首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To investigate potential heterogeneity and developmental changes in basement membranes during embryogenesis, we performed immunohistochemical analyses on lens capsules in chicken embryos of different ages using domain-specific monoclonal antibodies against type IV collagen. We found that the capsule of the newly formed lens stained uniformly with antibodies against this component of basement membranes, but with increasing age and differentiation of the lens cells the anterior lens capsule remained brightly fluorescent while staining of the posterior capsule became relatively much less intense. This antero- posterior gradient of anti-type IV collagen antibody reactivity demonstrated that developmentally-regulated changes can occur within a single, continuous basement membrane.  相似文献   

2.
Basement membranes were divided into two types: 1) thin basement membranes, such as those of the epidermis, trachea, jejunum, seminiferous tubule, and vas deferens of the rat, the ciliary process of the mouse, and the seminiferous tubule of the monkey, and 2) thick basement membranes, such as the lens capsule of the mouse and Reichert's membrane of the rat. High-magnification electron microscopy was used to examine both types after fixation either in glutaraldehyde followed by postosmication or in potassium permanganate. The basic structure of thin and thick basement membranes was found to be a three-dimensional network of irregular, fuzzy strands referred to as "cords"; the diameter of these cords was variable, but averaged 4 nm in all cases examined. The spaces separating the cords differed, however. In the lamina densa of thin basement membranes, the diameter of these spaces averaged about 14 nm in every case, whereas in the lamina lucida it ranged up to more than 40 nm. Intermediate values were recorded in thick basement membranes. Finally, the third, inconstant layer of thin basement membranes, pars fibroreticularis, was composed of discontinuous elements bound to the lamina densa: i.e., anchoring fibrils, microfibrils, or collagen fibrils. In particular, collagen fibrils were often surrounded by processes continuous with the lamina densa and likewise composed of a typical cord network. Finally, two features were encountered in every basement membrane: 1) a few cords were in continuity with a 1.4- to 3.2-nm thick filament or showed such a filament within them; the filaments became numerous after treatment of the seminiferous tubule basement membrane with the proteolytic enzyme, plasmin, since cords decreased in thickness and could be reduced to a filament, and 2) at the cord surface, it was occasionally possible to see 4.5-nm-wide sets of two parallel lines, referred to as "double tracks." On the basis of evidence that the filaments are type IV collagen molecules and the double tracks are polymerized heparan sulfate proteoglycan, it is proposed that cords are composed of an axial filament of type IV collagen to which are associated glycoprotein components (laminin, entactin, fibronectin) and the double tracks of the proteoglycan.  相似文献   

3.
The lens capsule is a specialized thickened basement membrane that completely surrounds the lens and provides anchoring sites for zonules, the filamentous bodies that suspend the lens. Like other basement membranes, the lens capsule contains collagen IV, which is a family of six polypeptides, subunits alpha1(IV)-alpha6(IV), each of which is encoded by a distinct gene. We have investigated the presence of collagen IV subunits in the developing lens capsule by using confocal immunohistochemistry and antibodies against each of the six collagen IV subunits. In murine embryos, subunits alpha1(IV), alpha2(IV), alpha5(IV) and alpha6(IV) were detected in the basement membrane surrounding the lens vesicle, and they persisted in the capsule until adulthood. In contrast, neither collagen alpha3(IV) nor alpha4(IV) was detected in the lens capsule until 2 weeks postnatal. Similarly, we detected no collagen alpha3(IV) or alpha4(IV) in lens capsules of 54-day human embryos, while collagen alpha3(IV) and alpha4(IV) were detected in adult humans. Thus, in the lens capsule, there is a developmental shift in detectable collagen IV subunits; early in development we observed subunits alpha1(IV), alpha2(IV), alpha5(IV) and alpha6(IV), which is consistent with the presence of fibrillar [alpha1alpha1alpha2] and elastic [alpha5alpha5alpha6] protomers, but later in development components of the more cross-linked [alpha3alpha4alpha5] protomer appear. An elastic lens capsule may be necessary in order to accommodate rapid lens growth in early development, whereas later in development a stronger, more cross-linked capsule may be necessary in order to tolerate the stress caused by postnatal accommodation and disaccommodation of the lens.  相似文献   

4.
The COOH-terminal non-collagenous domains (NC1) of type IV collagen from glomerular basement membranes (GBM), lens capsule basement membranes, and Descemet's membrane varied in the distribution of their NC1 subunits. All of these basement membranes (BMs) contained both classical (alpha 1(IV) and alpha 2(IV)) and novel collagen chains (alpha 3(IV), alpha 4(IV) and the Alport antigen). Whereas GBM had a predominance of disulfide-bonded subunits, the lens capsule and Descemet's membrane were primarily monomeric, differences that are likely related to the functional and structural diversity of collagen in various tissues. A heterodimer formed from monomeric subunits of alpha 3(IV) and the Alport antigen exists in human and bovine GBM. This dimer represents an important cross-link of the NC1 domain of novel collagen. Additionally, immunoaffinity methodology showed that the novel BM collagen hexamers segregate into populations containing only novel BM subunits without the participation of the classical subunits (alpha 1(IV) and alpha 2(IV)). These data provided evidence for the presence of two separate networks of BM collagen: one containing alpha 1(IV) and alpha 2(IV), and the other consisting of the novel collagen chains.  相似文献   

5.
To define the molecular structure of bovine lens epithelium and its anterior lens capsule, we investigated the composition of lens capsule basement membrane proteins. Immunofluorescence and immunogold techniques were used to demonstrate the presence of type I and type III collagen in the lens capsule and in primary explant epithelial cultures grown on protein-binding membranes. Immunofluorescence staining with specific antibodies indicated that type I and type III collagen were constituents of lens basement membrane. We observed that deposition of type III collagen was more than type I collagen. The synthesis of fibrillar collagen by lens epithelium and its deposition in the lens capsule was established by localization of fibrillar collagen by transmission immunoelectron microscopy. These results demonstrate for the first time that normal lens epithelium synthesize fibrillar collagen which is an intrinsic component of the anterior lens capsule basement membrane.  相似文献   

6.
A guanidine-HCl extraction of lens capsule basement membrane dissolves collagenous material. This material was fractionated on an Agarose A-5M column. Fractions 1, 2 and 3 were further purified and partially characterized immunochemically and by amino acid analysis. Fraction 3 has a molecular weight of 55,000 when compared with collagen type I standard. The CNBr peptide pattern and composition of fraction 3 are different from those of alpha 1 (IV) 95K and alpha 2 (IV) 95K chains. The results described suggest the presence of a new chain in lens capsule basement membrane.  相似文献   

7.
Oriented bovine lens capsules give X-ray diffraction patterns suggesting a considerable degree of order in the collagenous components, predominantly type IV collagen. Here we report the effects of preliminary treatment of lens capsules before orientation. Extraction with 4 guanidinium hydrochloride or with heparinase/hyaluronidase reveals the same collagenous diffraction patterns previously seen after extraction with 1 NaCl. There is a four-point pattern of d-spacing 3.9 nm, indicating liquid crystal cybotactic nematic organization, along with sharp streaked meridional reflections which index as orders of 21 nm. This suggests that the removal of basement membrane proteoglycans results in a reduction in diffuse scatter and clarification of the pattern. Extraction of the lens capsules with trypsin or dithiothreitol greatly reduces the intensity of the four-point pattern while leaving the meridional pattern unaffected. This strengthens the evidence that the 21 nm period has its origins in the collagen IV helix. Reduction in the four-point pattern could arise if disruption of non-helical NC1 domains or 7S overlap regions allows slippage of the collagen molecules on orientation, weakening the proposed 1 nm intermolecular stagger. Ultra-low angle diffraction patterns of extracted lens capsules show meridional reflections which index as a long-range axial repeat of approximately 95 nm. This is consistent with a model of microfibrils of type IV collagen in which the NC1 domains bind to the collagen helix at approximately 100 nm intervals, as has been previously suggested.  相似文献   

8.
Macromolecular organization of bovine lens capsule   总被引:3,自引:0,他引:3  
Rabbit antisera to type IV collagen, laminin, entactin, heparan sulfate proteoglycan and fibronectin were used to localize these proteins in cross-sections of bovine anterior lens capsule. The antisera were exposed to (a) 10-micron frozen-thawed sections of formaldehyde-fixed tissue for examination in the light microscope by the indirect immunofluorescence method and (b) formaldehyde-fixed and L. R. White plastic-embedded thin sections for electron microscopic examination by the protein A-gold technique. The intensity of immunofluorescence was both uniform and strong throughout for type IV collagen, laminin and entactin, but patchy and weak for fibronectin. Electron microscopic immunolabeling with protein A-gold showed that all five components were distributed throughout the full thickness of the membrane, albeit the density of gold particles was not identical for all basement membrane proteins. In general, the number of particles per micron2 was greatest for type IV collagen and entactin, moderate for laminin and heparan sulfate proteoglycan and low for fibronectin. The ultrastructure of the lens capsule as examined by the electron microscope revealed a relatively uniform parallel alignment of filaments, thought to be collagenous. Since the distribution of the filaments corresponds well with the observed immunocytochemical pattern it is concluded that type IV collagen, laminin, entactin, heparan sulfate proteoglycan and fibronectin co-localize throughout the cross-section of the anterior lens capsule.  相似文献   

9.
Three basement membrane components, laminin, collagen IV, and heparan sulfate proteoglycan, were mixed and incubated at 35 degrees C for 1 h, during which a precipitate formed. Centrifugation yielded a pellet which was fixed in either potassium permanganate for ultrastructural studies, or in formaldehyde for Lowicryl embedding and immunolabeling with protein A-gold or anti-rabbit immunoglobulin-gold. Three types of structures were observed and called types A, B, and C. Type B consisted of 30-50-nm-wide strips that were dispersed or associated into a honeycomb-like pattern, but showed no similarity with basement membranes. Immunolabeling revealed that type B strips only contained heparan sulfate proteoglycan. The structure was attributed to self-assembly of this proteoglycan. Type A consisted of irregular strands of material that usually accumulated into semisolid groups. Like basement membrane, the strands contained laminin, collagen IV, and heparan sulfate proteoglycan, and, at high magnification, they appeared as a three-dimensional network of cord-like elements whose thickness averaged approximately 3 nm. But, unlike the neatly layered basement membranes, the type A strands were arranged in a random, disorderly manner. Type C structures were convoluted sheets composed of a uniform, dense, central layer which exhibited a few extensions on both surfaces and was similar in appearance and thickness to the lamina densa of basement membranes. Immunolabeling showed that laminin, collagen IV, and proteoglycan were colocalized in the type C sheets. At high magnification, the sheets appeared as a three-dimensional network of cords averaging approximately 3 nm. Hence, the organization, composition, and ultrastructure of type C sheets made them similar to the lamina densa of authentic basement membranes.  相似文献   

10.
The distinctive tissue localization of collagen types in typical schwannomas with Antoni type A and B areas was demonstrated immunohistochemically using affinity-purified antibodies against types I, III, IV, V and VI collagen and comparative ultrastructural studies were made on the extracellular matrix components. Antoni type A tissue, which was composed of tightly packed spindle cells with long cytoplasmic processes surrounded by a continuous basement membrane and a few fibrillar components of the extracellular matrix, was almost exclusively immunoreactive for type IV collagen, presumably representing the basement membrane. Verocay bodies, which are organoid structures of Antoni type A tissue, had a variety of more abundant extracellular fibrous components, such as banded collagen fibrils, fibrous long-spacing fibrils and microfibrils. These were positive for type I and III, as well as type IV collagen. In Antoni type B areas, where two types to tumor cells designated Schwann cell-like and fibroblast-like were scattered in large amounts of amorphous extracellular matrix containing microfibrils and thick banded collagen fibrils, type VI collagen as well as types I, III and IV collagen were consistently detected. Type V collagen was localized in dense fibrous tissue areas and around blood vessels. These findings indicate that the differently organized cellular patterns of schwannomas, identified as Antoni types A and B, are characterized not only by the ultrastructural features of the extracellular matrix, but also by the distinctive collagen types produced by neoplastic Schwann cells.  相似文献   

11.
Type IV collagen includes six genetically distinct polypeptides named alpha1(IV) through alpha6(IV). These isoforms are speculated to organize themselves into unique networks providing mammalian basement membranes specificity and inequality. Recent studies using bovine and human glomerular and testis basement membranes have shown that unique networks of collagen comprising either alpha1 and alpha2 chains or alpha3, alpha4, and alpha5 chains can be identified. These studies have suggested that assembly of alpha5 chain into type IV collagen network is dependent on alpha3 expression where both chains are normally present in the tissue. In the present study, we show that in the lens and inner ear of normal mice, expression of alpha1, alpha2, alpha3, alpha4, and alpha5 chains of type IV collagen can be detected using alpha chain-specific antibodies. In the alpha3(IV) collagen-deficient mice, only the expression of alpha1, alpha2, and alpha5 chains of type IV collagen was detectable. The non-collagenous 1 domain of alpha5 chain was associated with alpha1 in the non-collagenous 1 domain hexamer structure, suggesting that network incorporation of alpha5 is possible in the absence of the alpha3 chain in these tissues. The present study proves that expression of alpha5 is not dependent on the expression of alpha3 chain in these tissues and that alpha5 chain can assemble into basement membranes in the absence of alpha3 chain. These findings support the notion that type IV collagen assembly may be regulated by tissue-specific factors.  相似文献   

12.
Type IV collagen, which is present in all metazoan, exists as a family of six homologous alpha(IV) chains, alpha1-alpha6, in mammals. The six chains assemble into three different triple helical protomers and self-associate as three distinct networks. The network underlies all epithelia as a component of basement membranes, which play important roles in cell adhesion, growth, differentiation, tissue repair and molecular ultrafiltration. The specificity of both protomer and network assembly is governed by amino acid sequences of the C-terminal noncollagenous (NC1) domain of each chain. In this study, the structural basis for protomer and network assembly was investigated by determining the crystal structure of the ubiquitous [(alpha1)(2).alpha2](2) NC1 hexamer of bovine lens capsule basement membrane at 2.0 A resolution. The NC1 monomer folds into a novel tertiary structure. The (alpha1)(2).alpha2 trimer is organized through the unique three-dimensional domain swapping interactions. The differences in the primary sequences of the hypervariable region manifest in different secondary structures, which determine the chain specificity at the monomer-monomer interfaces. The trimer-trimer interface is stabilized by the extensive hydrophobic and hydrophilic interactions without a need for disulfide cross-linking.  相似文献   

13.
Type VII collagen forms an extended network of anchoring fibrils   总被引:23,自引:7,他引:16  
Type VII collagen is one of the newly identified members of the collagen family. A variety of evidence, including ultrastructural immunolocalization, has previously shown that type VII collagen is a major structural component of anchoring fibrils, found immediately beneath the lamina densa of many epithelia. In the present study, ultrastructural immunolocalization with monoclonal and monospecific polyclonal antibodies to type VII collagen and with a monoclonal antibody to type IV collagen indicates that amorphous electron-dense structures which we term "anchoring plaques" are normal features of the basement membrane zone of skin and cornea. These plaques contain type IV collagen and the carboxyl-terminal domain of type VII collagen. Banded anchoring fibrils extend from both the lamina densa and from these plaques, and can be seen bridging the plaques with the lamina densa and with other anchoring plaques. These observations lead to the postulation of a multilayered network of anchoring fibrils and anchoring plaques which underlies the basal lamina of several anchoring fibril-containing tissues. This extended network is capable of entrapping a large number of banded collagen fibers, microfibrils, and other stromal matrix components. These observations support the hypothesis that anchoring fibrils provide additional adhesion of the lamina densa to its underlying stroma.  相似文献   

14.
The development of the lens capsule (LC) of mouse embryos was investigated between days 12 and 19 of gestation using immunomorphological (collagen type I, II, III or IV, laminin, BL-heparan sulfate, fibronection) and electron microscopic techniques. The lens capsule contains the typical components (collagen type IV, laminin and BL-heparan sulfate) of the basal lamina (BL) and can therefore be considered as thickened BL. Tannic acid fixation is especially suited for an electron microscopic demonstration of the lens capsule. The development of the lens capsule starts on day 12 of gestation. Its thickening is due to BL accumulation from the outside. This mode of thickening can be explained by the tendency to two-dimensional self assembly of collagen type IV. Electron-dense granules occur in the basal cytoplasm of lens epithelial cells. These granules can be considered as secretion granules. Their increased occurrence towards the end of gestation is attributed to a delayed secretion rather than to an increased synthesis.  相似文献   

15.
The macromolecular components of bovine glomerular basement membrane (GBM) and lens capsules (anterior and posterior) solubilized by sequential extractions with denaturing agents were quantitated and characterized by polyacrylamide gel electrophoresis, CL-6B filtration, and DEAE-cellulose chromatography with the help of immunochemical techniques. Laminin, entactin, fibronectin, and heparan sulfate proteoglycan were primarily recovered (over 80%) from both basement membranes in a guanidine HCl extract which contained only a limited amount of the total protein (10-14%); most of the remainder of these noncollagenous components could be solubilized by the guanidine in the presence of reducing agent. Although a portion of the Type IV collagen could be obtained by these treatments, effective extraction of this protein depended on exposure to sodium dodecyl sulfate under reducing conditions. Immunoblot analysis revealed a remarkably similar pattern for GBM and lens capsule Type IV collagens with prominent bands of Mr = 390,000, 210,000, and 190,000 being evident. Fibronectin was present in much greater amounts in GBM than lens capsule while the reverse was true for entactin. In both GBM and lens capsules, the entactin (Mr = 150,000) exceeded laminin; the latter protein on immunoblotting was found to contain primarily the alpha-subunit (Mr = 200,000). The size of the heparan sulfate proteoglycan from anterior (Mr = 400,000) and posterior lens capsule (Mr greater than 500,000) was substantially larger than that from GBM (Mr = 200,000). During DEAE-cellulose chromatography under nonreducing conditions in a denaturing solvent, a portion of the Type IV collagen coeluted with the proteoglycan from these membranes. Considerable Bandeiraea simplicifolia I binding activity (alpha-D-galactose specific) was observed in GBM and lens capsule extracts and column fractions which could not be accounted for by laminin alone. Several components which reacted with this lectin were seen on transblots and among these Type IV collagen was identified. In contrast to the basement membranes from bovine tissues, the constituents from human GBM did not react with the B. simplicifolia I lectin.  相似文献   

16.
Published data on the mechanical performance of the human lens capsule when tested under uniaxial and biaxial conditions are reviewed. It is concluded that two simple phenomenological constitutive models (namely a linear elastic model and a Fung-type hyperelastic model) are unable to provide satisfactory representations of the mechanical behaviour of the capsule for both of these loading conditions. The possibility of resolving these difficulties using a structural constitutive model for the capsule, of a form that is inspired by the network of collagen IV filaments that exist within the lens capsule, is explored. The model is implemented within a rectangular periodic cell. Prescribed stretches are imposed on the periodic cell and the network is allowed to deform in a non-affine manner. The performance of the constitutive model correlates well with previously published test data. One possible application of the model is in the development of a multi-scale analysis of the mechanics of the human lens capsule.  相似文献   

17.
The ocular lens capsule is a smooth, transparent basement membrane that encapsulates the lens and is composed of a rigid network of interacting structural proteins and glycosaminoglycans. During cataract surgery, the anterior lens capsule is routinely removed in the form of a circular disk. We considered that the excised capsule could be easily prepared for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) analysis. MALDI-MSI is a powerful tool to elucidate the spatial distribution of small molecules, peptides, and proteins within tissues. Here, we apply this molecular imaging technique to analyze the freshly excised human lens capsule en face. We demonstrate that novel information about the distribution of proteins by MALDI-MSI can be obtained from this highly compact connective tissue, having no evident histo-morphological characteristics. Trypsin digestion carried out on-tissue is shown to improve MALDI-MSI analysis of human lens capsules and affords high repeatability. Most importantly, MALDI-MSI analysis reveals a concentric distribution pattern of proteins such as apolipoprotein E (ApoE) and collagen IV alpha-1 on the anterior surface of surgically removed lens capsule, which may indicate direct or indirect effects of environmental and mechanical stresses on the human ocular lens.  相似文献   

18.
Lens capsule collagen synthesis by epithelial and fiber cells was examined by immunoprecipitation and collagenase digestion in embryonic and posthatch chicken eye lens. Epithelial cells and lens fibers in the process of terminal differentiation produce alpha 1 and alpha 2 type IV collagen chains. At 6 days of embryonic development in addition to the alpha 1 (IV) and alpha 2 (IV) collagen chains, lens cells produce high molecular weight collagenase-sensitive proteins not immunologically related to type IV collagen. Lens capsule collagen components have been identified in central and outer fibers isolated from 18-day embryos and from 10-day posthatch chicken eyes. At these stages, fibers which have an increasing number of picnotic nuclei still show collagen synthesis due to long-lived mRNA. Analysis of collagen synthesis by lens cells incubated with actinomycin D suggests that stabilization of collagen mRNA occurs in lens fiber cells and to a lesser extent in epithelial cells as early as 6 days of embryonic development.  相似文献   

19.
The wide angle X-ray diffraction pattern of air-dried lens capsule collagen under tension is the same as the tendon collagen diffraction pattern with regard to the main reflections, and indicates that lens capsule collagen has the characteristic three-stranded helical structure with an axial repeat of 0.29 nm as tendon collagen. The low angle X-ray diffraction pattern shows several weak diffraction maxima corresponding to the meridional reflections of capsule collagen which show orders of 63.0 nm periodicity. This is an evidence of quarter staggered molecular assembly typical of tendon collagen even if less ordered. The results are consistent with the existence in lens capsule collagen of clearly defined molecular units, which can be oriented by stress and are packed in a poor-ordered fibrillar assembly.  相似文献   

20.
Lens epithelial cells isolated from adult bovine were maintained in long-term culture. They synthesised important extracellular fibrils which had a similar pattern to capsule-like material in electron microscopic pictures. These fibrils were sensitive to a highly purified collagenase. After addition of labelled proline in the culture medium, the solubilized material obtained from culture preparation contained radioactive hydroxyproline. When the culture was maintained at confluency for several months, extracellular fibres with a pattern similar to fibrous long spacing collagen were observed. The collagen newly synthesised by epithelial cells has been isolated from the cells and from the medium. It has been chromatographed on agarose A5m column and analysed on sodium dodecyl sulphate polyacrylamide gel electrophoresis. Confluent lens cells were stained with anti-serum to lens capsule collagen type IV, the anti-serum stained the fibrils which are shed between the cells. Thus the collagen newly synthesised by epithelial cells has been isolated and tentatively identified as basement membrane collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号