首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhang YJ  Xu YF  Liu YH  Yin J  Wang JZ 《FEBS letters》2005,579(27):6230-6236
Nitric oxide is associated with neurofibrillary tangle, which is composed mainly of hyperphosphorylated tau in the brain of Alzheimer's disease (AD). However, the role of nitric oxide in tau hyperphosphorylation is unclear. Here we show that nitric oxide produced by sodium nitroprusside (SNP), a recognized donor of nitric oxide, induces tau hyperphosphorylation at Ser396/404 and Ser262 in HEK293/tau441 cells with a simultaneous activation of glycogen synthase kinase-3beta (GSK-3beta). Pretreatment of the cells with 10 mM lithium chloride (LiCl), an inhibitor of GSK-3, 1 h before SNP administration inhibits GSK-3beta activation and prevents tau from hyperphosphorylation. This is the first direct evidence demonstrating that nitric oxide induces AD-like tau hyperphosphorylation in vitro, and GSK-3beta activation is partially responsible for the nitric oxide-induced tau hyperphosphorylation. It is suggested that nitric oxide may be an upstream element of tau abnormal hyperphosphorylation in AD.  相似文献   

2.
3.
The Drosophila shaggy gene product is a mammalian glycogen synthase kinase-3beta (GSK-3beta) homologue that contributes to the circadian clock of the Drosophila through TIMELESS phosphorylation, and it regulates nuclear translocation of the PERIOD/TIMELESS heterodimer. We found that mammalian GSK-3beta is expressed in the suprachiasmatic nucleus and liver of mice and that GSK-3beta phosphorylation exhibits robust circadian oscillation. Rhythmic GSK-3beta phosphorylation is also observed in serum-shocked NIH3T3 cells. Exposing serum-shocked NIH3T3 cells to lithium chloride, a specific inhibitor of GSK-3beta, increases GSK-3beta phosphorylation and delays the phase of rhythmic clock gene expression. On the other hand, GSK-3beta overexpression advances the phase of clock gene expression. We also found that GSK-3beta interacts with PERIOD2 (PER2) in vitro and in vivo. Recombinant GSK-3beta can phosphorylate PER2 in vitro. GSK-3beta promotes the nuclear translocation of PER2 in COS1 cells. The present data suggest that GSK-3beta plays important roles in mammalian circadian clock.  相似文献   

4.
Oxidative stress can contribute to the multifactorial etiology of whole body and skeletal muscle insulin resistance. No investigation has directly assessed the effect of an in vitro oxidant stress on insulin action in intact mammalian skeletal muscle. Therefore, the purpose of the present study was to characterize the molecular actions of a low-grade oxidant stress (H(2)O(2)) on insulin signaling and glucose transport in isolated skeletal muscle of lean Zucker rats. Soleus strips were incubated in 8 mM glucose for 2 h in the absence or presence of 100 mU/ml glucose oxidase, which produces H(2)O(2) at approximately 90 microM. By itself, H(2)O(2) significantly (P < 0.05) activated basal glucose transport activity, net glycogen synthesis, and glycogen synthase activity and increased phosphorylation of insulin receptor (Tyr), Akt (Ser(473)), and GSK-3beta (Ser(9)). In contrast, this oxidant stress significantly inhibited the expected insulin-mediated enhancements in glucose transport, glycogen synthesis, and these signaling factors and allowed GSK-3beta to retain a more active form. In the presence of CT-98014, a selective GSK-3 inhibitor, the ability of insulin to stimulate glucose transport and glycogen synthesis during exposure to this oxidant stress was enhanced by 20% and 39% (P < 0.05), respectively, and insulin stimulation of the phosphorylation of insulin receptor, Akt, and GSK-3 was significantly increased by 36-58% (P < 0.05). These results indicate that an oxidant stress can directly and rapidly induce substantial insulin resistance of skeletal muscle insulin signaling, glucose transport, and glycogen synthesis. Moreover, a small, but significant, portion of this oxidative stress-induced insulin resistance is associated with a reduced insulin-mediated suppression of the active form of GSK-3beta.  相似文献   

5.
Glycogen synthase kinase-3beta (GSK3beta) plays important roles in metabolism, embryonic development, and tumorigenesis. Here we investigated the role of GSK3beta signaling in vascular biology by examining its function in endothelial cells (ECs). In EC, the regulatory phosphorylation of GSK3beta was found to be under the control of phosphoinositide 3-kinase-, MAPK-, and protein kinase A-dependent signaling pathways. The transduction of a nonphosphorylatable constitutively active mutant of GSKbeta promoted apoptosis under the conditions of prolonged serum deprivation or the disruption of cell-matrix attachments. Conversely, the transduction of catalytically inactive GSK3beta promoted EC survival under the conditions of cellular stress. Under normal cell culture conditions, the activation of GSK3beta signaling inhibited the migration of EC to vascular endothelial growth factor or basic fibroblast growth factor. Angiogenesis was inhibited by GSK3beta activation in an in vivo Matrigel plug assay, whereas the inhibition of GSK3beta signaling enhanced capillary formation. These data suggest that GSK3beta functions at the nodal point of converging signaling pathways in EC to regulate vessel growth through its control of vascular cell migration and survival.  相似文献   

6.
Recent decades have seen a significant increase in the incidence of diabetes mellitus. The number of individuals with diabetes is projected to reach 300 million by the year 2025. Diabetes is a leading cause of blindness, renal failure, lower limb amputation, and an independent risk factor for atherosclerotic cardiovascular disease (CVD)--a leading cause of death in Western society. Understanding the molecular and cellular mechanisms by which diabetes mellitus promotes atherosclerosis is essential to developing methods to treat and prevent diabetes-associated CVD. This review summarizes our current knowledge of the mechanisms by which diabetes may promote atherogenesis and specifically focuses on a novel pathway linking these 2 conditions. We hypothesize that the accumulation of intracellular glucosamine observed in conditions of chronic hyperglycaemia may promote atherogenesis via a mechanism involving dysregulated protein folding, activation of endoplasmic reticulum (ER) stress, and increased glycogen synthase kinase (GSK)-3 activity. The identification of this novel mechanism provides a promising hypothesis and multiple new targets for potential therapeutic intervention in the treatment of diabetes mellitus and accelerated atherosclerosis.  相似文献   

7.
Ubiquitously expressed mu- and m-calpain proteases are implicated in development and apoptosis. They consist of 80-kDa catalytic subunits encoded by the capn1 and capn2 genes, respectively, and a common 28-kDa regulatory subunit encoded by the capn4 gene. The regulatory subunit is required to maintain the stability and activity of mu- and m-calpains. Accordingly, genetic disruption of capn4 in the mouse eliminated both ubiquitous calpain activities. In embryonic fibroblasts derived from these mice, calpain deficiency correlated with resistance to endoplasmic reticulum (ER) stress-induced apoptosis, and this was directly related to a calpain requirement for activation of both caspase-12 and the ASK1-JNK cascade. This study provides compelling genetic evidence for calpain's role in caspase-12 activation at the ER, and reveals a novel role for the ubiquitous calpains in ER-stress induced apoptosis and JNK activation.  相似文献   

8.
Glycogen synthase kinase-3 (GSK3) is a constitutively active protein kinase in brain. Increasing evidence has shown that GSK3 acts as a modulator in the serotonin neurotransmission system, including direct interaction with serotonin 1B (5-HT1B) receptors in a highly selective manner and prominent modulating effect on 5-HT1B receptor activity. In this study, we utilized the serotonin neuron-selective GSK3β knockout (snGSK3β-KO) mice to test if GSK3β in serotonin neurons selectively modulates 5-HT1B autoreceptor activity and function. The snGSK3β-KO mice were generated by crossbreeding GSK3β-floxed mice and ePet1-Cre mice. These mice had normal growth and physiological characteristics, similar numbers of tryptophan hydroxylase-2 (TpH2)-expressing serotonin neurons, and the same brain serotonin content as in littermate wild type mice. However, the expression of GSK3β in snGSK3β-KO mice was diminished in TpH2-expressing serotonin neurons. Compared to littermate wild type mice, snGSK3β-KO mice had a reduced response to the 5-HT1B receptor agonist anpirtoline in the regulation of serotonergic neuron firing, cAMP production, and serotonin release, whereas these animals displayed a normal response to the 5-HT1A receptor agonist 8-OH-DPAT. The effect of anpirtoline on the horizontal, center, and vertical activities in the open field test was differentially affected by GSK3β depletion in serotonin neurons, wherein vertical activity, but not horizontal activity, was significantly altered in snGSK3β-KO mice. In addition, there was an enhanced anti-immobility response to anpirtoline in the tail suspension test in snGSK3β-KO mice. Therefore, results of this study demonstrated a serotonin neuron-targeting function of GSK3β by regulating 5-HT1B autoreceptors, which impacts serotonergic neuron firing, serotonin release, and serotonin-regulated behaviors.  相似文献   

9.
It is generally thought that activation of phospholipase Cbeta (PLCbeta) by Galphaq accounts for most of the effects of Gq-coupled receptors. Here we describe a novel effect of Galphaq that is independent of the PLCbeta pathway. Expression of the constitutively active Galphaq mutant Galphaq(Q209L) promoted an increase in glycogen synthase kinase-3beta (GSK-3beta) activity that was associated with increased phosphorylation of Tyr216 on GSK-3beta. Galphaq(Q209L)-AA, a mutant that cannot activate PLCbeta, also induced GSK-3beta activation and phosphorylation of Tyr216. We speculate that the protein-tyrosine kinase Csk (C-terminal Src kinase), which is also activated by Galphaq(Q209L) and Galphaq(Q209L)-AA, acts upstream of GSK-3beta. Expression of Csk accentuated the activation of GSK-3beta by Galphaq(Q209L), whereas catalytically inactive Csk blocked GSK-3beta activation by Galphaq(Q209L). Recombinant Csk phosphorylated and activated GSK-3beta in vitro, and GSK-3beta coprecipitated with Csk from cell lysates. These results suggest that activation of Csk and GSK-3beta by Galphaq may contribute to the physiological and pathological effects of Gq-coupled receptors.  相似文献   

10.
The goal of this study was to determine whether the intracellular distribution of the proapoptotic enzyme glycogen synthase kinase-3 beta (GSK-3 beta) is dynamically regulated by conditions that activate apoptotic signaling cascades. In untreated human neuroblastoma SH-SY5Y cells, GSK-3 beta was predominantly cytosolic, although a low level was also detected in the nucleus. The nuclear level of GSK-3 beta was rapidly increased after exposure of cells to serum-free media, heat shock, or staurosporine. Although each of these conditions caused changes in the serine 9 and/or tyrosine phosphorylation of GSK-3 beta, neither of these modifications was correlated with nuclear accumulation of GSK-3 beta. Heat shock and staurosporine treatments increased nuclear GSK-3 beta prior to activation of caspase-9 and caspase-3, and this nuclear accumulation of GSK-3 beta was unaltered by pretreatment with a general caspase inhibitor. The GSK-3 beta inhibitor lithium did not alter heat shock-induced nuclear accumulation of GSK-3 beta but increased the nuclear level of cyclin D1, indicating that cyclin D1 is a substrate of nuclear GSK-3 beta. Thus, the intracellular distribution of GSK-3 beta is dynamically regulated by signaling cascades, and apoptotic stimuli cause increased nuclear levels of GSK-3 beta, which facilitates interactions with nuclear substrates.  相似文献   

11.
Dysregulation of apoptosis is involved in a wide spectrum of disease ranging from proliferative to degenerative disorders. An emerging area of study in apoptosis is the critical contribution of the endoplasmic reticulum (ER) in both mitochondrial and ER specific apoptosis pathways. Here we show that brefeldin A and tunicamycin-mediated ER stress lead to caspase-dependent apoptosis involving caspase-2. Confocal microscopy and subcellular fractionation indicate that caspase-2 is localized to the ER, and following ER stress, the processing of caspase-2 and -9 is an early event preceding the activation of caspase-3 and -7 and the cleavage of the caspase substrate poly(ADP-ribose) polymerase (PARP). Inhibition and silencing of either caspase-2 or caspase-9 suppress ER stress-induced apoptosis, as demonstrated by annexin V binding. Similarly, transduction with an adenovirus encoding either Inhibitors of Apoptosis (IAP) protein HIAP1/c-IAP2 or HIAP2/c-IAP1 also suppresses ER stress-induced apoptosis. However, among HIAP1, HIAP2 and XIAP, only HIAP2 binds and inhibits caspase-2. Our results thus indicate a novel mechanism by which HIAP2 can regulate ER-initiated apoptosis by modulating the activity of caspase-2.  相似文献   

12.
Twomey C  McCarthy JV 《FEBS letters》2006,580(17):4015-4020
Previously we described presenilin-1 (PS1) as a GSK-3beta substrate [Kirschenbaum, F., Hsu, S.C., Cordell, B. and McCarthy, J.V. (2001) Substitution of a glycogen synthase kinase-3beta phosphorylation site in presenilin 1 separates presenilin function from beta-catenin signalling. J. Biol. Chem. 276, 7366-7375; Kirschenbaum, F., Hsu, S.C., Cordell, B. and McCarthy, J.V. (2001) Glycogen synthase kinase-3beta regulates presenilin 1 C-terminal fragment levels. J. Biol. Chem. 276, 30701-30707], though it has not been determined whether PS1 is a primed or unprimed GSK-3beta substrate. A means of separating GSK-3beta activity toward primed and unprimed substrates was identified in the GSK-3beta-R96A phosphate binding pocket mutant [Frame, S., Cohen, P. and Biondi, R.M. (2001) A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell 7, 1321-1327], which is unable to phosphorylate primed but retains the ability to phosphorylate unprimed GSK-3beta substrates. By using wild type GSK-3beta, GSK-3beta-R96A, and a pharmacological modulator of GSK-3beta activity, we demonstrate that PS1 is an unprimed GSK-3beta substrate. These findings have important implications for regulation of PS1 function and the pathogenesis of Alzheimer's disease.  相似文献   

13.
25-hydroxycholesterol (25-OH-chol) induces apoptosis in many cell types. The present study investigated the possible involvement of mitochondria-dependent apoptotic signalling molecules in the death of PC12 cells treated with 25-OH-chol. 25-OH-chol increased the production of reactive oxygen species and opened mitochondrial permeability transition pore, resulting in release of cytochrome c and subsequent activation of caspase-9 and -3. 25-OH-chol induced the activation of c-Jun N-terminal kinase (JNK) and glycogen synthase kinase-3beta (GSK-3beta). The JNK inhibitor SP600125 attenuated the activation of caspase-9 and -3 and reduced 25-OH-chol-induced cell death. GSK inhibitors SB415286 and SB216763 significantly down-regulated JNK activity and attenuated the cytotoxicity of 25-hydroxycholesterol. However, SP600125 did not alter the activity of GSK-3beta. The results indicate that 25-OH-chol induces cell death via activation of GSK-3beta and subsequent up-regulation of JNK. Pharmacological intervention of GSK-3beta-JNK-caspase signalling pathway may be useful for the reduction of cytotoxicity of oxysterols.  相似文献   

14.
Kenpaullone derivatives with a modified parent ring system were synthesized in order to develop kinase inhibitors with enhanced selectivity. Among the novel structures, 1-azakenpaullone was found to act as a selective GSK-3beta versus CDK1 inhibitor. The charge distribution within the 1-azakenpaullone molecule is discussed as a possible explanation for the enhanced GSK-3beta selectivity of 1-azakenpaullone compared to other paullone derivatives.  相似文献   

15.
It has been suggested that phosphorylation at serine 9 near the N-terminus of glycogen synthase kinase-3β (GSK-3β) mimics the prephosphorylation of its substrate and, therefore, the N-terminus functions as a pseudosubstrate. The molecular basis for the pseudosubstrate's binding to the catalytic core and autoinhibition has not been fully defined. Here, we combined biochemical and computational analyses to identify the potential residues within the N-terminus and the catalytic core engaged in autoinhibition of GSK-3β. Bioinformatic analysis found Arg4, Arg6, and Ser9 in the pseudosubstrate sequence to be extremely conserved through evolution. Mutations at Arg4 and Arg6 to alanine enhanced GSK-3β kinase activity and impaired its ability to autophosphorylate at Ser9. In addition, and unlike wild-type GSK-3β, these mutants were unable to undergo autoinhibition by phosphorylated Ser9. We further show that Gln89 and Asn95, located within the catalytic core, interact with the pseudosubstrate. Mutation at these sites prevented inhibition by phosphorylated Ser9. Furthermore, the respective mutants were not inhibited by a phosphorylated pseudosubstrate peptide inhibitor. Finally, computational docking of the pseudosubstrate into the catalytic active site of the kinase suggested specific interactions between Arg6 and Asn95 and of Arg4 to Asp181 (apart from the interaction of phosphorylated serine 9 with the “phosphate binding pocket”). Altogether, our study supports a model of GSK-3-pseudosubstrate autoregulation that involves phosphorylated Ser9, Arg4, and Arg6 within the N-terminus and identified the specific contact sites within the catalytic core.  相似文献   

16.
This study examined the role of calcineurin, a major calcium-dependent protein phosphatase, in dephosphorylating Ser-9 and activating glycogen synthase kinase-3β (GSK-3β). Treatment with calcineurin inhibitors increased phosphorylation of GSK-3β at Ser-9 in SH-SY5Y human neuroblastoma cells. The over-expression of a constitutively active calcineurin mutant, calcineurin A beta (1–401), led to a significant decrease in phosphorylation at Ser-9, an increase in the activity of GSK-3β, and an increase in the phosphorylation of tau. Km of calcineurin for a GSK-3β phosphopeptide was 469.3 μM, and specific activity of calcineurin was 15.2 nmol/min/mg. In addition, calcineurin and GSK-3β were co-immunoprecipitated in neuron-derived cells and brain tissues, and calcineurin formed a complex only with dephosphorylated GSK-3β. We conclude that in vitro, calcineurin can dephosphorylate GSK-3β at Ser-9 and form a stable complex with GSK-3β, suggesting the possibility that calcineurin regulates the dephosphorylation and activation of GSK-3β in vivo .  相似文献   

17.
The dissociation of the neuronal Golgi complex is a classical feature observed in neurodegenerative disorders including Alzheimer's disease. The goal of this study is to determine if the phosphorylation of tau protein is involved in neuronal Golgi disassembly. Primary cortical cultures were exposed to two Golgi toxins, brefeldin A (BFA) or nordihydroguaiaretic acid (NDGA). Immunocytochemical studies using the anti58 k antibody revealed that Golgi disassembly started in exposed neurons a few minutes after treatment. BFA and NDGA induced a rapid and transient increase in tau phosphorylation in a site-specific manner on immunoblots. In addition, the increase in tau phosphorylation directly correlated with a transient dissociation of tau from the cytoskeleton and a decrease of the acetylated tubulin. Furthermore, the activity of glycogen synthase kinase-3beta (GSK-3beta) increased transiently, as demonstrated by the kinase activity assay and by immunoblottings of serine-9 and tyrosine-216 phosphorylated of GSK-3beta. A decrease of the Akt phosphorylated form was also shown. The increase in tau phosphorylation was inhibited by the GSK-3beta inhibitor, lithium. Finally, morphometric studies showed that lithium partially blocked the Golgi disassembly caused by BFA or NDGA. Together these findings indicate that GSK-3beta activity and tau phosphorylation state are involved in the maintenance of the neuronal Golgi organization.  相似文献   

18.
多功能的蛋白:糖原合成酶激酶-3   总被引:8,自引:0,他引:8  
糖原合成酶激酶-3(GSK-3)是一个多功能的丝氨酸/苏氨酸类激酶,在真核生物中普遍存在。在哺乳动物中包括两个亚型,即GSK-3a和GSK-3β。GSK-3至少在三条细胞通路上有作用:Wnt/wingless,P13-kinase以及Hedgehog信号通路,该酶的作用主要包括调节糖原的合成代谢,参与细胞的分化与增殖等。研究发现,GSK-3在某些疾病,如阿尔茨海默病和非胰岛素依赖型糖尿病(NIDDM)中,其活性会异常升高。现已发现了几种针对该酶的抑制剂,如aloisine,paullones和马来酰胺类化合物等。这些抑制剂的确在分子水平特异性地抑制GSK-3的活性,而对其他激酶几乎没有作用。关于这些抑制剂的研究工作也已经在细胞水平和动物模型上开展起来,为开发以GSK-3为靶点的新的治疗药物创造了良好的基础。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号