首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mercury-contaminated chemical wastewater of a mercury cell chloralkali plant was cleaned on site by a technical-scale bioremediation system. Microbial mercury reduction of soluble Hg(II) to precipitating Hg(0) decreased the mercury load of the wastewater during its flow through the bioremediation system by up to 99%. The system consisted of a packed-bed bioreactor, where most of the wastewater's mercury load was retained, and an activated carbon filter, where residual mercury was removed from the bioreactor effluent by both physical adsorption and biological reduction. In response to the oscillation of the mercury concentration in the bioreactor inflow, the zone of maximum mercury reduction oscillated regularly between the lower and the upper bioreactor horizons or the carbon filter. At low mercury concentrations, maximum mercury reduction occurred near the inflow at the bottom of the bioreactor. At high concentrations, the zone of maximum activity moved to the upper horizons. The composition of the bioreactor and carbon filter biofilms was investigated by 16S-23S ribosomal DNA intergenic spacer polymorphism analysis. Analysis of spatial biofilm variation showed an increasing microbial diversity along a gradient of decreasing mercury concentrations. Temporal analysis of the bioreactor community revealed a stable abundance of two prevalent strains and a succession of several invading mercury-resistant strains which was driven by the selection pressure of high mercury concentrations. In the activated carbon filter, a lower selection pressure permitted a steady increase in diversity during 240 days of operation and the establishment of one mercury-sensitive invader.  相似文献   

2.
Mercury-contaminated chemical wastewater of a mercury cell chloralkali plant was cleaned on site by a technical-scale bioremediation system. Microbial mercury reduction of soluble Hg(II) to precipitating Hg(0) decreased the mercury load of the wastewater during its flow through the bioremediation system by up to 99%. The system consisted of a packed-bed bioreactor, where most of the wastewater's mercury load was retained, and an activated carbon filter, where residual mercury was removed from the bioreactor effluent by both physical adsorption and biological reduction. In response to the oscillation of the mercury concentration in the bioreactor inflow, the zone of maximum mercury reduction oscillated regularly between the lower and the upper bioreactor horizons or the carbon filter. At low mercury concentrations, maximum mercury reduction occurred near the inflow at the bottom of the bioreactor. At high concentrations, the zone of maximum activity moved to the upper horizons. The composition of the bioreactor and carbon filter biofilms was investigated by 16S-23S ribosomal DNA intergenic spacer polymorphism analysis. Analysis of spatial biofilm variation showed an increasing microbial diversity along a gradient of decreasing mercury concentrations. Temporal analysis of the bioreactor community revealed a stable abundance of two prevalent strains and a succession of several invading mercury-resistant strains which was driven by the selection pressure of high mercury concentrations. In the activated carbon filter, a lower selection pressure permitted a steady increase in diversity during 240 days of operation and the establishment of one mercury-sensitive invader.  相似文献   

3.
4.
Mercury is one of the most hazardous heavy metals and is a particular problem in aquatic ecosystems, where organic mercury is biomagnified in the food chain. Previous studies demonstrated that transgenic model plants expressing a modified mercuric ion reductase gene from bacteria could detoxify mercury by converting the more toxic and reductive ionic form [Hg(II)] to less toxic elemental mercury [Hg(0)]. To further investigate if a genetic engineering approach for mercury phytoremediation can be effective in trees with a greater potential in riparian ecosystems, we generated transgenic Eastern cottonwood (Populus deltoides) trees expressing modified merA9 and merA18 genes. Leaf sections from transgenic plantlets produced adventitious shoots in the presence of 50 microm Hg(II) supplied as HgCl2, which inhibited shoot induction from leaf explants of wild-type plantlets. Transgenic shoots cultured in a medium containing 25 microm Hg(II) showed normal growth and rooted, while wild-type shoots were killed. When the transgenic cottonwood plantlets were exposed to Hg(II), they evolved 2-4-fold the amount of Hg(0) relative to wild-type plantlets. Transgenic merA9 and merA18 plants accumulated significantly higher biomass than control plants on a Georgia Piedmont soil contaminated with 40 p.p.m. Hg(II). Our results indicate that Eastern cottonwood plants expressing the bacterial mercuric ion reductase gene have potential as candidates for in situ remediation of mercury-contaminated soils or wastewater.  相似文献   

5.
Gram-positive merA gene in gram-negative oral and urine bacteria   总被引:1,自引:0,他引:1  
Clinical mercury resistant (Hg(r)) Gram-negative bacteria carrying Gram-positive mercury reductase (merA)-like genes were characterized using DNA-DNA hybridization, PCR and sequencing. A PCR assay was developed which discriminated between the merA genes related to Staphylococcus and those related to the Bacillus/Streptococcus merA genes by the difference in size of the PCR product. DNA sequence analysis correlated with the PCR assay. The merA genes from Acinetobacter junii, Enterobacter cloacae and Escherichia coli were sequenced and shared 98-99% identical nucleotide (nt) and 99.6-100% amino acid identity with the Staphylococcus aureus MerA protein. A fourth merA gene, from Pantoeae agglomerans, was partially sequenced (60%) and had 99% identical nt and 100% amino acid identity with the Streptococcus oralis MerA protein. All the Hg(r) Gram-negative bacteria transferred their Gram-positive merA genes to a Gram-positive Enterococcus faecalis recipient with the resulting transconjugants expressing mercury resistance. These Gram-positive merA genes join Gram-positive tetracycline resistance and Gram-positive macrolide resistance genes in their association with mobile elements which are able to transfer and express in Gram-negative bacteria.  相似文献   

6.
Methylmercury (MeHg) production is controlled by the bioavailability of inorganic divalent mercury (Hg(II)i) and Hg-methylation capacity of the microbial community (conferred by the hgcAB gene cluster). However, the relative importance of these factors and their interaction in the environment remain poorly understood. Here, metagenomic sequencing and a full-factorial MeHg formation experiment were conducted across a wetland sulfate gradient with different microbial communities and pore water chemistries. From this experiment, the relative importance of each factor on MeHg formation was isolated. Hg(II)i bioavailability correlated with the dissolved organic matter composition, while the microbial Hg-methylation capacity correlated with the abundance of hgcA genes. MeHg formation responded synergistically to both factors. Notably, hgcA sequences were from diverse taxonomic groups, none of which contained genes for dissimilatory sulfate reduction. This work expands our understanding of the geochemical and microbial constraints on MeHg formation in situ and provides an experimental framework for further mechanistic studies.  相似文献   

7.
Six mercury-resistant environmental proteobacterial isolates and one genetically modified mercury-resistant Pseudomonas putida strain were analyzed for physiological traits of adaptive relevance in an environment of packed-bed bioreactors designed for the decontamination of mercury-polluted chlor-alkali wastewater. The strains displayed characteristic differences in each trait (i.e., biofilm formation capability, growth rate in mercury contaminated wastewaters, and mercury reduction efficiency). Subsequently, they were immobilized either as a monoculture or as a mixed culture on porous carrier material in packed-bed bioreactors through which different batches of filter-sterilized industrial chlor-alkali wastewater were pumped. In monospecies bioreactors, the mercury retention efficiency was sensitive to rapidly increasing mercury concentrations in the wastewater. Mixed culture biofilms displayed a high mercury retention efficiency that was not affected by rapid increases in mercury or continuously high mercury concentrations. The dynamic in the community composition of the mixed culture bioreactors was determined by ribosomal intergenic spacer polymorphism analysis. Mercury-mediated selective pressure decreased the number of prevalent strains. Microbial diversity was completely restored after easing of the selective pressure. Microbial diversity provides a reservoir of strains with complementary ecological niches that results in a superior bioreactor performance under changing environmental conditions.  相似文献   

8.
Six mercury-resistant environmental proteobacterial isolates and one genetically modified mercury-resistant Pseudomonas putida strain were analyzed for physiological traits of adaptive relevance in an environment of packed-bed bioreactors designed for the decontamination of mercury-polluted chlor-alkali wastewater. The strains displayed characteristic differences in each trait (i.e., biofilm formation capability, growth rate in mercury contaminated wastewaters, and mercury reduction efficiency). Subsequently, they were immobilized either as a monoculture or as a mixed culture on porous carrier material in packed-bed bioreactors through which different batches of filter-sterilized industrial chlor-alkali wastewater were pumped. In monospecies bioreactors, the mercury retention efficiency was sensitive to rapidly increasing mercury concentrations in the wastewater. Mixed culture biofilms displayed a high mercury retention efficiency that was not affected by rapid increases in mercury or continuously high mercury concentrations. The dynamic in the community composition of the mixed culture bioreactors was determined by ribosomal intergenic spacer polymorphism analysis. Mercury-mediated selective pressure decreased the number of prevalent strains. Microbial diversity was completely restored after easing of the selective pressure. Microbial diversity provides a reservoir of strains with complementary ecological niches that results in a superior bioreactor performance under changing environmental conditions.  相似文献   

9.
The mathematical model of the integrated process of mercury contaminated wastewater bioremediation in a fixed-bed industrial bioreactor is presented. An activated carbon packing in the bioreactor plays the role of an adsorbent for ionic mercury and at the same time of a carrier material for immobilization of mercury-reducing bacteria. The model includes three basic stages of the bioremediation process: mass transfer in the liquid phase, adsorption of mercury onto activated carbon and ionic mercury bioreduction to Hg(0) by immobilized microorganisms. Model calculations were verified using experimental data obtained during the process of industrial wastewater bioremediation in the bioreactor of 1 m3 volume. It was found that the presented model reflects the properties of the real system quite well. Numerical simulation of the bioremediation process confirmed the experimentally observed positive effect of the integration of ionic mercury adsorption and bioreduction in one apparatus.  相似文献   

10.
The contamination of polar regions due to the global distribution of anthropogenic pollutants is of great concern because it leads to the bioaccumulation of toxic substances, methylmercury among them, in Arctic food chains. Here we present the first evidence that microbes in the high Arctic possess and express diverse merA genes, which specify the reduction of ionic mercury [Hg(II)] to the volatile elemental form [Hg(0)]. The sampled microbial biomass, collected from microbial mats in a coastal lagoon and from the surface of marine macroalgae, was comprised of bacteria that were most closely related to psychrophiles that had previously been described in polar environments. We used a kinetic redox model, taking into consideration photoredox reactions as well as mer-mediated reduction, to assess if the potential for Hg(II) reduction by Arctic microbes can affect the toxicity and environmental mobility of mercury in the high Arctic. Results suggested that mer-mediated Hg(II) reduction could account for most of the Hg(0) that is produced in high Arctic waters. At the surface, with only 5% metabolically active cells, up to 68% of the mercury pool was resolved by the model as biogenic Hg(0). At a greater depth, because of incident light attenuation, the significance of photoredox transformations declined and merA-mediated activity could account for up to 90% of Hg(0) production. These findings highlight the importance of microbial redox transformations in the biogeochemical cycling, and thus the toxicity and mobility, of mercury in polar regions.  相似文献   

11.
Phosphorus was added as a nutrient to bench-scale and pilot-scale biologically active carbon (BAC) reactors operated for perchlorate and nitrate removal from contaminated groundwater. The two bioreactors responded similarly to phosphorus addition in terms of microbial community function (i.e., reactor performance), while drastically different responses in microbial community structure were detected. Improvement in reactor performance with respect to perchlorate and nitrate removal started within a few days after phosphorus addition for both reactors. Microbial community structures were evaluated using molecular techniques targeting 16S rRNA genes. Clone library results showed that the relative abundance of perchlorate-reducing bacteria (PRB) Dechloromonas and Azospira in the bench-scale reactor increased from 15.2% and 0.6% to 54.2% and 11.7% after phosphorus addition, respectively. Real-time quantitative PCR (qPCR) experiments revealed that these increases started within a few days after phosphorus addition. In contrast, after phosphorus addition, the relative abundance of Dechloromonas in the pilot-scale reactor decreased from 7.1 to 0.6%, while Zoogloea increased from 17.9 to 52.0%. The results of this study demonstrated that similar operating conditions for bench-scale and pilot-scale reactors resulted in similar contaminant removal performances, despite dramatically different responses from microbial communities. These findings suggest that it is important to evaluate the microbial community compositions inside bioreactors used for drinking water treatment, as they determine the microbial composition in the effluent and impact downstream treatment requirements for drinking water production. This information could be particularly relevant to drinking water safety, if pathogens or disinfectant-resistant bacteria are detected in the bioreactors.  相似文献   

12.
Inorganic mercury in contaminated soils and sediments is relatively immobile, though biological and chemical processes can transform it to more toxic and bioavailable methylmercury. Methylmercury is neurotoxic to vertebrates and is biomagnified in animal tissues as it is passed from prey to predator. Traditional remediation strategies for mercury contaminated soils are expensive and site-destructive. As an alternative we propose the use of transgenic aquatic, salt marsh, and upland plants to remove available inorganic mercury and methylmercury from contaminated soils and sediments. Plants engineered with a modified bacterial mercuric reductase gene, merA, are capable of converting Hg(II) taken up by roots to the much less toxic Hg(0), which is volatilized from the plant. Plants engineered to express the bacterial organo-mercurial lyase gene, merB, are capable of converting methylmercury taken up by plant roots into sulfhydryl-bound Hg(II). Plants expressing both genes are capable of converting ionic mercury and methylmercury to volatile Hg(0) which is released into an enormous global atmospheric Hg(0) pool. To assess the phytoremediation capability of plants containing the merA gene, a variety of assays were carried out with the model plants Arabidopsis thaliana, and tobacco (Nicotiana tabacum).  相似文献   

13.
Anaerobic sludge granules were obtained from laboratory-scale anaerobic bioreactors used to treat pharmaceutical-like (methanol-, acetone- and propanol-contaminated) wastewater under low-temperature conditions (15 degrees C). The microbial diversity and diversity changes of the sludge samples were ascertained by applying 16S rRNA gene cloning and terminal restriction fragment length polymorphism (TRFLP) analyses, respectively, and using sludge samples from the inoculum, throughout and at the conclusion of the bioreactor trial. Data from genetic fingerprinting correlated well with those from physiological activity assays of the reactor biomass. Specifically, for example, TRFLP profiles indicated the dominance of hydrogenotrophic methanogens within the archaeal community, thus supporting the findings of specific methanogenic activity measurements. TRFLP data supported the hypothesis that the deviation between the replicated reactors, in terms of treatment efficiency, was associated with succession within the microbial communities present, and indicated that community development was linked to both operating temperature and wastewater composition. Fluorescence in situ hybridization (FISH) was also applied, to quantitatively assess the abundance of selected microbial groups, and revealed the underestimation of the abundance Methanosarcina by gene cloning analysis and demonstrated the spatial arrangement of these organisms within the architecture of the low-temperature solvent-degrading anaerobic biofilms.  相似文献   

14.
The relationship between the abundance of three functional genes and their corresponding biochemical reaction rates was investigated in several activated sludge and mill effluent microbial communities. Gene probes were prepared for two key denitrification genes (nirS and nirK) and for one nitrogen-fixation gene (nifH) and were validated using a variety of strains of known nir and nif genotype. ATP-based measures of viable cell numbers were used to provide total population sizes. In certain microbial communities (activated sludge enrichment cultures and multiple samples taken from the same mill primary clarifier), a strong correlation was observed between gene abundance and biochemical activity rates. However, when comparing several different nonenriched activated sludge bioreactors and separate primary clarifier microbial communities, the ratio of specific gene abundance to biochemical activity rates varied widely. These results suggest that in cases where a microbial community is not fully induced for a given biochemical activity or when very different communities are compared, quantitative gene probing can give a better measure of a community's potential to carry out the encoded function than can the relevant biochemical assay. However, the gene quantitation method employed here probably underestimated the true number of probed genes present in the microbial communities due to nirS and nifH genes in the communities having reduced DNA sequence similarity with the probes used.  相似文献   

15.
We have developed a radiation resistant bacterium for the treatment of mixed radioactive wastes containing ionic mercury. The high cost of remediating radioactive waste sites from nuclear weapons production has stimulated the development of bioremediation strategies using Deinococcus radiodurans, the most radiation resistant organism known. As a frequent constituent of these sites is the highly toxic ionic mercury (Hg) (II), we have generated several D. radiodurans strains expressing the cloned Hg (II) resistance gene (merA) from Escherichia coli strain BL308. We designed four different expression vectors for this purpose, and compared the relative advantages of each. The strains were shown to grow in the presence of both radiation and ionic mercury at concentrations well above those found in radioactive waste sites, and to effectively reduce Hg (II) to the less toxic volatile elemental mercury. We also demonstrated that different gene clusters could be used to engineer D. radiodurans for treatment of mixed radioactive wastes by developing a strain to detoxify both mercury and toluene. These expression systems could provide models to guide future D. radiodurans engineering efforts aimed at integrating several remediation functions into a single host.  相似文献   

16.
Aims:  Decomposition of solid waste is microbially mediated, yet little is known about the associated structure and temporal changes in prokaryotic communities. Bioreactors were used to simulate landfill conditions and archaeal and bacterial community development in leachate was examined over 8 months.
Methods and Results:  Municipal solid waste (MSW) was deposited in laboratory bioreactors with or without biosolids and combustion residues (ash). The near-neutral pH fell about half a log by day 25, but recovered to ∼7·0 by day 50. Cell concentrations in bioreactors containing only MSW were significantly higher than those from co-disposal bioreactors. Archaeal and bacterial community structure was analysed by denaturing gradient gel electrophoresis targeting 16S rRNA genes, showing temporal population shifts for both domains. mcrA sequences retrieved from a co-disposal bioreactor were predominantly affiliated with the orders Methanosarcinales and Methanomicrobiales .
Conclusion:  Regardless of waste composition, microbial communities in bioreactor leachates exhibited high diversity and distinct temporal trends. The solid waste filled bioreactors allowed simulation of solid waste decomposition in landfills while also reducing the variables.
Significance and Impact of the Study:  This study advances the basic understanding of changes in microbial community structure during solid waste decomposition, which may ultimately improve the efficiency of solid waste management.  相似文献   

17.
The aim of this study was to determine whether pH amendment of a highly alkaline metal working fluid (MWF) wastewater would improve biological treatment in a bioreactor system following introduction of a bacterial inoculum (comprised of the following strains: Agrobacterium radiobacter, Comamonas testosteroni, Methylobacterium mesophilicum, Microbacterium esteraromaticum, and Microbacterium saperdae). The pH values tested were 6, 7, 8, and 9. Three replicate batch mode bioreactors inoculated with the bacterial inoculum (plus an abiotic control bioreactor) were operated for each of the four pH conditions. After 14 days, the final mean chemical oxygen demand (COD) reduction at pH 9 was 50 +/- 1.4%; at pH 8, 58 +/- 1.4%; pH 7, 65 +/- 1.0%; and pH 6, 75 +/- 2.7% of the initial COD (approximately 10,000 mg L(-1)), respectively. Interestingly, within 5 days, the pH in all inoculated bioreactors progressed toward pH 8. However, all abiotic control bioreactors remained at the pH at which they were amended. The fate of the inoculum, determined by denaturing gradient gel electrophoresis (DGGE) and by cluster analysis of the resulting DGGE profiles, revealed that the inocula survived throughout operation of all pH-amended bioreactors. Length-heterogeneity polymerase chain reaction (PCR) was used to track the population dynamics of individual strains. After 7 days of operation, M. esteraromaticum was the most abundant population in all bioreactors, regardless of pH. From our findings, it appears necessary to adjust the MWF wastewater from pH 9 to between 6 and 7, to achieve optimal biological treatment rates.  相似文献   

18.
Pilot plant for bioremediation of mercury-containing industrial wastewater   总被引:4,自引:0,他引:4  
Mercury is an extremely toxic pollutant that is currently being emitted mainly by low level industrial sources. It is distributed globally through the atmosphere, from where it precipitates onto the surface of the Earth, enters aquatic organisms, accumulates in fish and finally affects the health of human populations. Microbes have evolved a mechanism for mercury detoxification [mercury resistance operon ( mer)] based on intracellular reduction of Hg(2+) to non-toxic Hg(0) by the mercuric reductase enzyme and subsequent diffusional loss of Hg(0) from the cell. It was shown that Hg(0) produced by microbial detoxification can be retained quantitatively in packed bed bioreactors, in which biofilms of mercury-resistant bacteria are grown on porous carrier material. This review describes operation of this system on a technical, fully automated, scale, and its operation at a chloralkali electrolysis factory. It was shown to work with high efficiency under fluctuating mercury concentrations and to be robust against transiently toxic conditions. The gradient of mercury concentration in the technical scale system exerted a strong selective pressure on the microbial community, which resulted in a succession of mercury-resistant strains at high mercury concentrations and an increase in phylogenetic and functional diversity at low mercury concentrations. Clean-up of mercury-containing wastewater by mercury-resistant microbes is a simple, environmentally friendly and cost-effective alternative to current treatment technologies.  相似文献   

19.
In order to test an alternative selectable marker system for the production of transgenic peanut plants (Arachis hypogaea), the bacterial mercuric ion reductase gene, merA, was introduced into embryogenic cultures via microprojectile bombardment. MerA reduces toxic Hg(II) to the volatile and less toxic metallic mercury molecule, Hg(0), and renders its source Gram-negative bacterium mercury resistant. A codon-modified version of the merA gene, MerApe9, was cloned into a plant expression cassette containing the ACT2 promoter from Arabidopsis thaliana and the NOS terminator. The expression cassette also was inserted into a second vector containing the hygromycin resistance gene driven by the UBI3 promoter from potato. Stable transgenic plants were recovered through hygromycin-based selection from somatic embryo tissues bombarded with the plasmid containing both genes. However, no transgenic somatic embryos were recovered from selection on 50-100 micromol/L HgCl2. Expression of merA as mRNA was detected by Northern blot analysis in leaf tissues of transgenic peanut, but not in somatic embryos. Western blot analysis showed the production of the mercuric ion reductase protein in leaf tissues. Differential responses to HgCl2 of embryo-derived explants from segregating R1 seeds of one transgenic line also were observed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号