cycle, ribulose-1,5-diphosphate, which is a specific allosteric inhibitor of this enzyme. As a consequence, the rate of glucose oxidation is greatly reduced by illumination, an effect reversed by the presence of DCMU, an inhibitor of photosystem II.Two obligate photoautotrophs, Synechococcus 6301 and Aphanocapsa 6308, produce CO2 from glucose at extremely low rates, although their levels of pentose pathway enzymes and of hexokinase are similar to those in Aphanocapsa 6714. Failure to grow with glucose appears to reflect the absence of an effective glucose permease. A general hypothesis concerning the primary pathways of carbon metabolism in blue-green algae is presented.Abbreviations A (U)DPG ADP-glucose or UDP-glucose - G-1-P glucose-1-phosphate - G-6-P glucose-6-phosphate - G(int.) intracellular glucose - F-6-P fructose-6-phosphate - 6-PG 6-phosphogluconate - Ru-5-P ribulose-5-phosphate - RUDP ribulose-1,5-diphosphate - PGA 3-phosphoglycerate - GAP glyceraldehyde-3-phosphate  相似文献   

18.
Kinetics of the lipase-catalyzed synthesis of glucose esters in acetone   总被引:7,自引:0,他引:7  
A simple kinetic model derived from a ping-pong bi-bi mechanism is proposed to describe the lipase-catalyzed esterification of glucose with fatty acids. The mathematical expressions derived from this model have been tested using several sets of data obtained from reactions carried out under different reaction conditions. The predicted values provide very good fits of the experimental data for temperatures from 30 to 60 degrees C, enzyme loadings from 90 to 180 mg, and fatty acid concentrations from 0.33M to 1M. Experiments conducted at different temperatures permit one to estimate an activation energy of approximately 12 kcal/mol for the rate-limiting step of the reaction (formation of the acyl-enzyme complex). The model also considers the kinetics of inactivation of the biocatalyst during the reaction.  相似文献   

19.
The hydrolysis of corn oil in the presence of a lipase from Pseudomonas sp. immobilized within the walls of a hollow-fiber reactor was studied at 30 degrees C. To assess the selectivity of this immobilized enzyme, the effluent concentrations of five different free fatty acids were measured using high-performance liquid chromatography (HPLC). Several rate expressions associated with a generic ping-pong bi-bi mechanism were used to fit the experimental data for this lipase-catalyzed reaction. A multiresponse nonlinear regression method was employed to determine the kinetic parameters associated with these rate expressions. Quasi-optimum operating conditions corresponded to 30 degrees C and a buffer pH value of 7.0. Under these conditions, the concentration of free linoleic acid (C18:2) (the fatty acid of primary interest) in the effluent oil stream for a fluid residence time of 6 h was approximately 0.5 M.  相似文献   

20.
Kinetic studies with ADP-glucose synthase show that 1,6-hexanediol bisphosphate (1,6-hexanediol-P2) is an effective activator that causes the enzyme to have a higher apparent affinity for ATP- and ADP-glucose than when fructose-1,6-P2 is the activator. Furthermore, in the presence of 1,6-hexanediol-P2, substrate saturation curves are hyperbolic shaped rather than sigmoidal shaped. CrATP behaves like a nonreactive analogue of ATP. Kinetic studies show that it is competitive with ATP. CrATP is not a competitive inhibitor of ADP-glucose. However, the combined addition of CrATP and glucose-1-P inhibits the enzyme competitively when ADP-glucose is the substrate. In binding experiments, CrATP, ATP, and fructose-P2 appear to bind to only half of the expected sites in the tetrameric enzyme, while ADP-glucose, the activators, pyridoxal-P and 1,6-hexanediol-P2, and the inhibitor, AMP, bind to four sites/tetrameric enzyme. Fructose-P2 inhibits 1,6-hexanediol-P2 binding, suggesting competition for the same sites. Glucose-1-P does not bind to the enzyme unless MgCl2 and CrATP are present and binds to four sites/tetrameric enzyme. Alternatively, CrATP in the presence of glucose-1-P binds to four sites/tetrameric enzyme. Thus, there are binding sites for the substrates, activators, and inhibitor located on each subunit and the binding sites can interact homotropically and heterotropically. ATP and fructose-P2 binding is synergistic showing heterotropic cooperativity. ATP and fructose-P2 must also be present together to effectively inhibit AMP binding. A mechanism is proposed which explains some of the kinetic and binding properties in terms of an asymmetry in the distribution of the conformational states of the four identical subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号