首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclosporin A (CsA), a potent immunosuppressant, is known to bind with high specificity to cyclophilin (CyP), a 17.7 kDa protein with peptidyl-prolyl isomerase activity. In order to investigate the three-dimensional structure of the CsA/CyP complex, we have applied a variety of multidimensional NMR methods in the study of uniformly 13C-labeled CsA bound to cyclophilin. The 1H and 13C NMR signals of cyclosporin A in the bound state have been assigned, and from a quantitative interpretation of the 3D NOE data, the bound conformation of CsA has been determined. Three-dimensional structures of CsA calculated from the NOE data by using a distance geometry/simulated appealing protocol were found to be very different from previously determined crystalline and solution conformations of uncomplexed CsA. In addition, from CsA/CyP NOEs, the portions of CsA that interact with cyclophilin were identified. For the most part, those CsA residues with NOEs to cyclophilin were the same residues important for cyclophilin binding and immunosuppressive activity as determined from structure/activity relationships. The structural information derived in this study together with the known structure/activity relationships for CsA analogues may prove useful in the design of improved immunosuppressants. Moreover, the approach that is described for obtaining the structural information is widely applicable to the study of small molecule/large molecule interactions.  相似文献   

2.
In order to map cyclosporin A (CsA) binding sites of cyclophilin (CyP), we synthesized the complete set of overlapping 157 octapeptides corresponding to human CyP A using the multi-pin peptide synthesis system. The pin-coupled synthetic octapeptides were examined in terms of binding ability to CsA by a modification of the enzyme-linked immunosorbent assay. Significant binding of CsA was detected with 35 synthetic N alpha-acetylated octapeptides possessing the N-terminal amino acids corresponding to the residues in positions 24-26, 42-44, 69-73, 75, 76, 89-91, 102, 116, 124-131, 144-151 and 152 in human CyP A, respectively. Other eight octapeptides showed moderate CsA binding activity. The distinct binding of octapeptides covering the C-terminal region of the CyP A was particularly significant. These data are to be compared with the information provided by X-ray and NMR studies on the CsA binding sites and furnish thus a test of the reported method. The present study also gave added insight into the CsA interaction sites of CyP.  相似文献   

3.
Fluorescence and NMR spectral data have suggested an interaction between the single tryptophan in cyclophilin (CyP) and its high affinity ligand cyclosporin A (CsA). To study this interaction, a site mutation of Trp121 to Ala was introduced into human cyclophilin (CyP) and the encoded protein was expressed in E. coli. The Ala121 mutant was shown to catalyze the peptidyl-prolyl cis-trans isomerase (rotomase) reaction with several peptide substrates, albeit at less than ten percent the rate of the purified recombinant human CyP. Values for the apparent inhibition constant (Ki,app) of cyclosporin A with the human CyP and the Ala121 mutant were determined to be 1.6 +/- 0.4 nM and 640 +/- 90 nM, respectively by tight-binding inhibition analysis. The greater loss of affinity for CsA binding (400-fold) than for rotomase catalysis (20 fold) suggests that the catalytic and CsA binding properties associated with CyP can be decoupled as has been observed with an homologous protein found in E. coli (Liu, J. & Walsh, C.T. (1990) Proc. Natl. Acad. Sci. USA 87, 4028-4032).  相似文献   

4.
V L Hsu  I M Armitage 《Biochemistry》1992,31(51):12778-12784
A simple strategy involving 1H nuclear magnetic resonance (NMR) spectroscopy and complete protein deuteration was used to determine the structures of two receptor-bound drugs. A potent immunosuppressive, cyclosporin A (CsA) binds tightly to the ubiquitous and highly conserved 17.7-kDa immunophilin, cyclophilin (CyP). Fully deuterated CyP was produced by overexpressing the human CyP gene in Escherichia coli grown on deuterated algal hydrolysate in 98% D2O. As only the CsA molecule is protonated in the CsA-CyP complex, we were able to make a complete sequential assignment of the bound drug using standard two-dimensional proton NMR experiments. The structure determination was accomplished using dynamical simulated annealing calculations with a total of 124 NMR-derived distance and torsion angle restraints. Aside from binding CsA, CyP also acts as a peptidyl-prolyl cis-trans isomerase. Thus, much importance had been ascribed to the cis peptide bond present in the structures reported for free CsA in organic solvents and in crystal studies. Interestingly, CyP-bound CsA exists in an all-trans conformation with no detectable elements of regular secondary structure and no intramolecular hydrogen bonds. A nonactive CsA analog, MeAla6-CsA, was studied using the same CyP deuteration strategy. In addition to structural elucidation of the two bound drugs, we were able to differentiate between the bound and surface-exposed residues of the drugs and also validate our previous hypothesis that the single CyP tryptophan is located in the CsA-binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Hypoxanthine (Hx) with specific (15)N labels has been used to probe hydrogen-bonding interactions with purine nucleoside phosphorylase (PNP) by NMR spectroscopy. Hx binds to human PNP as the N-7H tautomer, and the N-7H (1)H and (15)N chemical shifts are located at 13.9 and 156.5 ppm, respectively, similar to the solution values. In contrast, the (1)H and (15)N chemical shifts of N-1H in the PNP.Hx complex are shifted downfield by 3.5 and 7.5 ppm to 15.9 and 178.8 ppm, respectively, upon binding. Thus, hydrogen bonding at N-1H is stronger than at N-7H in the complex. Ab initio chemical shift calculations on model systems that simulate Hx in solution and bound to PNP are used to interpret the NMR data. The experimental N-7H chemical shift changes are caused by competing effects of two active site contacts. Hydrogen bonding of Glu201 to N-1H causes upfield shifts of the N-7H group, while the local hydrogen bond (C=O to N-7H from Asn243) causes downfield shifts. The observed N-7H chemical shift can be reproduced by a hydrogen bond distance approximately 0.13 A shorter (but within experimental error) of the experimental value found in the X-ray crystal structure of the bovine PNP.Hx complex. The combined use of NMR and ab initio chemical shift computational analysis provides a novel approach to understand enzyme-ligand interactions in PNP, a target for anticancer agents. This approach has the potential to become a high-resolution tool for structural determination.  相似文献   

6.
The assignment of the aliphatic 1H and 13C resonances of IL-1 beta, a protein of 153 residues and molecular mass 17.4 kDa, is presented by use of a number of novel three-dimensional (3D) heteronuclear NMR experiments which rely on large heteronuclear one-bond J couplings to transfer magnetization and establish through-bond connectivities. These 3D NMR experiments circumvent problems traditionally associated with the application of conventional 2D 1H-1H correlation experiments to proteins of this size, in particular the extensive chemical shift overlap which precludes the interpretation of the spectra and the reduced sensitivity arising from 1H line widths that are often significantly larger than the 1H-1H J couplings. The assignment proceeds in two stages. In the first step the 13C alpha chemical shifts are correlated with the NH and 15N chemical shifts by a 3D triple-resonance NH-15N-13C alpha (HNCA) correlation experiment which reveals both intraresidue NH(i)-15N(i)-13C alpha (i) and some weaker interresidue NH(i)-15N(i)-C alpha (i-1) correlations, the former via intraresidue one-bond 1JNC alpha and the latter via interresidue two-bond 2JNC alpha couplings. As the NH, 15N, and C alpha H chemical shifts had previously been sequentially assigned by 3D 1H Hartmann-Hahn 15N-1H multiple quantum coherence (3D HOHAHA-HMQC) and 3D heteronuclear 1H nuclear Overhauser 15N-1H multiple quantum coherence (3D NOESY-HMQC) spectroscopy [Driscoll, P.C., Clore, G.M., Marion, D., Wingfield, P.T., & Gronenborn, A.M. (1990) Biochemistry 29, 3542-3556], the 3D triple-resonance HNCA correlation experiment permits the sequence-specific assignments of 13C alpha chemical shifts in a straightforward manner. The second step involves the identification of side-chain spin systems by 3D 1H-13C-13C-1H correlated (HCCH-COSY) and 3D 1H-13C-13C-1H total correlated (HCCH-TOCSY) spectroscopy, the latter making use of isotropic mixing of 13C magnetization to obtain relayed connectivities along the side chains. Extensive cross-checks are provided in the assignment procedure by examination of the connectivities between 1H resonances at all the corresponding 13C shifts of the directly bonded 13C nuclei. In this manner, we were able to obtain complete 1H and 13C side-chain assignments for all residues, with the exception of 4 (out of a total of 15) lysine residues for which partial assignments were obtained. The 3D heteronuclear correlation experiments described are highly sensitive, and the required set of three 3D spectra was recorded in only 1 week of measurement time on a single uniformly 15N/13C-labeled 1.7 mM sample of interleukin-1 beta.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
MeAla6-cyclosporin A (MeAla6-CsA) is a unique CsA analog that shows weak immunosuppressive activity and yet binds strongly to the proposed cytosolic protein receptor, cyclophilin (CyP). Preliminary 1H NMR data showed significant chemical shift differences between spectra of MeAla6-CsA and CsA, suggesting different preferred conformations. A more detailed study, however, revealed that the backbone conformations of the two molecules are essentially identical, and that the differences can be accounted for, principally, by the sidechain motions of the MeBmt-1, MeLeu-9, and -10 residues. ROE and coupling constant data show that in MeAla6-CsA, the preferred chi 1 rotamers for MeLeu-9 and -10 are + 180 degrees (T), whereas in CsA there is a more even distribution of rotamer populations for MeLeu-10, and a preferred -60 degrees (G-) chi 1 rotamer for MeLeu-9. Similar data argue that the sidechain of MeBmt-1 is more restricted in its motion in MeAla-CsA than in CsA. Temperature studies suggest that these preferred rotamers for MeAla6-CsA may increase the stability of the hydrogen bond between NH(7) and CO(11), but prevent particular residues, especially the essential MeBmt-1 sidechain, from adopting orientations required to elicit immunosuppressive activity. The significant changes observed in the preferred orientations for the sidechains of the MeBmt-1, MeLeu-9, and MeLeu-10 residues in MeAla6-CsA argue that the particular orientations which they assume in CsA are not essential for cyclophilin binding.  相似文献   

8.
This report presents the backbone assignments and the secondary structure determination of the A domain of the Escherichia coli mannitol transport protein, enzyme-IImtl. The backbone resonances were partially assigned using three-dimensional heteronuclear 1H NOE 1H-15N single-quantum coherence (15N NOESY-HSQC) spectroscopy and three-dimensional heteronuclear 1H total correlation 1H-15N single-quantum coherence (15N TOCSY-HSQC) spectroscopy on uniformly 15N enriched protein. Triple-resonance experiments on uniformly 15N/13C enriched protein were necessary to complete the backbone assignments, due to overlapping 1H and 15N frequencies. Data obtained from three-dimensional 1H-15N-13C alpha correlation experiments (HNCA and HN(CO)CA), a three-dimensional 1H-15N-13CO correlation experiment (HNCO), and a three-dimensional 1H alpha-13C alpha-13CO correlation experiment (COCAH) were combined using SNARF software, and yielded the assignments of virtually all observed backbone resonances. Determination of the secondary structure of IIAmtl is based upon NOE information from the 15N NOESY-HSQC and the 1H alpha and 13C alpha secondary chemical shifts. The resulting secondary structure is considerably different from that reported for IIAglc of E. coli and Bacillus subtilis determined by NMR and X-ray.  相似文献   

9.
Partial site-specific assignments are reported for the solid state NMR spectra of light-harvesting complex 1, a 160 kDa integral membrane protein. The assignments were derived from 600 MHz (15)N-(13)CO-(13)Calpha and (15)N-(13)Calpha-(13)CX correlation spectra, using uniformly (13)C, (15)N enriched hydrated material, in an intact and precipitated form. Sequential assignments were verified using characteristic (15)N-(13)Calpha-(13)Cbeta side chain chemical shifts observed in 3D experiments. Tertiary contacts found in 2D DARR spectra of the selectively (13)C enriched sample provided further confirmatory evidence for the assignments. The assignments include the region of the Histidine ligands binding the Bacteriochlorophyll chromophore. The chemical shifts of Calpha and Cbeta resonances indicated the presence of typical alpha-helical secondary structure, consistent with previous studies.  相似文献   

10.
The substrate-like inhibition of serine proteinases by avian ovomucoid domains has provided an excellent model for protein inhibitor-proteinase interactions of the standard type. 1H,15N and 13C NMR studies have been undertaken on complexes formed between turkey ovomucoid third domain (OMTKY3)2 and chymotrypsin A(alpha) (Ctr) in order to characterize structural changes occurring in the Ctr binding site of OMTKY3. 15N and 13C were incorporated uniformly into OMTKY3, allowing backbone resonances to be assigned for OMTKY3 in both its free and complex states. Chemical shift perturbation mapping indicates that the two regions, K13-P22 and N33-A40, are the primary sites in OMTKY3 involved in Ctr binding, in full agreement with the 12 consensus proteinase-contact residues of OMTKY3 defined previously on the basis of X-ray crystallographic and mutational analysis. Smaller chemical shift perturbations in selected other regions may result from minor structural changes on binding. Through-bond 15N-13C correlations between P1-13C' and P1'-15N in two-dimensional H(N)CO and HN(CO) NMR spectra of selectively labeled OMTKY3 complexed with Ctr indicate that the scissile peptide bond between L18 and E19 of the inhibitor is intact in the complex. The chemical shifts of the reactive site peptide bond indicate that it is predominantly trigonal, although the data are not inconsistent with a slight perturbation of the hybridization of the peptide bond toward the first tetrahedral state along the reaction coordinate.  相似文献   

11.
The cytosolic concentration, Mr, and isoforms of cyclophilin (CyP), a specific cytosolic binding protein for cyclosporin A (CsA), were determined in normal and neoplastic human tissues as well as tissues from species of diverse phylogeny. CyP was present in all tissues examined; however, concentrations varied significantly among different tissue types. The CyP concentration was highest in lymphoblasts from a patient with T cell acute lymphocytic leukemia (1.15 micrograms/mg protein) and Hodgkin's and non-Hodgkin's lymphomas. CyP concentration in colon adenocarcinomas was twofold to threefold greater than that found in adjacent normal tissue. CyP from all normal and neoplastic human tissues examined had an apparent Mr of 17,000 determined by gel filtration HPLC. Major (pI 8.6 to 8.7) and minor (pI 6.7 to 6.9) CyP isoforms were identified in all human and murine tissue extracts by column sucrose gradient isoelectrofocusing; however, the ratio of the major to minor isoform varied widely. Among other species examined, significant concentrations of CyP were detected in cytosol extracts from sponges (Microciona prolifera), yeast (Saccharomyces cerevisiae), mushrooms, the giant cockroach (Blaberus discoidalis), and a trematode (Schistosoma mansoni). By contrast, CyP was not detectable in extracts of Escherichia coli. A twofold to threefold elevation in the CyP content of murine splenocytes was detected 72 hr after Con A stimulation. A survey of a variety of natural products, synthetic compounds, and immunoregulating agents has failed thus far to identify compounds capable of competing with CsA for binding to CyP. The broad tissue and phylogenetic distribution of CyP, its highly conserved structure, and its increased content after mitogenic stimulation suggest a fundamental role in cellular metabolism.  相似文献   

12.
Accurate 1H, 15N, and 13C chemical shift assignments were determined for staphylococcal nuclease H124L (in the absence of inhibitor or activator ion). Backbone 1H and 15N assignments, obtained by analysis of three-dimensional 1H-15N HMQC-NOESY data [Wang, J., Mooberry, E.S., Walkenhorst, W.F., & Markley, J. L. (1992) Biochemistry (preceding paper in this issue)], were refined and extended by a combination of homo- and heteronuclear two-dimensional NMR experiments. Staphylococcal nuclease H124L samples used in the homonuclear 1H NMR studies were at natural isotopic abundance or labeled randomly with 2H (to an isotope level of 50%); nuclease H124L samples used for heteronuclear NMR experiments were labeled uniformly with 15N (to an isotope level greater than 95%) or uniformly with 13C (to an isotope level of 26%). Additional nuclease H124L samples were labeled selectively by incorporating single 15N- or 13C-labeled amino acids. The chemical shifts of uncomplexed enzyme were then compared with those determined previously for the nuclease H124L.pdTp.Ca2+ ternary complex [Wang, J., LeMaster, D. M., & Markley, J.L. (1990) Biochemistry 29, 88-101; Wang, J., Hinck, A.P., Loh, S. N., & Markley, J.L. (1990) Biochemistry 29, 102-113; Wang, J., Hinck, A.P., Loh, S.N., & Markley, J.L. (1990) Biochemistry 29, 4242-4253]. The results reveal that the binding of pdTp and Ca2+ induces large shifts in the resonances of several amino acid segments. These chemical shift changes are interpreted in terms of changes in backbone torsion angles that accompany the binding of pdTp and Ca2+; changes at the binding site appear to be transmitted to other regions of the molecule through networks of hydrogen bonds.  相似文献   

13.
14.
Hepatitis C virus (HCV) is a major causative agent of hepatocellular carcinoma. We recently discovered that the immunosuppressant cyclosporin A (CsA) and its analogue lacking immunosuppressive function, NIM811, strongly suppress the replication of HCV in cell culture. Inhibition of a cellular replication cofactor, cyclophilin (CyP) B, is critical for its anti-HCV effects. Here, we explored the potential use of CyP inhibitors for HCV treatment by analyzing the HCV replicon system. Treatment with CsA and NIM811 for 7 days reduced HCV RNA levels by 2-3 logs, and treatment for 3 weeks reduced HCV RNA to undetectable levels. NIM811 exerted higher anti-HCV activity than CsA at lower concentrations. Both CyP inhibitors rapidly reduced HCV RNA levels even further in combination with IFNalpha without modifying the IFNalpha signal transduction pathway. In conclusion, CyP inhibitors may provide a novel strategy for anti-HCV treatment.  相似文献   

15.
The assignments of individual magnetic resonances of backbone nuclei of a larger protein, ribonuclease H from Escherichia coli, which consists of 155 amino acid residues and has a molecular mass of 17.6 kDa are presented. To remove the problem of degenerate chemical shifts, which is inevitable in proteins of this size, three-dimensional NMR was applied. The strategy for the sequential assignment was, first, resonance peaks of amides were classified into 15 amino acid types by 1H-15N HMQC experiments with samples in which specific amino acids were labeled with 15N. Second, the amide 1H-15N peaks were connected along the amino acid sequence by tracing intraresidue and sequential NOE cross peaks. In order to obtain unambiguous NOE connectivities, four types of heteronuclear 3D NMR techniques, 1H-15N-1H 3D NOESY-HMQC, 1H-15N-1H 3D TOCSY-HMQC, 13C-1H-1H 3D HMQC-NOESY, and 13C-1H-1H 3D HMQC-TOCSY, were applied to proteins uniformly labeled either with 15N or with 13C. This method gave a systematic way to assign backbone nuclei (N, NH, C alpha H, and C alpha) of larger proteins. Results of the sequential assignments and identification of secondary structure elements that were revealed by NOE cross peaks among backbone protons are reported.  相似文献   

16.
The crystal structure of Escherichia coli adenylate kinase (AKe) revealed three main components: a CORE domain, composed of a five-stranded parallel beta-sheet surrounded by alpha-helices, and two peripheral domains involved in covering the ATP in the active site (LID) and binding of the AMP (NMPbind). We initiated a long-term NMR study aiming to characterize the solution structure, binding mechanism and internal dynamics of the various domains. Using single (15N) and double-labeled (13C and 15N) samples and double- and triple-resonance NMR experiments we assigned 97% of the 1H, 13C and 15N backbone resonances, and proton and 13Cbeta resonances for more than 40% of the side chains in the free protein. Analysis of a 15N-labeled enzyme in complex with the bi-substrate analogue [P1,P5-bis(5'-adenosine)-pentaphosphate] (Ap5A) resulted in the assignment of 90% of the backbone 1H and 15N resonances and 42% of the side chain resonances. Based on short-range NOEs and 1H and 13C secondary chemical shifts, we identified the elements of secondary structure and the topology of the beta-strands in the unliganded form. The alpha-helices and the beta-strands of the parallel beta-sheet in solution have the same limits (+/- 1 residue) as those observed in the crystal. The first helix (alpha1) appears to have a frayed N-terminal side. Significant differences relative to the crystal were noticed in the LID domain, which in solution exhibits four antiparallel beta-strands. The secondary structure of the nucleoside-bound form, as deduced from intramolecular NOEs and the 1Halpha chemical shifts, is similar to that of the free enzyme. The largest chemical shift differences allowed us to map the regions of protein-ligand contacts. 1H/2H exchange experiments performed on free and Ap5A-bound enzymes showed a general decrease of the structural flexibility in the complex which is accompanied by a local increased flexibility on the N-side of the parallel beta-sheet.  相似文献   

17.
NMR data (1H and 13C chemical shifts, NOEs) on [[U-13C]cyclosporin A bound to cyclophilin B were compared to previously published data on the [U-13C]CsA/CyPA complex [Fesik et al., (1991) Biochemistry 30, 6574–6583]. Despite only 64% sequence identity between CyPA and CyPB, the conformation and active site environment of CsA when bound to CyPA and CyPB are nearly identical as judged by the similarity of the NMR data.  相似文献   

18.
Cyclosporin A (CsA) is a potent anti-malarial compound in vitro and in vivo in mice though better known for its immunosuppressive properties in humans. Crystal structures of wild-type and a double mutant Plasmodium falciparum cyclophilin (PfCyP19 and mPfCyP19) complexed with CsA have been determined using diffraction terms to a resolution of 2.1 A (1 A=0.1 nm). The wild-type has a single PfCyP19/CsA complex per asymmetric unit in space group P1 and refined to an R-work of 0.15 and R-free of 0.19. An altered cyclophilin, with two accidental mutations, Phe120 to Leu in the CsA binding pocket and Leu171 to Trp at the C terminus, presents two complexes per asymmetric unit in the orthorhombic space group P2(1)2(1)2. This refined to an R-work of 0.18 and R-free 0.21. The mutations were identified from the crystallographic analysis and the C-terminal alteration helps to explain the different crystal forms obtained. PfCyP19 shares approximately 61 % sequence identity with human cyclophilin A (hCyPA) and the structures are similar, consisting of an eight-stranded antiparallel beta-barrel core capped by two alpha-helices. The fold creates a hydrophobic active-site, the floor of which is formed by side-chains of residues from four antiparallel beta-strands and the walls from loops and turns. We identified C-H.O hydrogen bonds between the drug and protein that may be an important feature of cyclophilins and suggest a general mode of interaction between hydrophobic molecules. Comparisons with cyclophilin-dipeptide complexes suggests that a specific C-H.O hydrogen bonding interaction may contribute to ligand binding. Residues Ser106, His99 and Asp130, located close to the active site and conserved in most cyclophilins, are arranged in a manner reminiscent of a serine protease catalytic triad. A Ser106Ala mutant was engineered to test the hypothesis that this triad contributes to CyP function. Mutant and wild-type enzymes were found to have similar catalytic properties.  相似文献   

19.
As a necessary first step in the use of heteronuclear correlated spectra to obtain high resolution solution structures of the protein, assignment of the 15N NMR spectra of reduced and oxidized Escherichia coli thioredoxin (Mr 12,000) uniformly labeled with 15N has been performed. The 15N chemical shifts of backbone amide nitrogen atoms have been determined for both oxidation states of thioredoxin using 15N-1H correlated and two-dimensional heteronuclear single-quantum coherence (HSQC) TOCSY and NOESY spectra. The backbone assignments are complete, except for the proline imide nitrogen resonances and include Gly33, whose amide proton resonance is difficult to observe in homonuclear 1H spectra. The differences in the 15N chemical shift between oxidized and reduced thioredoxin, which occur mainly in the vicinity of the two active site cysteines, including residues distant in the amino acid sequence which form a hydrophobic surface close to the active site, are consistent with the differences observed for proton chemical shifts in earlier work on thioredoxin.  相似文献   

20.
Heteronuclear NMR methods have been used to probe the conformation of four complexes of Escherichia coli dihydrofolate reductase (DHFR) in solution. (1)H(N), (15)N, and (13)C(alpha) resonance assignments have been made for the ternary complex with folate and oxidized NADP(+) cofactor and the ternary complex with folate and a reduced cofactor analog, 5,6-dihydroNADPH. The backbone chemical shifts have been compared with those of the binary complex of DHFR with the substrate analog folate and the binary complex with NADPH (the holoenzyme). Analysis of (1)H(N) and (15)N chemical shifts has led to the identification of marker resonances that report on the active site conformation of the enzyme. Other backbone amide resonances report on the presence of ligands in the pterin binding pocket and in the adenosine and nicotinamide-ribose binding sites of the NADPH cofactor. The chemical shift data indicate that the enzyme populates two dominant structural states in solution, with the active site loops in either the closed or occluded conformations defined by X-ray crystallography; there is no evidence that the open conformation observed in some X-ray structures of E. coli DHFR are populated in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号