共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyaluronan binding by cell surface CD44 总被引:16,自引:0,他引:16
CD44 is the primary cell surface receptor for the extracellular matrix glycosaminoglycan hyaluronan. Here we determined the relative avidities of unlabeled hyaluronan preparations for cell surface CD44 by their ability to block the binding of fluorescein-conjugated hyaluronan to a variety of cells. We show that hyaluronan binding at the cell surface is a complex interplay of multivalent binding events affected by the size of the multivalent hyaluronan ligand, the quantity and density of cell surface CD44, and the activation state of CD44 as determined by cell-specific factors and/or treatment with CD44-specific monoclonal antibody (mAb). Using low M(r) hyaluronan oligomers of defined sizes, we observed monovalent binding between 6 and 18 sugars. At approximately 20 to approximately 38 sugars, there was an increase in avidity (approximately 3x), suggesting that divalent binding was occurring. In the presence of the inducing mAb IRAWB14, monovalent binding avidity was similar to that of noninduced CD44, but beginning at approximately 20 residues, there was a dramatic and progressive increase in avidity with increasing oligomer size ( approximately 22 < 26 < 30 < 34 < 38 sugars). Kinetic studies of binding and dissociation of fluorescein-conjugated hyaluronan indicated that inducing mAb treatment had little effect on the binding kinetics, but dissociation from the cell surface was greatly delayed by inducing mAb. 相似文献
2.
Daniel Luxen Gerrit H. Gielen Anke Waha Lukas Isselstein Tim Müller Philipp Koch Jennifer Hammes Albert Becker Matthias Simon Peter Wurst Elmar Endl Torsten Pietsch Marco Gessi Andreas Waha 《Translational oncology》2017,10(1):70-79
Epigenetic silencing by DNA methylation in brain tumors has been reported for many genes, however, their function on pathogenesis needs to be evaluated. We investigated the MTSS1 gene, identified as hypermethylated by differential methylation hybridization (DMH). Fifty-nine glioma tissue samples and seven glioma cell lines were examined for hypermethylation of the MTSS1 promotor, MTSS1 expression levels and gene dosage. GBM cell lines were treated with demethylating agents and interrogated for functional consequences of MTSS1 expression after transient transfection. Hypermethylation was significantly associated with IDH1/2 mutation. Comparative SNP analysis indicates higher incidence of loss of heterozygosity of MTSS1 in anaplastic astrocytomas and secondary glioblastomas as well as hypermethylation of the remaining allele. Reversal of promoter hypermethylation results in an increased MTSS1 expression. Cell motility was significantly inhibited by MTSS1 overexpression without influencing cell growth or apoptosis. Immunofluorescence analysis of MTSS1 in human astrocytes indicates co-localization with actin filaments. MTSS1 is down-regulated by DNA methylation in glioblastoma cell lines and is part of the G-CIMP phenotype in primary glioma tissues. Our data on normal astrocytes suggest a function of MTSS1 at focal contact structures with an impact on migratory capacity but no influence on apoptosis or cellular proliferation. 相似文献
3.
4.
Ellerbroek SM Wu YI Overall CM Stack MS 《The Journal of biological chemistry》2001,276(27):24833-24842
Type I collagen stimulation of pro-matrix metalloproteinase (pro-MMP)-2 activation by ovarian cancer cells involves beta(1) integrin receptor clustering; however, the specific cellular and biochemical events that accompany MMP processing are not well characterized. Collagenolysis is not required for stimulation of pro-MMP-2 activation, and denatured collagen does not elicit an MMP-2 activation response. Similarly, DOV13 cells bind to intact collagen utilizing both alpha(2)beta(1) and alpha(3)beta(1) integrins but interact poorly with collagenase-treated or thermally denatured collagen. Antibody-induced clustering of alpha(3)beta(1) strongly promotes activation of pro-MMP-2, whereas alpha(2)beta(1) integrin clustering has only marginal effects. Membrane-type 1 (MT1)-MMP is present on the DOV13 cell surface as both an active 55-kDa TIMP-2-binding species and a stable catalytically inactive 43-kDa form. Integrin clustering stimulates cell surface expression of MT1-MMP and co-localization of the proteinase to aggregated integrin complexes. Furthermore, cell surface proteolysis of the 55-kDa MT1-MMP species occurs in the absence of active MMP-2, suggesting MT1-MMP autolysis. Cellular invasion of type I collagen matrices requires collagenase activity, is blocked by tissue inhibitor of metalloproteinases-2 (TIMP-2) and collagenase-resistant collagen, is unaffected by TIMP-1, and is accompanied by pro-MMP-2 activation. Together, these data indicate that integrin stimulation of MT1-MMP activity is a rate-limiting step for type I collagen invasion and provide a mechanism by which this activity can be down-regulated following collagen clearance. 相似文献
5.
《Biochimica et Biophysica Acta (BBA)/General Subjects》1986,882(1):1-5
The binding of collagens and fragments of type I collagen to heparin was studied by gel electrophoresis and affinity chromatography. Samples bound in 150 mM NaCl/10 mM Hepes (pH6.5) were eluted with 2 M NaCl, 6 M urea, or a linear gradient of 0.15–1.0 M NaCl. The triple-helical conformation was shown to be essential for binding. The vertebrate collagenase-generated C-terminal fragment, TCB was shown to have greater binding affinity for heparin than the N-terminal TCA fragment. Both type II collagen and the NC1 domain of type IV collagen bound to heparin, whereas pepsin-solubilized tetrameric type IV failed to bind. 相似文献
6.
We have previously shown that the expression of perlecan, a heparan sulfate proteoglycan localized on the myoblast surface, is down-regulated during terminal differentiation of skeletal muscle myoblasts (Larraín et al. [1997] Exp. Cell Res. 234:405-412). In this study, we have evaluated the biochemical characteristics of perlecan, its association with the myoblast surface, and its involvement in C(2)C(12) myoblast adhesion to different substrates. Perlecan associated with myoblasts was solubilized by Triton X-100, whereas heparin, high salt, and RGD peptides were unable to solubilize perlecan. Pre-incubation of myoblasts with [(35)S]-Na(2)SO(4), followed by solubilization with Triton X-100 and immunoprecipitation with antibodies against murine perlecan, demonstrated that this proteoglycan present on the cell surface has a heterogeneous size profile with a K(av) value of 0.45, determined by Sepharose CL-4B chromatography. Myoblasts were found to adhere with decreasing affinities to collagen type IV, type I, laminin, fibronectin, perlecan, and matrigel. We found that cell adhesion to collagen type IV was inhibited by blocking this substrate with exogenous perlecan prior to cell plating, whereas no effect was observed for laminin. Furthermore, adhesion of myoblasts to collagen type IV was inhibited by the perlecan core protein obtained by treatment of perlecan with heparitinase, as well as by pre-incubation of the cells with antibodies against murine perlecan. These data support the idea that skeletal muscle cells interact with collagen type IV through the perlecan core protein present on the surface of undifferentiated myoblasts. 相似文献
7.
Reigle KL Di Lullo G Turner KR Last JA Chervoneva I Birk DE Funderburgh JL Elrod E Germann MW Surber C Sanderson RD San Antonio JD 《Journal of cellular biochemistry》2008,104(5):1684-1698
Non-enzymatic glycation of type I collagen occurs in aging and diabetes, and may affect collagen solubility, charge, polymerization, and intermolecular interactions. Proteoglycans(1) (PGs) bind type I collagen and are proposed to regulate fibril assembly, function, and cell-collagen interactions. Moreover, on the collagen fibril a keratan sulfate (KS) PG binding region overlaps with preferred collagen glycation sites. Thus, we examined the effect of collagen modified by simple glycation on PG-collagen interactions. By affinity coelectrophoresis (ACE), we found reduced affinities of heparin and KSPGs for glycated but not normal collagen, whereas the dermatan sulfate (DS)PGs decorin and biglycan bound similarly to both, and that the affinity of heparin for normal collagen decreased with increasing pH. Circular dichroism (CD) spectroscopy revealed normal and glycated collagens to assume triple helical conformations, but heparin addition caused precipitation and decreased triple helical content-effects that were more marked with glycated collagen. A spectrophotometric assay revealed slower polymerization of glycated collagen. However, ultrastructural analyses indicated that fibrils assembled from normal and glycated collagen exhibited normal periodicity, and had similar structures and comparable diameter distributions. B-cells expressing the cell surface heparan sulfate PG syndecan-1 adhered well to normal but not glycated collagen, and endothelial cell migration was delayed on glycated collagen. We speculate that glycation diminishes the electrostatic interactions between type I collagen and PGs, and may interfere with core protein-collagen associations for KSPGs but not DSPGs. Therefore in vivo, collagen glycation may weaken PG-collagen interactions, thereby disrupting matrix integrity and cell-collagen interactions, adhesion, and migration. 相似文献
8.
In this study, the affinity of two different cell types toward a specific cell binding sequence (Gly-Phe-Hyp-Gly-Glu-Arg or GFOGER) derived from type I collagen using peptide template (PT)-assembled collagen peptides of different triple helicity as a model for natural collagen is examined. A series of biophysical studies, including melting curve analysis and circular dichroism spectroscopy, demonstrated the presence of stable triple-helical conformation in the PT-assembled (GPO)3-GFOGER-(GPO)3, (GPO)-GFOGER-(GPO), and (Pro-Hyp-Gly)5 solution. Conversely, non-templated peptides, except (GPO)3-GFOGER-(GPO)3, showed no evidence of assembly into triple-helical structure. Biological assays, including cell adhesion, competitive inhibition, and immunofluorescence staining, revealed a correlation of triple-helical conformation with the cellular recognition of GFOGER in an integrin-specific manner. The triple helix was shown to be important, but not crucial for cell adhesion to native collagen. Hep3B and L929 cells displayed significant differences in the recognition of GFOGER, mainly because of the differences in their expression of specific integrin receptors for collagen. For example, PT-assembled (GPO)3-GFOGER-(GPO)3 was shown to perform comparably to collagen for L929, but not Hep3B, cell adhesion. The result showed that a specific cell binding motif may not fully mimic the extracellular matrix (ECM) microenvironment, suggesting the need to use a combination of two or more cell binding sequences for targeting a wide range of integrin receptors expressed by a specific cell type to better mimic the ECM. 相似文献
9.
Double strand break repair by homologous recombination is regulated by cell cycle-independent signaling via ATM in human glioma cells 总被引:8,自引:0,他引:8
Golding SE Rosenberg E Khalil A McEwen A Holmes M Neill S Povirk LF Valerie K 《The Journal of biological chemistry》2004,279(15):15402-15410
To investigate double strand break (DSB) repair and signaling in human glioma cells, we stably transfected human U87 (ATM(+), p53(+)) glioma cells with a plasmid having a single I-SceI site within an inactive green fluorescent protein (GFP) expression cassette, allowing for the detection of homologous recombination repair (HRR) by GFP expression. HRR and nonhomologous end joining (NHEJ) were also determined by PCR. DSB repair was first detected at 12 h postinfection with an adenovirus expressing I-SceI with repair reaching plateau levels between 24 and 48 h. Within this time frame, NHEJ predominated over HRR in the range of 3-50-fold. To assess the involvement of ATM in DSB repair, we first examined whether ATM was associated with the DSB. Chromatin immunoprecipitation showed that ATM was present at the site of the DSB as early as 18 h postinfection. In cells treated with caffeine, an inhibitor of ATM, HRR was reduced, whereas NHEJ was not. In support of this finding, GFP flow cytometry demonstrated that caffeine reduced HRR by 90% under conditions when ATM kinase activity was inhibited. Dominant-negative ATM expressed from adenovirus inhibited HRR by 45%, also having little to no effect on NHEJ. Furthermore, HRR was inhibited by caffeine in serum-starved cells arrested in G(0)/G(1), suggesting that ATM is also important for HRR outside of the S and G(2) cell cycle phases. Altogether, these results demonstrate that HRR contributes substantially to DSB repair in human glioma cells, and, importantly, ATM plays a critical role in regulating HRR but not NHEJ throughout the cell cycle. 相似文献
10.
Andersen MN Olesen SP Rasmussen HB 《American journal of physiology. Cell physiology》2011,300(4):C814-C824
The potassium channel K(V)7.1 is expressed in the heart where it contributes to the repolarization of the cardiac action potential. In addition, K(V)7.1 is expressed in epithelial tissues where it plays a role in salt and water transport. Mutations in the kcnq1 gene can lead to long QT syndrome and deafness, and several mutations have been described as trafficking mutations. To learn more about the basic mechanisms that regulate K(V)7.1 surface expression, we have investigated the trafficking of K(V)7.1 during the polarization process of the epithelial cell line Madin-Darby Canine Kidney (MDCK) using a modified version of the classical calcium switch. We discovered that K(V)7.1 exhibits a very dynamic localization pattern during the calcium switch. When MDCK cells are kept in low calcium medium, K(V)7.1 is mainly observed at the plasma membrane. During the first hours of the switch, K(V)7.1 is removed from the plasma membrane and an intracellular accumulation in the endoplasmic reticulum (ER) is observed. The channel is retained in the ER until the establishment of the lateral membranes at which point K(V)7.1 is released from the ER and moves to the plasma membrane. Our data furthermore suggest that while the removal of K(V)7.1 from the cell surface and its accumulation in the ER could involve activation of protein kinase C, the subsequent release of K(V)7.1 from the ER depends on phosphoinositide 3-kinase (PI3K) activation. In conclusion, our results demonstrate that K(V)7.1 surface expression is regulated by signaling mechanisms involved in epithelial cell polarization in particular signaling cascades involving protein kinase C and PI3K. 相似文献
11.
12.
Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen 总被引:13,自引:0,他引:13
Bone marrow contains multipotent cells that differentiate into fibroblasts, adipocytes, and osteoblasts. Recently we found that type I collagen matrix induced the osteoblastic differentiation of bone marrow cells. Three weeks after cells were cultured with type I collagen, they formed mineralized tissues. In this study, we investigated the expression of osteoblast-related genes (alkaline phosphatase, osteocalcin, bone sialoprotein, osteopontin, and cbfa-1) during the osteoblastic differentiation. The expression of alkaline phosphatase and osteopontin genes increased time-dependently during the osteoblastic differentiation. Osteocalcin and bone sialoprotein genes were expressed in cells that formed mineralized tissues, and both were expressed only after cells reached the mineralized tissue-formation stage. On the other hand, the cbfa-1 gene was expressed from the early differentiation stage. The Asp-Gly-Glu-Ala (DGEA) amino acid domain of type I collagen interacts with the alpha2beta1 integrin receptor on the cell membrane and mediates extracellular signals into cells. When the collagen-integrin interaction was interrupted by the addition of DGEA peptide to the culture, the expression of osteoblastic phenotypes of bone marrow cells was inhibited. These findings imply that the collagen-alpha2beta1 integrin interaction is an important signal for the osteoblastic differentiation of bone marrow cells. 相似文献
13.
14.
15.
16.
Heng BC Gribbon PM Day AJ Hardingham TE 《The Journal of biological chemistry》2008,283(47):32294-32301
The physiological functions of hyaluronan (HA) in the extracellular matrix of vertebrate tissues involve a range of specific protein interactions. In this study, the interaction of HA with the Link module from TSG-6 (Link_TSG6) and G1 domain of aggrecan (G1), were investigated by a biophysical analysis of translational diffusion in dilute solution using confocal fluorescence recovery after photobleaching (confocal FRAP). Both Link_TSG6 and G1 were shown to bind to polymeric HA and these interactions could be competed with HA(8) and HA(10) oligosaccharides, respectively. Equilibrium experiments showed that the binding affinity of Link_TSG6 to HA was maximal at pH 6.0, and reduced dramatically above and below this pH. In contrast, G1 had maximum binding at pH 7.0-8.0 and moderate to strong binding affinity over a much broader pH range (5.5-8.0). The K(D) determined for Link_TSG6 binding to HA showed a 100-fold increase in binding affinity between pH 7.4 and 6.0, whereas G1 showed a 75-fold decrease in binding affinity over the same pH range. The sharp difference observed in their pH binding suggests that pH controls the physiological function of TSG-6, with a low affinity for HA at neutral pH, but with increased affinity as the pH falls below pH 7. TSG-6 and aggrecan interact with HA through structurally homologous domains and the difference in pH-dependent binding can be understood in terms of differences in the presence and topographical distribution of key regulatory amino acids in Link_TSG6 and in the related tandem Link domains in aggrecan G1. 相似文献
17.
During peripheral nerve development, Schwann cells synthesize collagen type V molecules that contain alpha4(V) chains. This collagen subunit possesses an N-terminal domain (NTD) that contains a unique high affinity heparin binding site. The alpha4(V)-NTD is adhesive for Schwann cells and sensory neurons and is an excellent substrate for Schwann cell and axonal migration. Here we show that the alpha4(V)-NTD is released constitutively by Schwann cells both in culture and in vivo. In cultures of neonatal rat Schwann cells, alpha4(V)-NTD release is increased significantly by ascorbate treatment, which facilitates collagen post-translational modification and collagen trimer assembly. In peripheral nerve tissue, the alpha4(V)-NTD is localized to the region of the outer Schwann cell membrane and associated extracellular matrix. The released alpha4(V)-NTD binds to the cell surface and extracellular matrix heparan sulfate proteoglycans of Schwann cells. Pull-down assays and immunofluorescent staining showed that the major alpha4(V)-NTD-binding proteins are glypican-1 and perlecan. alpha4(V)-NTD binding occurs via a mechanism that requires the high affinity heparin binding site and that is blocked by soluble heparin, demonstrating that binding to proteoglycans is mediated by their heparan sulfate chains. 相似文献
18.
M M Waye R Robinson A G Orfanides J E Aubin 《Biochemical and biophysical research communications》1989,162(3):1446-1452
Four clonal cell lines subcloned from a clonal population of fetal rat calvaria cells show a loss of type I collagen synthesis. Northern blot analysis showed that the level of alpha 1(I) collagen mRNA expression in each of the clonal populations parallels the level of collagen protein expression in each of these cell lines. The methylation pattern of the collagen gene in these clonal cell lines was determined using the restriction endonucleases MspI and HpaII. It was found that the loss in collagen type I expression correlated positively with the degree of methylation of alpha 1(I) procollagen genes, indicating that methylation of CpG may be an important mechanism of collagen gene regulation. 相似文献
19.
Philippe Monget Claudine Pisselet Danielle Monniaux 《Journal of cellular physiology》1998,177(1):13-25
In vivo, in the sheep ovary, the expression of insulin-like growth factor binding protein (IGFBP)-2 and particularly IGFBP-5 has been shown to increase dramatically in apoptotic granulosa cells from atretic follicles. The aim of this work was to study the relationship between apoptosis induced by serum starvation in vitro and expression of IGFBP-2 and -5 by ovine granulosa cells. For this purpose, granulosa cells from follicles 1–3 mm in diameter were cultured in the presence of serum for 2 days, then cultured in the presence or absence of serum for 24, 48, or 72 hr. At the end of the culture, cells were counted, cell viability was assessed by studying DNA fragmentation, and IGFBPs expression was studied by quantitative autoradiography, Western-ligand blotting, immunoblotting, and quantitative in situ hybridization. In vitro, IGFBP-2 and particularly IGFBP-5 were the main IGFBPs secreted by ovine granulosa cells. Serum starvation provoked (i) apoptosis of granulosa cells within 48 hr, (ii) a marked decrease in cell density, and (iii) a marked increase in the amount of IGFBP-5 associated with cell membranes and with the walls of culture wells, but no change in culture medium. The increase in the amount of cell- and wall-associated IGFBP-5 after serum starvation was essentially due to the consecutive decrease in cell density rather than to an increase in cell apoptosis. Indeed, irrespective of the presence or absence of serum, the amount of IGFBP-5 associated to cell membranes was inversely correlated to cell density. In contrast, the amount of IGFBP-5 present in culture medium was positively correlated to cell density. Furthermore, expression of IGFBP-5 mRNA was shown to increase with both cell density and cell death. Indeed, the expression of IGFBP-5 mRNA dramatically increased with cell density, irrespective of the presence or absence of serum, but at a similar cell density, expression was higher in serum-free than in serum conditions. Overall, these results indicate that, in vitro, the localization of IGFBP-5 on ovine granulosa cell membranes and in culture medium, respectively, was mainly dependent on cell density, whereas expression of IGFBP-5 mRNA was related to both cell density and cell death. These data suggest that IGFBP-5 is involved in both growth arrest and apoptosis of granulosa cells in the sheep. J. Cell. Physiol. 177:13–25, 1998. © 1998 Wiley-Liss, Inc. 相似文献
20.
A cell surface receptor complex for collagen type I recognizes the Arg- Gly-Asp sequence 总被引:17,自引:13,他引:17 下载免费PDF全文
To isolate collagen-binding cell surface proteins, detergent extracts of surface-iodinated MG-63 human osteosarcoma cells were chromatographed on affinity matrices of either type I collagen-Sepharose or Sepharose carrying a collagen-like triple-helical peptide. The peptide was designed to be triple helical and to contain the sequence Arg-Gly-Asp, which has been implicated as the cell attachment site of fibronectin, vitronectin, fibrinogen, and von Willebrand factor, and is also present in type I collagen. Three radioactive polypeptides having apparent molecular masses of 250 kD, 70 kD, and 30 kD were distinguishable in that they showed affinity toward the collagen and collagen-like peptide affinity columns, and could be specifically eluted from these columns with a solution of an Arg-Gly-Asp-containing peptide, Gly-Arg-Gly-Asp-Thr-Pro. These collagen-binding polypeptides associated with phosphatidylcholine liposomes, and the resulting liposomes bound specifically to type I collagen or the collagen-like peptide but not to fibronectin or vitronectin or heat-denatured collagen. The binding of these liposomes to type I collagen could be inhibited with the peptide Gly-Arg-Gly-Asp-Thr-Pro and with EDTA, but not with a variant peptide Gly-Arg-Gly-Glu-Ser-Pro. We conclude from these data that these three polypeptides are membrane molecules that behave as a cell surface receptor (or receptor complex) for type I collagen by interacting with it through the Arg-Gly-Asp tripeptide adhesion signal. The lack of binding to denatured collagen suggests that the conformation of the Arg-Gly-Asp sequence is important in the recognition of collagen by the receptor complex. 相似文献