首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the indirect immunofluorescent technique, corticotropin releasing factor (CRF)-like immunoreactive nerve fibers and cell bodies were observed to be widely distributed in rat brain. A detailed stereotaxic atlas of CRF-like immunoreactive neurons was prepared. Large numbers of CRF-containing perikarya were observed in the nucleus paraventricularis, with scattered cells in the following nuclei: accumbens, interstitialis stria terminalis, preopticus medialis, supraopticus, periventricularis hypothalami, amygdaloideus centralis, dorsomedialis, substantia grisea centralis, parabrachialis dorsalis and ventralis, tegmenti dorsalis lateralis, vestibularis medialis, tractus solitarius and reticularis lateralis. The most intense staining of CRF-containing fibers was observed in the external lamina of the median eminence. Moderate numbers of CRF-like fibers were observed in the following nuclei: lateralis and medialis septi, tractus diagonalis, interstitialis stria terminalis, preopticus medialis, supraopticus, periventricularis thalami and hypothalami, paraventricularis, anterior ventralis and medialis thalami, rhomboideus, amygdaloideus centralis, habenulae lateralis, dorsomedialis, ventromedialis, substantia grisea centralis, cuneiformis, parabrachialis dorsalis and ventralis, tegmenti dorsalis lateralis, cerebellum, vestibularis medialis, reticularis lateralis, substantia gelatinosa trigemini and lamina I and II of the dorsal horn of the spinal cord. The present findings suggest that a CRF-like peptide may be involved in a neurotransmitter or neuromodulator role, as well as a hypophysiotropic role.  相似文献   

2.
Rothman RB  Vu N  Xu H  Baumann MH  Lu YF 《Peptides》2002,23(12):2177-2180
Previous work from this laboratory demonstrated that intracerebroventricular (i.c.v.) administration of IgG antibodies directed against selected neuropeptides changed the density of opioid receptors, suggesting that neuropeptides in the CNS can perform a regulatory role. To further test this hypothesis, we administered anticorticotropin (CRF) IgG to rats via the i.c.v. route and measured the density of opioid mu and delta receptors and also beta- and alpha2-adrenergic receptors. The results demonstrated that anti-CRF IgG upregulates mu and beta-adrenergic receptors. We conclude that CRF in the cerebrospinal fluid may exert regulatory effects throughout the brain.  相似文献   

3.
Corticotropin releasing factor (CRF) injected intracerebroventricularly to hypophysectomized and sham hypophysectomized rats produced a dose dependent increase in locomotor activity, but in untreated hypophysectomized rats 10× more CRF was needed to produce a significant increase in activity. Concomitant daily supplements of rat growth hormone, thyroxine, and corticosterone to the hypophysectomized rats eliminated locomotor activity differences between the two groups. There was no statistically significant difference in locomotor response to either saline, 0.1 μg CRF, 1.0 μg CRF or 10.0 μg CRF in the group of animals receiving hormonal supplements. These results demonstrate that CRF can produce behavioral activation in rats independently of its effects on releasing hormones from the pituitary gland.  相似文献   

4.
Role of cyclic AMP in corticotropin releasing factor mediated ACTH release   总被引:1,自引:0,他引:1  
D O Sobel 《Peptides》1985,6(4):591-595
To elucidate the role of cAMP in the secretion of ACTH, the effect of (1) three phosphodiesterase inhibitors, (2) forskolin, and (3) 8Bromo-cAMP, on CRF mediated ACTH release was studied in rat pituitary cell culture. The action of glucocorticoids on CRF induced cAMP accumulation and ACTH release was investigated. Isobutyl-methylxanthine (IBMX), caffeine, and forskolin augmented the release of ACTH induced from CRF 1.0 nM by 17%, 39%, and 20%, respectively. Also IBMX and caffeine potentiated CRF 10 nM stimulated ACTH release by 32% and 20%. Doses of forskolin and 8Bromo-cAMP, which alone stimulate large amounts of ACTH release, did not increase the amount of ACTH released from CRF 100 nM stimulated cells. Cortisol (500 nM) and corticosterone (500 nM) inhibited CRF induced intracellular cAMP by 39% and 26% while inhibiting pituitary ACTH release by 40% and 52%. In conclusion, cAMP plays an important role in the mechanism of ACTH secretion and it appears the final intracellular mechanism of CRF stimulated ACTH is via cAMP. Also, glucocorticoids exert their inhibitory influence prior to cAMP generation.  相似文献   

5.
目的 检测肠易激综合症(IBS)患者结肠组织中促肾上腺皮质激素释放因子受体(CRFR)1及CRFR2的表达,探讨其与IBS发病的关系,从而为靶向治疗IBS提供依据.方法 分别采集15例腹泻型IBS(D-IBS)患者、15例便秘型IBS(C-IBS)患者和10例正常健康人结肠组织标本,采用Elivision(TM)PLUS/HRP免疫组化染色方法和Western blot测定CRFR1、CRFR2在各组结肠组织中的蛋白表达.结果 实验结果显示,正常对照组CRFR1和CRFR2免疫组化染色以浅黄色为主,分布范围局限,平均光密度值分别为(0.254±0.099)和(0.201±0.030);D-IBS组中CRFR1以深或棕黄色为主,分布范围较为广泛,平均光密度值为(0.384±0.048),显著高于C-IBS组(0.144±0.077)及正常对照组(P〈0.01);C-IBS组中CRFR2染色以深或棕黄色为主,分布范围较为广泛,平均光密度值为(0.322±0.022),显著高于D-IBS组(0.162±0.023)(P〈0.01)及正常对照组(P〈0.05).Western blot结果显示,D-IBS组CRFR1蛋白表达明显高于C-IBS组和正常对照组;C-IBS组CRFR2表达高于D-IBS组和正常对照组.结论 不同亚型IBS患者其CRFR表达的亚型亦不同,提示不同亚型IBS的发生可能与患者结肠组织中CRFR1、CRFR2的表达水平有关.  相似文献   

6.
Specific receptors for corticotropin releasing factor (CRF) were identified in two functionally distinct systems within the brain, the cortex and the limbic system. Autoradiographic mapping of the CRF receptors in the brain revealed high binding density throughout the neocortex and cerebellar cortex, subiculum, lateral septum, olfactory tract, bed nucleus of the stria terminalis, interpeduncular nucleus and superior colliculus. Moderate to low binding was found in the hippocampus, nucleus accumbens, claustrum, nucleus periventricularis thalamus, mammillary bodies, subthalamic nucleus, periaqueductal grey, locus coeruleus and nucleus of the spinal trigeminal tract. As in the anterior pituitary gland, CRF receptors in the brain were shown to be coupled to adenylate cyclase. However, in contrast to the marked decrease in CRF receptors observed after adrenalectomy in the anterior pituitary gland, CRF receptor concentration in the brain and pars intermedia of the pituitary was unchanged. The presence of CRF receptors in areas involved in the control of hypothalamic and autonomic nervous system functions is consistent with the major role of CRF in the integrated response to stress.  相似文献   

7.
Corticotropin releasing factor (CRF) reduces food intake in rats after central administration. In these studies we examined whether the adrenal gland and the vagus were involved in CRF suppression of intake. One hour intake was reduced by a 5 μg (ICV) injection of CRF in sham but not adrenalectomized rats maintained on 0.9% NaCl. In a separate experiment on rats maintained on tap water, the inhibitory effect of CRF (5 μg) lasted at least 4 hours in sham rats whereas adrenalectomized rats did not significantly differ from controls. These experiments suggest that the adrenal gland modulates the feeding response to CRF. As replacement with corticosterone (0.75 mg/kg) in total adrenalectomized rats did not restore responsiveness to 5 or 10 μg of CRF, we next studied whether the adrenal medulla was responsible for the decreased responsiveness to CRF. In rats lacking the adrenal medulla only, food intake was reduced by a 5 μg injection of CRF; in sham rats, intake was significantly reduced by doses as low as 0.1 μg of CRF. An additional experiment examined the effect of gastric vagotomy on the CRF feeding response. Vagotomized rats were as responsive to 5 and 10 μg injections of CRF as sham rats, which suggests that the effect is not dependent on the vagus nerve. These findings indicate that the adrenal gland, primarily the medulla, plays an intermediate role in the reduction of food intake caused by central injections of CRF. This conclusion is consistent with the known effect of CRF on adrenomedullary discharge.  相似文献   

8.
The distribution of corticotropin releasing factor (CRF)-like immunoreactivity in the rat brain has been demonstrated by immunohistochemistry and radioimmunoassay using 4 different antisera. Two antisera were directed against synthetic ovine CRF, two antisera were directed against synthetic rat/human CRF. Immunohistochemistry revealed that there are discrete regions where CRF immunoreactive cell bodies are seen with all 4 antisera (e.g., the paraventricular nucleus, the dorsolateral tegmental nucleus) whereas there are cells observed only with one rat CRF antiserum (e.g., in the cortex) or terminal fields observed only with ovine CRF antisera (e.g., the spinal trigeminal tract, the substantia gelatinosa, the spinal cord). Radioimmunoassay showed different cross reactivity of the antisera with synthetic ovine or rat/human CRF and sauvagine, however, there was no cross reactivity with a variety of other peptides. Tissue values of CRF obtained by RIA of micropunched brain nuclei with the 4 antisera were frequently dissimilar suggesting that different antisera recognize different substances. High performance liquid chromatography and radioimmunoassay of brain tissue samples, revealed that there is more than one form of CRF-like immunoreactivity present. There is indirect evidence that there exists at least one peptide in the rat brain, prominent in the medulla and the spinal cord, which cross reacts with antisera directed to ovine CRF only.  相似文献   

9.
The hypothalamic-pituitary-adrenal (HPA) axis is the major stress response system. Several components of the HPA axis, such as corticotropin-releasing hormone (CRH) and POMC peptides and their receptors are also present in the skin. In earlier studies, we showed that CRH inhibits cellular proliferation of immortalized human keratinocytes. We now examine further the functional activity of the HPA axis in the skin, by characterizing the actions of CRH on normal foreskin keratinocytes. The CRH receptor was detected as CRH-R1 antigen at 47 kDa in the cultured keratinocytes by Western blotting, and immunohistochemistry demonstrated its presence in the epidermal and follicular keratinocytes. CRH is also biologically active in cultured keratinocytes, where it inhibits proliferation and enhances the interferon-gamma-stimulated expression of the hCAM and ICAM-1 adhesion molecules and of the HLA-DR antigen. These effects were concentration-dependent, with maximal activity at CRH 10(-7) M. Thus, in the keratinocyte, the most important cellular component of the epidermis, CRH appears to induce a shift in energy metabolism away from proliferation activity, and toward the enhancement of immunoactivity. Therefore, similar to its central actions, cutaneous CRH may also he involved in the stress response, but at a highly localized level.  相似文献   

10.
Colocalization of substance P (SP), corticotropin releasing factor (CRF), and acetylcholinesterase (AChE) was detected by retrograde tracing and immunocytochemical staining in the nucleus tegmentalis dorsalis lateralis (ntdl) projecting to the medial frontal cortex (MFC), septum, and thalamus of the rat. The histochemical results suggest that SP and CRF coexist within a subpopulation of ntdl cholinergic neurons that project to a number of forebrain regions including the MFC. Behavioral studies of the effects of SP, CRF, and the cholinergic agonist, carbachol, employed microinjections into the MFC of rats. SP and CRF did not elicit any behavioral effects when administered alone. Carbachol (1–5 μg/side) produced a stereotyped motor behavior, consisting of rapid forepaw treading while in an upright posture, resembling “boxing.” SP (1 μg/side) increased carbachol-induced “boxing.” CRF (1–10 ng/side) decreased carbachol-induced “boxing.” One possible functional significance of the coexistence of SP, CRF, and acetylcholinesterase, in neurons projecting to the medial frontal cortex in rats, appears to be a modulatory potentiation of cholinergic response by SP, and a modulatory inhibition of the cholinergic response by CRF.  相似文献   

11.
Levels of hypothalamic corticotropin releasing factor-like immunoreactivity (CRF-LI) were measured by radioimmunuoassay (RIA) over a 24 hour light-dark cycle and found to exhibit two peaks. One peak was detected at 1100 hr and a secondary smaller peak was found at 2000 hr. The trough between the two peaks was detected at 1700 hr which coincided with the peak in plasma corticosterone levels. The results are consistent with a decreased level of hypothalamic CRF-LI at 1700 hr reflecting an increased release of peptide followed successively by the release of ACTH and corticosterone.  相似文献   

12.
Summary For the study of the hypothalamo-hypophysial system of Xenopus laevis tadpoles, hypothalamic lesions were made by means of the electrocoagulation technique. Lesioning of the ventral region of the preoptic nucleus resulted in a decrease of the number of ACTH cells in the pars distalis of the pituitary gland and in a diminution of the PAS-positive reaction of these cells. In addition, regeneration of the neurosecretory cells of the ventral region of the preoptic nucleus observed 6 weeks after lesioning was accompanied by the reappearance of normal PAS-positive ACTH cells in the pars distalis. It is suggested that the neurosecretory cells of the ventral region of the preoptic nucleus of Xenopus laevis tadpoles are related to the ACTH synthesizing cells, probably by producing CRF.Dedicated to Prof. Dr. med. W. Bargmann on the occasion of his 70th birthdayThe authors thank Prof. Dr. J.C. van de Kamer for his interest, Prof. Dr. P.G.W.J. van Oordt for his many helpful comments, and Messrs. H. van Kooten, E. van der Vlist, J.J. van der Vlis and M.C.A. van Pinxteren for preparing the illustrations  相似文献   

13.
Previous corticotropin releasing factor 1 (CRF1) receptor characterization has been performed using radiolabeled agonists, which bind predominantly the receptor-G-protein complex. The pharmacological profile of other receptor states, and their abundance, remain poorly characterized. Here we investigated the affinity states of the CRF1 receptor heterologously expressed in Ltk cells and endogenously expressed in rat cerebellum. In L-CRF1 cell membranes, three agonist affinity states were detected: a very-high affinity receptor-G-protein complex state (eliminated by GTPγS) bound by [125I]sauvagine (43 pM, RG); a high affinity state insensitive to GTPγS bound by [125I]sauvagine (1.4 nM, termed RO); and a low affinity G-protein-uncoupled state detected by sauvagine displacement of [125I]astressin, a labeled antagonist (120 nM, R). The relative abundance of RG:RO:R was 18%:16%:66%. All three states were demonstrated in rat cerebellum with similar relative abundance (15%:16%:69%). The R state bound CRF with low affinity (270–330 nM), displayed a novel rank order of ligand affinity, and represented the majority of the receptor population in both receptor preparations. This study provides a framework to identify CRF1 receptor conformational states in various receptor preparations.  相似文献   

14.
15.
Ovine corticotropin releasing factor was synthesized by the stepwise solid phase method under conditions anticipated to maximize yield. Final yields of fully active hormone were 34% based on peptide which could be removed from the resin and 24% on initial resin substitution.  相似文献   

16.
Wang HD  Wang YP  Hu CF  Qi RB  Yan YX  Lu DX  Li CJ 《生理学报》2001,53(6):465-468
实验对大鼠进行第三脑室和脑腹中隔区插管,用数字体温计测量大鼠的结肠温度,用放射免疫分析法测定脑中隔区精氨酸加压素(arginine vasopressin,AVP)含量,观察脑中隔区AVP在大鼠促肾上腺皮质激素释放激素(corticotrophin releasing hormone,CRH)性发热机制中的作用。结果发现:脑室注射CRH(5.0μg)引起大鼠结肠温度明显升高,同时明显增高脑中隔区AVP的含量。脑腹中隔区注射AVP V1受体拮抗剂本身并不导致大鼠结肠温度明显改变,但能显著增强脑室注射CRH引起的发热反应。而且,腹中隔区注射AVP显著抑制大鼠CRH性发热。结果提示:发热时CRH是引起脑腹中隔区AVP释放的因素之一,脑腹中隔区内源性AVP抑制中枢注射CRH引起的体温升高。  相似文献   

17.
Corticotropin releasing factor (CRF) appears to be critical for the control of important aspects of the behavioral and physiological response to stressors and drugs of abuse. However, the extent to which the different brain CRF neuronal populations are similarly activated after stress and drug administration is not known. We then studied, using double immunohistochemistry for CRF and Fos protein, stress and amphetamine-induced activation of CRF neurons in cortex, central amygdala (CeA), medial parvocellular dorsal, and submagnocellular parvocellular regions of the paraventricular nucleus of the hypothalamus (PVNmpd and PVNsm, respectively) and Barrington nucleus (Bar). Neither exposure to a novel environment (hole-board, HB) nor immobilization (IMO) increased Fos-like immunoreactivity (FLI) in the CeA, but they did to the same extent in cortical regions. In other regions only IMO increased FLI. HB and IMO both failed to activate CRF+ neurons in cortical areas, but after IMO, some neurons expressing FLI in the PVNsm and most of them in the PVNmpd and Bar were CRF+. Amphetamine administration increased FLI in cortical areas and CeA (with some CRF+ neurons expressing FLI), whereas the number of CRF+ neurons increased only in the PVNsm, in contrast to the effects of IMO. The present results indicate that stress and amphetamine elicited a distinct pattern of brain Fos-like protein expression and differentially activated some of the brain CRF neuronal populations, despite similar levels of overall FLI in the case of IMO and amphetamine.  相似文献   

18.
19.
杜继曾  吴雁 《兽类学报》1997,17(3):204-207
用脑室注射神经递质去甲肾上腺素(NE)和RIA法测定下丘脑正中隆起处促肾上腺皮质激素释放激素(CRF)水平,研究NE对高原鼠兔下丘脑CRF分泌的作用。脑室给予不同剂量NE3.75,7.5,15,30μg/100gBW.正中隆起(ME)处CRF含量分别增加到对照组的106.05%,135.28%(P<0.05),138.94%(P<0.01),103.65%,同时,血浆皮质酮浓度也分别增加到对照组的323.35%(P<0.01),323.35%(P<0.001),346.71%,366.47%。肾上腺切除后2天和6天时,下丘脑NE下降到对照的76.32%(P<0.05),76.27%(P<0.01),血浆皮质酮也下降到16.57%(P<0.01),2.05%(P<0.001)。上述结果表明,NE刺激高原鼠兔下丘脑CRF的分泌并激活下丘脑垂体肾上腺皮质轴。肾上腺皮质激素对维持下丘脑NE水平和CRF神经元活动有一定的紧张作用  相似文献   

20.
The hypophysiotropic activities of a synthetic human pancreatic growth hormone releasing factor (hpGRF) with 40 residues was examined in vitro using rat pituitary halves. At concentrations from 10(-10) M to 10(-7) M the peptide stimulated GH release in a dose-dependent manner with the ED50 being 1.2 x 10(-9) M. The concentration of 10(-10) M hpGRF is comparable to the basal hypophyseal portal blood levels of other known hypothalamic hypophysiotropic hormones. However, GH release was enhanced three-fold by concentration as low as 10(-12) M, though no dose-response relationship was observed up to 10(-10) M. Thus, this peptide not only stimulates the release of GH in a dose-dependent manner, but at lower concentrations also maintains elevated GH levels. The release of ACTH, beta-endorphin, LH, and FSH was not affected by hpGRF at any of the concentrations tested. At hpGRF concentrations less than 10(-7) M, the release of TSH and PRL were unaffected. However, at 10(-6) M, TSH release was enhanced about 2.5 fold and prolactin release was elevated slightly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号