首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Living organisms have some common and unique strategies to response to thermal stress. However, the amount of data on thermal stress response of certain organism is still lacking, especially psychrophilic yeast from the extreme habitat. Therefore, it is not known whether psychrophilic yeast shares the common responses of other organisms when exposed to thermal stresses. In this work, the cold shock and heat shock responses in Antarctic psychrophilic yeast Glaciozyma antarctica PI12 which had an optimal growth temperature of 12 °C were determined. The expression levels of 14 thermal stress-related genes were measured using real-time quantitative PCR (qPCR) when the yeast cells were exposed to cold shock (0 °C), mild cold shock (5 °C), and heat shock (22 °C) conditions. The expression profiles of the 14 genes at these three temperatures varied indicating that these genes had their specific roles to ensure the survival of the yeast. Under cold shock condition, the afp4 and fad genes were over-expressed possibly as a way for the G. antarctica PI12 to avoid ice crystallization in the cell and to maintain the membrane fluidity. Under the heat shock condition, hsp70 was significantly up-regulated possibly to ensure the proteins fold properly. Among the six oxidative stress-related genes, MnSOD and prx were up-regulated under cold shock and heat shock, respectively, possibly to reduce the negative effects caused by oxidative stress. Interestingly, it was found that the trehalase gene, nth1 that plays a role in degrading excess trehalose, was down-regulated under the heat shock condition possibly as an alternative way to accumulate trehalose in the cells to protecting them from being damaged.  相似文献   

3.
4.
5.
6.
Heat shock response of the archaebacterium Methanococcus voltae.   总被引:1,自引:1,他引:0       下载免费PDF全文
The general properties of the heat shock response of the archaebacterium Methanococcus voltae were characterized. The induction of 11 heat shock proteins, with apparent molecular weights ranging from 18,000 to 90,000, occurred optimally at 40 to 50 degrees C. Some of the heat shock proteins were preferentially enriched in either the soluble (cytoplasm) or particulate (membrane) fraction. Alternative stresses (ethanol, hydrogen peroxide, NaCl) stimulated the synthesis of subsets of the heat shock proteins as well as unique proteins. Western blot (immunoblot) analysis, in which antisera to Escherichia coli heat shock proteins (DnaK and GroEL) were used, did not detect any immunologically cross-reactive proteins. In addition, Southern blot analysis did not reveal any homology between M. voltae and four highly conserved heat shock genes, mopB and dnaK from E. coli and hsp70 genes from Drosophila species and Saccharomyces cerevisiae.  相似文献   

7.
The heat shock response   总被引:114,自引:0,他引:114  
The response of cells to a heat shock or other stresses is the activation of a small number of genes which were previously inactive or transcribed at low levels. This response has been observed in a wide variety of bacterial, plant, and animal species. Evidence is accumulating that at least some of the proteins found in diverse species are similar, indicating a conservation of the response and the proteins in evolution. In a number of organisms a strong positive correlation has been found between the presence of heat shock proteins and ability of the organism to withstand thermal stress. This review attempts to assess the available data concerning the homology of proteins in different species, the localization of the proteins in cells, and the relationship between heat shock proteins and thermoresistance.  相似文献   

8.
Stress-induced regulatory networks coordinated with a procaryotic developmental program were revealed by two-dimensional gel analyses of global gene expression. Four developmental stages were identified by their distinctive protein synthesis patterns using principal component analysis. Statistical analyses focused on five stress stimulons (induced by heat, cold, salt, ethanol, or antibiotic shock) and their synthesis during development. Unlike other bacteria, for which various stresses induce expression of similar sets of protein spots, in Streptomyces coelicolor heat, salt, and ethanol stimulons were composed of independent sets of proteins. This suggested independent control by different physiological stress signals and their corresponding regulatory systems. These stress proteins were also under developmental control. Cluster analysis of stress protein synthesis profiles identified 10 different developmental patterns or "synexpression groups." Proteins induced by cold, heat, or salt shock were enriched in three developmental synexpression groups. In addition, certain proteins belonging to the heat and salt shock stimulons were coregulated during development. Thus, stress regulatory systems controlling these stimulons were implicated as integral parts of the developmental program. This correlation suggested that thermal shock and salt shock stress response regulatory systems either allow the cell to adapt to stresses associated with development or directly control the developmental program.  相似文献   

9.
Partial clones for two members of Leptinotarsa decemlineata inducible 70kDa heat shock protein family (LdHSP70A and B) were developed using RT-PCR. LdHSP70A, but not LdHSP70B, was upregulated during adult diapause. The ability of L. decemlineata to express these two genes in response to subzero temperatures depended on the thermal history of the beetles. Chilling diapausing beetles increased the rate at which both LdHSP70A and B were expressed following a cold shock at -10 degrees C. Following cold shock at -10 degrees C, LdHSP70B expression peaked after 3h at 15 degrees C for chilled diapausing individuals, decreasing to near background levels by the sixth hour. In contrast, nonchilled diapausing beetles expressed their highest level of LdHSP70B only after 6h at 15 degrees C. Diapausing beetles exposed to a thermoperiod with a mean temperature of either 0 or -2.5 degrees C expressed significantly higher levels of both LdHSP70A and B than beetles exposed to constant 0 or -2.5 degrees C. These results demonstrate that the expression of LdHSP70A and B is differentially regulated in response to diapause and environmental conditioning.  相似文献   

10.
11.
Differential scanning calorimetry (DSC) and fatty acid analysis were used to determine how cold shocking reduces the thermal stability of Listeria monocytogenes. Additionally, antibiotics that can elicit production of cold or heat shock proteins were used to determine the effect of translation blockage on ribosome thermal stability. Fatty acid profiles showed no significant variations as a result of cold shock, indicating that changes in membrane fatty acids were not responsible for the cold shock-induced reduction in thermal tolerance. Following a 3-h cold shock from 37 to 0 degrees C, the maximum denaturation temperature of the 50S ribosomal subunit and 70S ribosomal particle peak was reduced from 73.4 +/- 0.1 degrees C (mean +/- standard deviation) to 72.1 +/- 0.5 degrees C (P < or = 0.05), indicating that cold shock induced instability in the associated ribosome structure. The maximum denaturation temperature of the 30S ribosomal subunit peak did not show a significant shift in temperature (from 67.5 +/- 0.4 degrees C to 66.8 +/- 0.5 degrees C) as a result of cold shock, suggesting that either 50S subunit or 70S particle sensitivity was responsible for the intact ribosome fragility. Antibiotics that elicited changes in maximum denaturation temperature in ribosomal components also elicited reductions in thermotolerance. Together, these data suggest that ribosomal changes resulting from cold shock may be responsible for the decrease in D value observed when L. monocytogenes is cold shocked.  相似文献   

12.
拟南芥AtJ2和AtJ3基因表达对环境胁迫的响应   总被引:3,自引:0,他引:3  
用PCR的方法获得AtJ2和AtJ3基因的3'非编码区的核甘酸片段作为探针,Northern杂交结果表明:AtJ2和AtJ3基因在植物的根、茎、叶、花蕾、花和长角果中都有表达,并在植物整个生长周期中都有表达,但随着植株的衰老表达量有所下降.不同环境胁迫的实验结果表明:热激使AtJ2和AtJ3基因的表达迅速升高;冷胁迫也能诱导这两个基因表达的明显增加,但需要的时间比热激要长得多,达9 h;水分胁迫能引起AtJ2和AtJ3基因表达量的微弱增加;可盐胁迫对AtJ2和AtJ3基因的表达没有影响.说明AtJ2和AtJ3基因可能参与对除盐胁迫以外多种环境刺激的响应.  相似文献   

13.
14.
15.
Heat shock proteins (HSPs) play important roles in protecting plants against environmental stresses. Furthermore, small heat shock proteins (sHSPs) are the most ubiquitous HSP subgroup with molecular weights ranging from 15 to 42 kDa. In this study, nine sHSP genes (designated as ThsHSP1–9) were cloned from Tamarix hispida. Their expression patterns in response to cold, heat shock, NaCl, PEG and abscisic acid (ABA) treatments were investigated in the roots and leaves of T. hispida by real-time RT-PCR analysis. The results showed that most of the nine ThsHSP genes were expressed at higher levels in roots than in leaves under normal growth condition. All of ThsHSP genes were highly induced under conditions of cold (4 °C) and different heat shocks (36, 40, 44, 48 and 52 °C). Under NaCl stress, all nine ThsHSPs genes were up-regulated at least one stress time-point in both roots and leaves. Under PEG and ABA treatments, the nine ThsHSPs showed various expression patterns, indicating a complex regulation pathway among these genes. This study represents an important basis for the elucidation of ThsHSP gene function and provides essential information that can be used for stress tolerance genetic engineering in future studies.  相似文献   

16.
Adaptation to environmental stresses, such as temperature fluctuation, is essential for the survival of all living organisms. Cellular responses in both prokaryotes and eukaryotes to high temperature include the synthesis of a set of highly conserved proteins known as the heat shock proteins. In contrast to the heat shock response, adaptation to low temperatures has not been as extensively studied. However, a family of cold-inducible proteins is evident in prokaryotes. In addition, most organisms have developed adaptive mechanisms that alter both membrane fluidity and the protein translation machinery at low temperature. This review addresses the different adaptive mechanisms used by a variety of organisms with a focus on the molecular mechanisms of cold adaptation that have recently been identified during the cold shock response in Escherichia coli. BioEssays 20:49–57, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号