首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Rajamohan F  Ozer Z  Mao C  Uckun FM 《Biochemistry》2001,40(31):9104-9114
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein (RIP) which catalytically cleaves a specific adenine base from the highly conserved alpha-sarcin/ricin loop (SRL) of the large ribosomal RNA and thereby inhibits the protein synthesis. The ribosomal protein L3, a highly conserved protein located at the peptidyltransferase center of the ribosomes, is involved in binding of PAP to ribosomes and subsequent depurination of the SRL. We have recently discovered that recombinant PAP mutants with alanine substitution of the active center cleft residues (69)NN(70) (FLP-4) and (90)FND(92) (FLP-7) that are not directly involved in the catalytic depurination at the active site exhibit >150-fold reduced ribosome inhibitory activity [(2000) J. Biol. Chem. 275, 3382--3390]. We hypothesized that the partially exposed half of the active site cleft could be the potential docking site for the L3 molecule. Our modeling studies presented herein indicated that PAP residues 90--96, 69--70, and 118--120 potentially interact with L3. Therefore, mutations of these residues were predicted to result in destabilization of interactions with rRNA and lead to a lower binding affinity with L3. In the present structure-function relationship study, coimmunoprecipitation assays with an in vitro synthesized yeast ribosomal protein L3 suggested that these mutant PAP proteins poorly interact with L3. The binding affinities of the mutant PAP proteins for ribosomes and recombinant L3 protein were calculated from rate constants and analysis of binding using surface plasmon resonance biosensor technology. Here, we show that, compared to wild-type PAP, FLP-4/(69)AA(70) and FLP-7/(90)AAA(92) exhibit significantly impaired affinity for ribosomes and L3 protein, which may account for their inability to efficiently inactivate ribosomes. By comparison, recombinant PAP mutants with alanine substitutions of residues (28)KD(29) and (111)SR(112) that are distant from the active center cleft showed normal binding affinity to ribosomes and L3 protein. The single amino acid mutants of PAP with alanine substitution of the active center cleft residues N69 (FLP-20), F90 (FLP-21), N91 (FLP-22), or D92 (FLP-23) also showed reduced ribosome binding as well as reduced L3 binding, further confirming the importance of the active center cleft for the PAP--ribosome and PAP--L3 interactions. The experimental findings presented in this report provide unprecedented evidence that the active center cleft of PAP is important for its in vitro binding to ribosomes via the L3 protein.  相似文献   

2.
The Phytolacca americana-derived naturally occurring ribosome inhibitory protein pokeweed antiviral protein (PAP) is an N-glycosidase that catalytically removes a specific adenine residue from the stem loop of ribosomal RNA. We have employed molecular modeling studies using a novel model of PAP-RNA complexes and site-directed mutagenesis combined with bioassays to evaluate the importance of the residues at the catalytic site and a putative RNA binding active center cleft between the catalytic site and C-terminal domain for the enzymatic deadenylation of ribosomal RNA by PAP. As anticipated, alanine substitutions by site-directed mutagenesis of the PAP active site residues Tyr(72), Tyr(123), Glu(176), and Arg(179) that directly participate in the catalytic deadenylation of RNA resulted in greater than 3 logs of loss in depurinating and ribosome inhibitory activity. Similarly, alanine substitution of the conserved active site residue Trp(208), which results in the loss of stabilizing hydrophobic interactions with the ribose as well as a hydrogen bond to the phosphate backbone of the RNA substrate, caused greater than 3 logs of loss in enzymatic activity. By comparison, alanine substitutions of residues (28)KD(29), (80)FE(81), (111)SR(112), (166)FL(167) that are distant from the active site did not significantly reduce the enzymatic activity of PAP. Our modeling studies predicted that the residues of the active center cleft could via electrostatic interactions contribute to both the correct orientation and stable binding of the substrate RNA molecule in the active site pocket. Notably, alanine substitutions of the highly conserved, charged, and polar residues of the active site cleft including (48)KY(49), (67)RR(68), (69)NN(70), and (90)FND(92) substantially reduced the depurinating and ribosome inhibitory activity of PAP. These results provide unprecedented evidence that besides the active site residues of PAP, the conserved, charged, and polar side chains located at its active center cleft also play a critical role in the PAP-mediated depurination of ribosomal RNA.  相似文献   

3.
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein (RIP), which enzymatically removes a single adenine base from a conserved, surface exposed loop sequence of ribosomal rRNA. We now present unprecedented experimental evidence that PAP can release not only adenine but guanine as well from Escherichia coli rRNA, albeit at a rate 20 times slower than for adenine. We also report X-ray structure analysis and supporting modeling studies for the interactions of PAP with guanine. Our modeling studies indicated that PAP can accommodate a guanine base in the active site pocket without large conformational changes. This prediction was experimentally confirmed, since a guanine base was visible in the active site pocket of the crystal structure of the PAP-guanine complex.  相似文献   

4.
The integrity of the alpha-sarcin loop in 28 S ribosomal RNA is critical during protein synthesis. The toxins alpha-sarcin, ricin, Shiga toxin, and Shiga-like toxin inhibit protein synthesis in oocytes by attacking specific nucleotides within this loop (Ackerman, E.J., Saxena, S. K., and Ulbrich, N. (1988) J. Biol. Chem. 263, 17076-17083; Saxena, S.K., O'Brien, A.D., and Ackerman, E.J. (1989) J. Biol. Chem. 264, 596-601). We injected Xenopus oocytes with deoxyoligonucleotides complementary to the 17-nucleotide alpha-sarcin loop of Xenopus 28 S rRNA. Only injected oligonucleotides fully covering the alpha-sarcin loop or slightly beyond inhibited oocyte protein synthesis. Shorter alpha-sarcin domain deoxyoligonucleotides complementary to the alpha-sarcin and ricin sites but not spanning the entire loop were less effective inhibitors of protein synthesis. The alpha-sarcin domain oligonucleotides covering the entire loop were more effective inhibitors of protein synthesis than injected cycloheximide at equivalent concentrations. Control oligonucleotides complementary to nine other regions of Xenopus 28 S rRNA as well as universal M13 DNA sequencing primers had no effect on oocyte protein synthesis. Oligonucleotides complementary to the highly conserved alpha-sarcin domain therefore represent an alternative to catalytic toxins for causing cell death and may prove effective in immunotherapy.  相似文献   

5.
Pokeweed antiviral protein (PAP), a single chain ribosome-inactivating protein (RIP) isolated from pokeweed plants (Phytolacca americana), removes specific adenine and guanine residues from the highly conserved, alpha-sarcin/ricin loop in the large rRNA, resulting in inhibition of protein synthesis. We recently demonstrated that PAP could also inhibit translation of mRNAs and viral RNAs that are capped by binding to the cap structure and depurinating the RNAs downstream of the cap. Cell growth is inhibited when PAP cDNA is expressed in the yeast Saccharomyces cerevisiae under the control of the galactose-inducible GAL1 promoter. Here, we show that overexpression of wild type PAP in yeast leads to a decrease in PAP mRNA abundance. The decrease in mRNA levels is not observed with an active site mutant, indicating that it is due to the N-glycosidase activity of the protein. PAP expression had no effect on steady state levels of mRNA from four different endogenous yeast genes examined, indicating specificity. We demonstrate that PAP can depurinate the rRNA in trans in a translation-independent manner. When rRNA is depurinated and translation is inhibited, the steady state levels of PAP mRNA increase dramatically relative to the U3 snoRNA. Using a PAP variant which depurinates rRNA, inhibits translation but does not destabilize its mRNA, we demonstrate that PAP mRNA is destabilized after its levels are up-regulated by a mechanism that occurs independently of rRNA depurination and translation. We quantify the extent of rRNA depurination in vivo using a novel primer extension assay and show that the temporal pattern of rRNA depurination is similar to the pattern of PAP mRNA destabilization, suggesting that they may occur by a common mechanism. These results provide the first in vivo evidence that a single chain RIP targets not only the large rRNA but also its own mRNA. These findings have implications for understanding the biological function of RIPs.  相似文献   

6.
Parikh BA  Baykal U  Di R  Tumer NE 《Biochemistry》2005,44(7):2478-2490
Pokeweed antiviral protein (PAP) is a single-chain ribosome inactivating protein (RIP) that binds to ribosomes and depurinates the highly conserved alpha-sarcin/ricin loop (SRL) of the large subunit rRNA. Catalytic depurination of a specific adenine has been proposed to result in translation arrest and cytotoxicity. Here, we show that both precursor and mature forms of PAP are localized in the endoplasmic reticulum (ER) in yeast. The mature form is retro-translocated from the ER into the cytosol where it escapes degradation unlike the other substrates of the retro-translocation pathway. A mutation of a highly conserved asparagine residue at position 70 (N70A) delays ribosome depurination and the onset of translation arrest. The ribosomes are eventually depurinated, yet cytotoxicity and loss of viability are markedly absent. Analysis of the variant protein, N70A, does not reveal any decrease in the rate of synthesis, subcellular localization, or the rate of transport into the cytosol. N70A destabilizes its own mRNA, binds to cap, and blocks cap dependent translation, as previously reported for the wild-type PAP. However, it cannot depurinate ribosomes in a translation-independent manner. These results demonstrate that N70 near the active-site pocket is required for depurination of cytosolic ribosomes but not for cap binding or mRNA destabilization, indicating that the activity of PAP on capped RNA can be uncoupled from its activity on rRNA. These findings suggest that the altered active site of PAP might accommodate a narrower range of substrates, thus reducing ribotoxicity while maintaining potential therapeutic benefits.  相似文献   

7.
Ribosomal RNA identity elements for ricin A-chain recognition and catalysis   总被引:7,自引:0,他引:7  
Ricin is a cytotoxic protein that inactivates ribosomes by hydrolyzing the N-glycosidic bond between the base and the ribose at position A4324 in eukaryotic 28 S rRNA. The requirements for the recognition by ricin A-chain of this nucleotide and for the catalysis of cleavage were examined using a synthetic oligoribonucleotide that reproduces the sequence and the secondary structure of the RNA domain (a helical stem, a bulged nucleotide, and a 17-member single-stranded loop). The wild-type RNA (35mer) and a number of mutants were transcribed in vitro from synthetic DNA templates with phage T7 RNA polymerase. With the wild-type oligoribonucleotide the ricin A-chain catalyzed reaction has a Km of 13.55 microM and a Kcat of 0.023 min-1. Recognition and catalysis by ricin A-chain has an absolute requirement for A at the position that corresponds to 4324. The helical stem is also essential; however, the number of base-pairs can be reduced from the seven found in 28 S rRNA to three without loss of identity. The nature of these base-pairs can affect catalysis. A change of the second set from one canonical (G.C) to another (U.A) reduces sensitivity to ricin A-chain; whereas, a change of the third pair (U.A----G.C) produces supersensitivity. The bulged nucleotide does not contribute to identification. Hydrolysis is affected by altering the nucleotides in the universal sequence surrounding A4324 or by changing the position in the loop of the tetranucleotide GA(ricin)GA: all of these mutants have a null phenotype. If ribosomes are treated first with alpha-sarcin to cleave the phosphodiester bond at G4325 ricin can still catalyze depurination at A4324. This implies that cleavage by alpha-sarcin at the center of what has been presumed to be a 17 nucleotide single-stranded loop in 28 S rRNA produces ends that are constrained in some way. On the other hand, hydrolysis by alpha-sarcin of the corresponding position in the synthetic oligoribonucleotide prevents recognition by ricin A-chain. The results suggest that the loop has a complex structure, affected by ribosomal proteins, and this bears on the function in protein synthesis of the alpha-sarcin/ricin rRNA domain.  相似文献   

8.
Pokeweed antiviral protein (PAP) is a naturally occurring broad-spectrum antiviral agent with potent anti-human immunodeficiency virus (HIV)-1 activity by an as yet undeciphered molecular mechanism. In the present study, we sought to determine if PAP is capable of recognizing and depurinating viral RNA. Depurination of viral RNA was monitored by directly measuring the amount of the adenine base released from the viral RNA species using quantitative high-performance liquid chromatography. Our findings presented herein provide direct evidence that three different PAP isoforms from Phytolacca americana (PAP-I from spring leaves, PAP-II from early summer leaves, and PAP-III from late summer leaves) cause concentration-dependent depurination of genomic RNA (63 to 400 pmols of adenine released per micrograms of RNA) purified from human immunodeficiency virus type-I (HIV-I), plant virus (tobacco mosaic virus (TMV), and bacteriophage (MS 2). In contrast to the three PAP isoforms, ricin A chain (RTA) failed to cause detectable depurination of viral RNA even at 5 microM, although it was as effective as PAP in inhibiting protein synthesis in cell-free translation assays. PAP-I, PAP-II, and PAP-III (but not RTA) inhibited the replication of HIV-1 in human peripheral blood mononuclear cells with IC(50) values of 17 nM, 25 nM, and 16 nM, respectively. These findings indicate that the highly conserved active site residues responsible for the depurination of rRNA by PAP or RTA are not sufficient for the recognition and depurination of viral RNA. Our study prompts the hypothesis that the potent antiviral activity of PAP may in part be due to its unique ability to extensively depurinate viral RNA, including HIV-1 RNA.  相似文献   

9.
10.
Mark A. Olson 《Proteins》1997,27(1):80-95
Ricin A-chain is a cytotoxic protein that attacks ribosomes by hydrolyzing a specific adenine base from a highly conserved, single-stranded rRNA hairpin containing the tetraloop sequence GAGA. Molecular-dynamics simulation methods are used to analyze the structural determinant for three substrate analogues bound to the ricin A-chain molecule. Simulations were applied to the binding of the dinucleotide adenyl-3′,5′-guanosine employing the x-ray crystal structure of the ricin complex and a modeled CGAGAG hexanucleotide loop taken from the NMR solution structure of a 29-mer oligonucleotide hairpin. A third simulation model is also presented describing a conformational search of the docked 29-mer structure by using a simulated-annealing method. Analysis of the structural interaction energies for each model shows the overall binding dominated by nonspecific interactions, which are mediated by specific arginine contacts from the highly basic region on the protein surface. The tetraloop conformation of the 29-mer was found to make specific interactions with conserved protein residues, in a manner that favored the GAGA sequence. A comparison of the two docked loop conformations with the NMR structure revealed significant positional deviations, suggesting that ricin may use an induced fit mechanism to recognize and bind the rRNA substrate. The conserved Tyr-80 may play an important confirmational entropic role in the binding and release of the target adenine in the active site. Proteins 27:80–95 © 1997 Wiley-Liss, Inc.  相似文献   

11.
Models for the binding of the sarcin-ricin loop (SRL) of 28S ribosomal RNA to ricin A chain (RTA) suggest that several surface exposed arginine residues surrounding the active site cleft make important interactions with the RNA substrate. The data presented in this study suggest differing roles for these arginyl residues. Substitution of Arg48 or Arg213 with Ala lowered the activity of RTA 10-fold. Furthermore, substitution of Arg213 with Asp lowered the activity of RTA 100-fold. The crystal structure of this RTA variant showed it to have an unaltered tertiary structure, suggesting that the positively charged state of Arg213 is crucial for activity. Substitution of Arg258 with Ala had no effect on activity, although substitution with Asp lowered activity 10-fold. Substitution of Arg134 prevented expression of folded protein, suggesting a structural role for this residue. Several models have been proposed for the binding of the SRL to the active site of RTA in which the principal difference lies in the conformation of the second 'G' in the target GAGA motif in the 28S rRNA substrate. In one model, the sidechain of Asn122 is proposed to make interactions with this G, whereas another model proposes interactions with Asp75 and Asn78. Site-directed mutagenesis of these residues of RTA favours the first of these models, as substitution of Asn78 with Ser yielded an RTA variant whose activity was essentially wild-type, whereas substitution of Asn122 reduced activity 37.5-fold. Substitution of Asp75 failed to yield significant folded protein, suggesting a structural role for this residue.  相似文献   

12.
Protein toxin inhibitors of protein synthesis.   总被引:3,自引:0,他引:3  
Two classes of extremely toxic proteins kill eukaryotic cells by covalently modifying unique structural features of components that are essential for protein synthesis. Intoxication by these proteins results from the entry of a catalytic fragment into the cytoplasm. One class is typified by diphtheria toxin and Pseudomonas exotoxin A. The catalytic component of these toxins ADP-ribosylates and inactivates elongation factor 2 which is an essential participant in protein synthesis. This modification occurs at a unique post-translational histidine derivative, diphthamide, that is present in the ribosomal binding site of the elongation factor. The two toxins differ in their molecular organization but appear to possess identical reaction mechanisms and very similar active sites. The other class contains two types of toxins typified, respectively, by alpha-sarcin, a member of a family of fungal toxins, and ricin, a member of a group of closely related plant proteins collectively termed ribosome-inactivating proteins. The catalytic components of the two types of toxins in this second class inactivate the large ribosomal subunit through two different hydrolytic alterations of 23-28S RNA. alpha-Sarcin and its congeners act as a specific endonuclease whereas ricin and its congeners act as a specific N-glycosidase. These hydrolytic cleavages occur at a pair of adjacent nucleotides within a highly conserved sequence near the 3' terminus of 23-28S RNA. The covalent integrity of this region of RNA is essential to elongation factor-dependent ribosomal functions and is located within the ribosomal binding domain of these factors. Both of these classes of toxins are being employed as 'magic bullets' to eliminate pathological cells. By combining the catalytic component of these toxins with various cell targeting components, useful and specific anticancer and immunomodulatory agents have been created.  相似文献   

13.
Ribosome-inactivating proteins, such as the pokeweed antiviral protein (PAP), inhibit translation by depurinating the conserved sarcin/ricin loop of the large ribosomal RNA. Depurinated ribosomes are unable to bind elongation factor 2, and, thus, the translocation step of the elongation cycle is inhibited. Though the consequences of depurination are well characterized, the ribosome conformation required for depurination to take place has not been described. In this report, we correlate biochemical and genetic data to conclude that pokeweed antiviral protein depurinates the sarcin/ricin loop when the A-site of the ribosomal peptidyl-transferase center is unoccupied. We show that prior incubation of ribosomes with puromycin, an analog of the 3'-terminus of aminoacyl-tRNA, inhibits both binding and depurination by PAP in a concentration-dependent manner. Expression of PAP in the yeast strain mak8-1 results in little depurination unless the cells are lysed, a process that would promote loss of aminoacyl-tRNA from the ribosome. The mak8-1 strain is known to exhibit a higher affinity for aminoacyl-tRNA compared with wild-type cells, and therefore, its ribosomes are more resistant to PAP in vivo. These data contribute to the mechanism of action of pokeweed antiviral protein; specifically, they have uncovered the ribosomal conformation required for depurination that leads to subsequent translation inhibition.  相似文献   

14.
Pseudouridine synthase RluE modifies U2457 in a stem of 23 S RNA in Escherichia coli. This modification is located in the peptidyl transferase center of the ribosome. We determined the crystal structures of the C-terminal, catalytic domain of E. coli RluE at 1.2 A resolution and of full-length RluE at 1.6 A resolution. The crystals of the full-length enzyme contain two molecules in the asymmetric unit and in both molecules the N-terminal domain is disordered. The protein has an active site cleft, conserved in all other pseudouridine synthases, that contains invariant Asp and Tyr residues implicated in catalysis. An electropositive surface patch that covers the active site cleft is just wide enough to accommodate an RNA stem. The RNA substrate stem can be docked to this surface such that the catalytic Asp is adjacent to the target base, and a conserved Arg is positioned to help flip the target base out of the stem into the enzyme active site. A flexible RluE specific loop lies close to the conserved region of the stem in the model, and may contribute to substrate specificity. The stem alone is not a good RluE substrate, suggesting RluE makes additional interactions with other regions in the ribosome.  相似文献   

15.
Inhibition of protein synthesis per se does not potentiate the stress-activated protein kinases (SAPKs; also known as cJun NH2-terminal kinases [JNKs]). The protein synthesis inhibitor anisomycin, however, is a potent activator of SAPKs/JNKs. The mechanism of this activation is unknown. We provide evidence that in order to activate SAPK/JNK1, anisomycin requires ribosomes that are translationally active at the time of contact with the drug, suggesting a ribosomal origin of the anisomycin-induced signaling to SAPK/JNK1. In support of this notion, we have found that aminohexose pyrimidine nucleoside antibiotics, which bind to the same region in the 28S rRNA that is the target site for anisomycin, are also potent activators of SAPK/JNK1. Binding of an antibiotic to the 28S rRNA interferes with the functioning of the molecule by altering the structural interactions of critical regions. We hypothesized, therefore, that such alterations in the 28S rRNA may act as recognition signals to activate SAPK/JNK1. To test this hypothesis, we made use of two ribotoxic enzymes, ricin A chain and alpha-sarcin, both of which catalyze sequence-specific RNA damage in the 28S rRNA. Consistent with our hypothesis, ricin A chain and alpha-sarcin were strong agonists of SAPK/JNK1 and of its activator SEK1/MKK4 and induced the expression of the immediate-early genes c-fos and c-jun. As in the case of anisomycin, ribosomes that were active at the time of exposure to ricin A chain or alpha-sarcin were able to initiate signal transduction from the damaged 28S rRNA to SAPK/JNK1 while inactive ribosomes were not.  相似文献   

16.
Pokeweed antiviral protein (PAP) produced by pokeweed plants is a single-chain (type I) ribosome-inactivating protein (RIP) that depurinates ribosomes at the alpha-sarcin/ricin loop of the large rRNA, resulting in inhibition of translation. Unlike the type II RIPs, which have an active and a binding moiety, PAP has only the active moiety. The mechanism by which toxins without a binding moiety gain access to cytosolic ribosomes is not known. We set up yeast as a simple and genetically tractable system to investigate how PAP accesses ribosomes and showed that the mature form of PAP is targeted to the cytosol from the endomembrane system in yeast. In the present study, we performed a systematic deletion analysis to identify the signal required for transport of PAP to the cytosol. We demonstrate here that processing of the C-terminal extension and sequences at the C-terminus of the mature protein are critical for its accumulation in the cytosol. Using a series of PAP mutants, we identified the C-terminal signal and demonstrated that it is distinct from the sequences required for ribosome depurination and cytotoxicity. The C-terminal motif showed sequence similarity to type II RIPs that retrotranslocate from the endoplasmic reticulum to the cytosol. These results demonstrate that a conserved sequence at the C-terminus of a type I RIP mediates its transport to the cytosol and suggest that type I and II RIPs may use a common signal to enter the cytosol.  相似文献   

17.
alpha-Sarcin from Aspergillus giganteus and the ribosome-inactivating proteins (RIPs) from higher plants inactivate the 60 S ribosomal subunit. The former is an RNAase, whereas RIPs are N-glycosidases. The site of cleavage of RNA and that of N-glycosidic depurinization are at one nucleotide distance in 28 S rRNA [Endo & Tsurugi (1987) J. Biol. Chem. 262, 8128-8130]. The effect of alpha-sarcin and that of RIPs on the interaction of elongation factors with Artemia salina (brine shrimp) ribosomes have been investigated. alpha-Sarcin inhibits both the EF1 (elongation factor 1)-dependent binding of aminoacyl-tRNA and the GTP-dependent binding of EF2 (elongation factor 2) to ribosomes, whereas two of the RIPs tested, ricin from Ricinus communis (castor bean) and volkensin from Adenia volkensii (kilyambiti), inhibit only the latter reaction. EF2 protects ribosomes from inactivation by both alpha-sarcin and ricin. The EF1-binding site is affected only by alpha-sarcin. The sensitivity of this site to alpha-sarcin is increased by pretreatment of ribosomes with ricin. A. salina ribosomes were highly resistant to the third RIP tested, namely gelonin from Gelonium multiflorum. All four proteins tested have, however, a comparable activity on the rabbit reticulocyte-lysate system.  相似文献   

18.
Ribosome-inactivating proteins (RIPs) are N-glycosylases that remove a specific adenine from the sarcin/ricin loop of the large rRNA in a manner analogous to N-glycosylases that are involved in DNA repair. Some RIPs have been reported to remove adenines from single-stranded DNA and cleave double-stranded supercoiled DNA. The molecular basis for the activity of RIPs on double-stranded DNA is not known. Pokeweed antiviral protein (PAP), a single-chain RIP from Phytolacca americana, cleaves supercoiled DNA into relaxed and linear forms. Double-stranded DNA treated with PAP contains apurinic/apyrimidinic (AP) sites due to the removal of adenine. Using an active-site mutant of PAP (PAPx) which does not depurinate rRNA, we present evidence that double-stranded DNA treated with PAPx does not contain AP sites and is not cleaved. These results demonstrate for the first time that PAP cleaves supercoiled double-stranded DNA using the same active site that is required for depurination of rRNA.  相似文献   

19.
We previously suggested a mechanism whereby the RNA induced silencing complex (RISC) brings about a specific cleavage at the sarcin–ricin loop (SRL) of 28S ribosomal RNA thereby eliciting translational suppression. Here we experimentally show that endogenous cleavages take place at the SRL site, in both mammalian cells and in Caenorhabditis elegans. Furthermore we demonstrate that bulged and looped-out residues present in the imperfect miRNA–[mRNA target site] duplexes, are complementary to the SRL site. These results support, and are compatible with, our described mechanism whereby microRNAs mediate cleavage of the highly conserved 28S rRNA sarcin/ricin loop leading to translational suppression.  相似文献   

20.

Background  

Ricin is a potent toxin and known bioterrorism threat with no available antidote. The ricin A-chain (RTA) acts enzymatically to cleave a specific adenine base from ribosomal RNA, thereby blocking translation. To understand better the relationship between ligand binding and RTA active site conformational change, we used a fragment-based approach to find a minimal set of bonding interactions able to induce rearrangements in critical side-chain positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号