首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Normal human epidermal melanocytes are attached to a basement membrane, a specialized form of extracellular matrix (ECM), located between the epithelium and underlying dermal tissues. To determine whether ECM influences pigmented cell behavior in vitro, human epidermal melanocytes and melanoma cells were cultured on uncoated or ECM-coated plastic culture surfaces, and a comparison was made between growth and function in the presence or absence of ECM. Melanocytes cultured on ECM-coated surfaces developed flatter and larger cell bodies and produced more melanin than melanocytes cultured on uncoated surfaces. In the presence of phorbol-myristate-acetate and cholera toxin, the rate of melanocyte replication was increased by ECM. In the absence of these mitogens, ECM significantly enhanced the adhesiveness of nonproliferating melanocytes. ECM had little or no effect on these parameters (morphology, tyrosinase activity, replication) in a pigmented human malignant melanoma cell line. These findings indicate that normal human epidermal pigment cells have the ability to recognize and respond to matrix signals, whereas this capacity appears to be absent in melanoma cells.  相似文献   

2.
The relationship between cell pigmentation and radiosensitivity was investigated in two selected human melanoma cell lines with different melanin content (mixed type: eumelanin and pheomelanin, and pheomelanotic phenotypes). The same study was also done after stimulation of melanogenesis (1) by addition of the melanin precursor l-tyrosine to each of the cell lines separately and (2) by irradiation alone with doses ranging from 0 to 10 Gy. We found that a decrease in cell radiosensitivity was correlated with the type of melanin, with a clear involvement of eumelanin rather than pheomelanin. Increasing the intracellular content of both melanins promoted the growth of irradiated cells. Moreover, at a dose of 10 Gy, both tyrosinase activity and melanin cell content were significantly increased in the absence of any other melanogenesis promoter. Our data suggest that the amount of intracellular melanin is inversely related to the radiosensitivity of melanoma cells and may explain at least in part the controversial responses to ionizing radiations reported for melanoma.  相似文献   

3.
Cells derived from individuals with ataxia telangiectasia (AT) exhibit increased sensitivity to ionizing radiation and certain drugs (e.g., bleomycin, neocarzinostatin, and etoposide) as evidenced by decreased survival and increased chromosome aberrations at mitosis when compared with normal cell lines. To understand better the basis of this sensitivity, three AT and two normal lymphoblastoid cell lines were fractionated into cell cycle phase-enriched populations by centrifugal elutriation and then examined for their survival and their relative initial levels of DNA damage (neutral DNA filter elution) and chromosome damage (premature chromosome condensation). AT cells exhibited decreased levels of survival in all phases of the cell cycle; however, AT cells in early G1 phase were especially sensitive compared with normal cells in G1 phase. While AT and normal cells exhibited similar levels of initial DNA double-strand breaks in exponential populations as well as throughout the cell cycle, AT cells showed nearly twofold higher initial levels of chromosome damage than normal control cells in G1 and G2 phase. These results suggest that there is a higher rate of conversion of DNA double-strand breaks into chromosome breaks in AT cells, perhaps due to a difference in chromatin organization or stability. Thus one determining component of cellular radiosensitivity might include chromatin structure.  相似文献   

4.
DNA damage by double-strand breaks induces arrest during interphase in mammalian cells. It is not clear whether DNA damage can arrest cells in mitosis. We show here that three human cell lines, HeLa, U2OS, and HCT116, do not delay in mitosis in response to double-strand breaks induced during mitosis by gamma irradiation or by adriamycin. Durable arrest at metaphase occurs, however, with ICRF-193, a topoisomerase II inhibitor that does not damage DNA. Arrest with ICRF-193 is not accompanied by recruitment of Mad2 or Bub1 to kinetochores, nor by phosphorylation of the histone H2AX, indicating arrest by ICRF-193 is not due to activation of the spindle assembly checkpoint, nor is it a response to DNA damage. VP-16, another decatenation inhibitor, induces metaphase arrest only at concentrations well above those that induce DNA damage. We conclude that decatenation failure, but not DNA damage, creates metaphase arrest in mammalian cells.  相似文献   

5.
6.
N G Seleva 《Radiobiologiia》1986,26(2):153-157
A study was made of the influence of irradiation conditions on the yield of the photoreactivable damages in radiosensitive mutants of E. coli cells (E. coli WP2). Pyrimidine dimers were shown to occur in exrA- and recA- mutants irradiated under anoxic conditions, the survival of these mutants being modified depending on cell genotype. The processes of direct excitation of the molecules were involved in the formation of the damages observed. It can be assumed that the lesser oxygen effect observed in exrA- and partially in recA- mutants of E. coli WP2 cells is associated with a contribution of the photoreactivable damages to a lethal effect of ionizing radiation.  相似文献   

7.
Summary It has previously been shown that radioinduced organic radicals can be repaired by hydrogen donation from glutathione (GSH) and this repair is in competition with oxygen (damage fixation).In this paper the influence of exogenous glutathione on the radiation response of the enzyme alcoholdehydrogenase (YADH), DNA in vitro, andE. coli B/r cells has been investigated.GSH is observed to protect YADH essentially by free radical scavenging mechanisms in both presence or absence of oxygen. The same mechanism seems operate in the radioprotection afforded by GSH to DNA in vitro.E. coli B/r cells are protected at higher extent by GSH than its oxidized form (GSSG); the possibility that GSH penetrate into bacterial cells more easily that GSSG can explain their different behaviour.None of the three systems studied has provided definitive support for the occurrence of the hydrogen donation reaction in the radioprotective mechanisms of GSH versus biomolecules and bacterial cells.  相似文献   

8.
Radiation therapy (RT) is one of the main treatment modalities for cervical cancer. Rosiglitazone (ROSI) has been reported to have antiproliferative effects against various types of cancer cells and also to induce antioxidant enzymes that can scavenge reactive oxygen species (ROS) and thereby modify radiosensitivity. Here, we explored the effect of ROSI on radiosensitivity and the underlying mechanisms in cervical cancer cells. Three cervical cancer cell lines (ME-180, HeLa, and SiHa) were used. The cells were pretreated with ROSI and then irradiated. Expression of proteins of interest was detected by western blot and immunofluorescence. Intracellular production of ROS was measured by H2DCFDA. Radiosensitivity was assessed by monitoring clonogenic survival. Expression of antioxidant enzymes (catalase, superoxide dismutases) was increased by ROSI in HeLa and SiHa cells, but not in ME-180 cells. With ROSI pre-treatment, cell survival after irradiation remained unchanged in HeLa and SiHa cells, but decreased in ME-180 cells. Radiation-induced expression of γ-H2AX was increased and that of RAD51 was decreased by ROSI pre-treatment in ME-180 cells, but not in HeLa cells. ROSI increases radiosensitivity by inhibiting RAD51-mediated repair of DNA damage in some cervical cancer cell lines; therefore, ROSI is a potential inhibitor of RAD51 that can be used to enhance the effect of RT in the treatment of some cervical cancers.  相似文献   

9.
DNA damage can cause cell death unless it is either repaired or tolerated. The precise contributions of repair and tolerance mechanisms to cell survival have not been previously evaluated. Here we have analyzed the cell killing effect of the two major UV light-induced DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidone photoproducts (6-4PPs), in nucleotide excision repair-deficient human cells by expressing photolyase(s) for light-dependent photorepair of either or both lesions. Immediate repair of the less abundant 6-4PPs enhances the survival rate to a similar extent as the immediate repair of CPDs, indicating that a single 6-4PP lesion is severalfold more toxic than a CPD in the cells. Because UV light-induced DNA damage is not repaired at all in nucleotide excision repair-deficient cells, proliferation of these cells after UV light irradiation must be achieved by tolerance of the damage at replication. We found that RNA interference designed to suppress polymerase zeta activity made the cells more sensitive to UV light. This increase in sensitivity was prevented by photorepair of 6-4PPs but not by photorepair of CPDs, indicating that polymerase zeta is involved in the tolerance of 6-4PPs in human cells.  相似文献   

10.
In recent years, genistein has received considerable attention because epidemiologic studies showed that consumption of soybean-containing diets was associated with a lower incidence of certain human cancers in Asian populations. In vitro studies further showed that such chemopreventive and antineoplastic effects were associated with the antioxidant activity of genistein and inhibitor activities on cell proliferation and angiogenesis. Genistein was shown to arrest the growth of malignant melanoma in vitro and to inhibit ultraviolet (UV) light-induced oxidative DNA damage. Recently, it has been demonstrated that genistin, as other flavonoid glycosides, is partly absorbed without previous cleavage and does not have to be hydrolyzed to be biologically active. Therefore, not only isoflavone aglycons, but also glycosides can be of physiological relevance. In the present study, we evaluated in cell-free systems the effect of genistin and daidzin on pBR322 DNA cleavage induced by hydroxyl radicals, generated from UV photolysis of hydrogen peroxide, and their superoxide anion scavenging capacity. In addition, we investigated the growth inhibitory activity of these isoflavones against human melanoma cell line (M14). Under our experimental conditions, genistin and daidzin showed a protective effect on DNA damage and exhibited a superoxide dismutase-like effect, but only genistin was able to reduce significantly the vitality of M14 cells, confirming the importance of the 5,7-dihydroxy structure in the A ring. These results suggest that also genistin, due to its antioxidant and anticarcinogenic properties, contributes to the overall biological activity of soy and could have promising applications in the field of dermatology.  相似文献   

11.
The selenium-dependent glutathione peroxidase activities of two human cell lines, the colon carcinoma HT29 and the mesothelioma P31, cultured in medium containing 2% serum, increased from 195 to 541 and from 94 to 361 units/mg of protein respectively after supplementation with 100 nM-selenite. The catalase activity remained unchanged by this treatment. The effects of the obtained variation in glutathione peroxidase activities were investigated by exposing cells to H2O2 and t-butyl hydroperoxide. Selenite supplementation resulted in a decrease in H2O2-induced DNA single-strand breaks in both HT29 and P31 cells. A small, but significant, decrease in the number of DNA single-strand breaks for low doses (10-50 microM) of t-butyl hydroperoxide was found only in P31 cells and not in HT29 cells. We could detect neither induction of double-strand breaks (detection limit approx. 1000 breaks per cell) nor DNA-protein cross-links after exposing the cells to the two peroxides. In spite of the apparent protective effect of increased glutathione peroxidase activity on DNA single-strand break formation, there were no differences between selenite-supplemented and non-supplemented cells in cell survival after exposure to peroxide.  相似文献   

12.
Purpose: To study the effect of autologous tumor cell vaccinations on the presence and numbers of circulating CD8+ T cells specific for tumor-associated antigens (TAA) in metastatic melanoma patients. To investigate the correlation between the presence of tumor-infiltrating lymphocytes (TIL) and circulating TAA-specific CD8+ T cells before and after autologous tumor cell vaccination with overall survival. Experimental design: Twenty-five stage III and resected stage IV metastatic melanoma patients were adjuvantly treated with a series of intracutaneously injected autologous tumor cell vaccinations, of which the first two contained BCG as an immunostimulatory adjuvant. Tumor samples and blood samples obtained before and after vaccination of these patients were studied for the presence of TAA-specific T cells using HLA-tetramers and results were correlated with survival. Results: In 5 of 17 (29%) melanoma patients, circulating TAA-specific T cells were detectable prior to immunizations. No significant changes in the frequency and specificity were found during the treatment period in all patients. Presence of circulating TAA-specific T cells was not correlated with survival (log rank, P=0.215). Inside melanoma tissue, TAA-specific TIL could be detected in 75% of 16 available tumor samples. In case of detectable TAA-specific TIL, median survival was 22.5 months compared to median survival of 4.5 months in case of absence of TAA-specific T cells (log rank, P=0.0094). In none of the patients, TAA-specific T cells were found both in tumor tissue and blood at the same time. Conclusions: These data suggest that the presence of TAA-specific TILs forms a prognostic factor, predicting improved survival in advanced-stage melanoma patients. The absence of TAA-specific T cells in the circulation suggests that homing of the tumor-specific T cell population to the tumor site contributes to the effectiveness of antitumor immunity. J.B.A.G. Haanen and A. Baars contributed equally to this work.  相似文献   

13.
14.
15.
Summary.  Hepatocyte preparations highly enriched in cells from either the periportal or the perivenous zone of the liver acinus were prepared using a digitonin/collagenase perfusion method. Five enzymes of cysteine metabolism were assayed in both periportal and perivenous preparations. The ratios of periportal to perivenous activity were 0.76, 0.60, 0.81, 1.62, and 1.01 for cysteine dioxygenase, cysteinesulfinate decarboxylase, γ-glutamylcysteine synthetase, cystathionase, and asparate (cysteinesulfinate) aminotransferase, respectively. Only cysteinesulfinate decarboxylase activity was significantly different between periportal and perivenous cells. In incubations with 2 mmol/L [35S]cysteine, total cysteine catabolism ([35S]taurine plus [35S]sulfate) between periportal and perivenous cells was not different, which is consistent with the observation of similar cysteine dioxygenase activity across the hepatic acinus. Consistent with the lower cysteinesulfinate decarboxylase activity in periportal cells, 16% of the total catabolism of [35S]cysteine in periportal cells resulted in taurine synthesis compared to 28% in perivenous cells. A lower rate of [35S]glutathione synthesis was observed in periportal cells compared to perivenous cells, but γ-glutamylcysteine synthetase activity was not significantly different between perivenous and periportal cells. Cysteinesulfnate decarboxylase can be added to the list of enzymes whose activities are markedly enriched in perivenous cells. Received January 15, 2002 Accepted February 4, 2002 Published online September 4, 2002 Acknowledgements This work was supported by the National Research Initiative Competitive Grants Program/United States Department of Agriculture Competitive Research Grant 02-37200-7583. Authors' address: Dr. Martha H. Stipanuk, Division of Nutritional Sciences, 227 Savage Hall, Cornell University, Ithaca, NY 14853-6301, U.S.A., E-mail: mhs6@cornell.edu  相似文献   

16.
DNA damage by carbonyl stress in human skin cells   总被引:1,自引:0,他引:1  
Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the alpha-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N(epsilon)-(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress.  相似文献   

17.
Previously, we demonstrated that in vitro treatment of B16F10 murine melanoma cells with interleukin-2 (IL-2) enhances proliferation and metastasis. To further investigate the role played by IL-2 in human melanomas, we studied the expression of IL-2/IL-2 receptor and the effect of IL-2 on the proliferation of melanoma cell lines derived from primary (A375 and RMS cell lines) and metastatic (Hs294T cell line) tumours. We found a constitutive expression of cytoplasmic IL-2 and alpha, beta and gamma-subunits of the IL-2R on the surface of the three melanoma cell lines. The presence of IL-2 in the culture increased the proliferation rate in A375 and RMS cell lines, but no effect was observed in Hs294T metastatic cells. Biologically active IL-2 could be found in the supernatant of the three melanoma cell lines, particularly in A375 and RMS cells, in which an inhibition of the proliferation rate was observed when IL-2 was blocked. Moreover, the combination of anti-IL-2R beta and anti-IL-2R gamma blocking antibodies induced a significant down-regulation of cell proliferation in the three melanoma cell lines, and the combination of anti-IL-2R alpha, anti-IL-2R beta and anti-IL-2R gamma blocking antibodies inhibited IL-2-mediated growth stimulation in A375 and Hs294T cell lines. In RMS cells, a more significant effect was observed when only IL-2R gamma was blocked. Finally, exogenous IL-2 modulated the IL-2 endogenously produced by melanoma cells. These data show that IL-2 may modulate the growth of melanoma cells through autocrine or/and paracrine mechanisms.  相似文献   

18.
In cultured rat cerebellar granule cells, glutamate or N-methyl-D-aspartate (NMDA) activation of the NMDA receptor caused a sustained increase in cytosolic Ca2+ levels ([Ca2+]i), reactive oxygen species (ROS) generation, and cell death (respective EC50 values for glutamate were 12, 30, and 38 µM) but no increase in caspase-3 activity. Removal of extracellular Ca2+ blocked all three glutamate-induced effects, whereas pretreatment with an ROS scavenger inhibited glutamate-induced cell death but had no effect on the [Ca2+]i increase. This indicates that glutamate-induced cell death is attributable to [Ca2+]i increase and ROS generation, and the [Ca2+]i increase precedes ROS generation. Apoptotic cell death was not seen until 24 h after exposure of cells to glutamate. S-nitrosoglutathione abolished glutamate-induced ROS generation and cell death, and only a transient [Ca2+]i increase was seen; similar results were observed with another nitric oxide (NO) donor, S-nitroso-N-acetylpenicillamine, but not with glutathione, which suggests that the effects were caused by NO. The transient [Ca2+]i increase and the abolishment of ROS generation induced by glutamate and S-nitrosoglutathione were still seen in the presence of an ROS scavenger. Glial cells, which were present in the cultures used, showed no [Ca2+]i increase in the presence of glutamate, and glutamate-induced granule cell death was independent of the percentage of glial cells. In conclusion, NO donors protect cultured cerebellar granule cells from glutamate-induced cell death, which is mediated by ROS generated by a sustained [Ca2+]i increase, and glial cells provide negligible protection against glutamate-induced excitotoxicity. cytosolic calcium concentration; N-methyl-D-aspartate; reactive oxygen species  相似文献   

19.
20.
Hyaluronan synthase 2 (HAS2), a synthetic enzyme for hyaluronan, regulates various aspects of cancer progression, including migration, invasion and angiogenesis. However, the possible association of HAS2 with the response of cancer cells to anticancer radiotherapy, has not yet been elucidated. Here, we show that HAS2 knockdown potentiates irradiation-induced DNA damage and apoptosis in cancer cells. Upon exposure to radiation, all of the tested human cancer cell lines exhibited marked (up to 10-fold) up-regulation of HAS2 within 24 h. Inhibition of HAS2 induction significantly reduced the survival of irradiated radioresistant and -sensitive cells. Interestingly, HAS2 depletion rendered the cells to sustain irradiation-induced DNA damage, thereby leading to an increase of apoptotic death. These findings indicate that HAS2 knockdown sensitizes cancer cells to radiation via persistent DNA damage, further suggesting that the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. Thus, HAS2 could potentially be targeted for therapeutic interventions aimed at radiosensitizing cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号