首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Niemann-Pick type C disease is a progressive neurological disease with cholesterol storage in liver, and npc1-/- mice share these features and are sterile. We have searched for the cause of sterility and found normal folliculogenesis and progesterone levels but lack of implantation. Multiple drug resistance (MDR) P-glycoproteins are plasma membrane proteins implicated in the movement of drugs and lipids across membranes. Their functions are inhibited by progesterone, which has been shown to alter cellular cholesterol homeostasis and has implicated P-glycoproteins in the movement of cholesterol to the endoplasmic reticulum. We have introduced the mdr1a knockout into the npc1 mutant line. While the neurological disease continues at its usual rate, preventing the females from taking care of their litters, npc1-/-, mdr1a-/- females became fertile. Although the mdr1a P-glycoprotein co-localizes with caveolae, neither caveolin-1 nor npc1 levels were significantly altered in the livers of double homozygotes. The absence of mdr1a was confirmed by immunoblotting, but npc1 deficiency was not associated with consistent changes in cerebellar mdr1a in mdr1a+/+ mice. The results show that a mdr1a mutation is an in vivo suppressor of female sterility in npc1 deficient mice.  相似文献   

2.
Atherogenesis is a long-term process that involves inflammatory response coupled with metabolic dysfunction. Foam cell formation and macrophage inflammatory response are two key events in atherogenesis. Adipocyte enhancer-binding protein 1 (AEBP1) has been shown to impede macrophage cholesterol efflux, promoting foam cell formation, via peroxisome proliferator-activated receptor (PPAR)-γ1 and liver X receptor α (LXRα) downregulation. Moreover, AEBP1 has been shown to promote macrophage inflammatory responsiveness by inducing nuclear factor (NF)-κB activity via IκBα downregulation. Lipopolysaccharide (LPS)-induced suppression of pivotal macrophage cholesterol efflux mediators, leading to foam cell formation, has been shown to be mediated by AEBP1. Herein, we showed that AEBP1-transgenic mice (AEBP1(TG)) with macrophage-specific AEBP1 overexpression exhibit hyperlipidemia and develop atherosclerotic lesions in their proximal aortas. Consistently, ablation of AEBP1 results in significant attenuation of atherosclerosis (males: 3.2-fold, P = 0.001 [en face]), 2.7-fold, P = 0.0004 [aortic roots]; females: 2.1-fold, P = 0.0026 [en face], 1.7-fold, P = 0.0126 [aortic roots]) in the AEBP1(-/-)/low-density lipoprotein receptor (LDLR )(-/-) double-knockout (KO) mice. Bone marrow (BM) transplantation experiments further revealed that LDLR (-/-) mice reconstituted with AEBP1(-/-)/LDLR (-/-) BM cells (LDLR (-/-)/KO-BM chimera) display significant reduction of atherosclerosis lesions (en face: 2.0-fold, P = 0.0268; aortic roots: 1.7-fold, P = 0.05) compared with control mice reconstituted with AEBP1(+/+)/LDLR (-/-) BM cells (LDLR (-/-)/WT-BM chimera). Furthermore, transplantation of AEBP1(TG) BM cells with the normal apolipoprotein E (ApoE) gene into ApoE (-/-) mice (ApoE (-/-)/TG-BM chimera) leads to significant development of atherosclerosis (males: 2.5-fold, P = 0.0001 [en face], 4.7-fold, P = 0.0001 [aortic roots]; females: 1.8-fold, P = 0.0001 [en face], 3.0-fold, P = 0.0001 [aortic roots]) despite the restoration of ApoE expression. Macrophages from ApoE (-/-)/TG-BM chimeric mice express reduced levels of PPARγ1, LXRα, ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) and increased levels of the inflammatory mediators interleukin (IL)-6 and tumor necrosis factor (TNF)-α compared with macrophages of control chimeric mice (ApoE (-/-)/NT-BM ) that received AEBP1 nontransgenic (AEBP1(NT) ) BM cells. Our in vivo experimental data strongly suggest that macrophage AEBP1 plays critical regulatory roles in atherogenesis, and it may serve as a potential therapeutic target for the prevention or treatment of atherosclerosis.  相似文献   

3.
Low density lipoprotein receptor (LDLR) mutations cause familial hypercholesterolemia and early atherosclerosis. ABCA1 facilitates free cholesterol efflux from peripheral tissues. We investigated the effects of LDLR deletion (LDLR(-/-)) on ABCA1 expression. LDLR(-/-) macrophages had reduced basal levels of ABCA1, ABCG1, and cholesterol efflux. A high fat diet increased cholesterol in LDLR(-/-) macrophages but not wild type cells. A liver X receptor (LXR) agonist induced expression of ABCA1, ABCG1, and cholesterol efflux in both LDLR(-/-) and wild type macrophages, whereas expression of LXRalpha or LXRbeta was similar. Interestingly, oxidized LDL induced more ABCA1 in wild type macrophages than LDLR(-/-) cells. LDL induced ABCA1 expression in wild type cells but inhibited it in LDLR(-/-) macrophages in a concentration-dependent manner. However, lipoproteins regulated ABCG1 expression similarly in LDLR(-/-) and wild type macrophages. Cholesterol or oxysterols induced ABCA1 expression in wild type macrophages but had little or inhibitory effects on ABCA1 expression in LDLR(-/-) macrophages. Active sterol regulatory element-binding protein 1a (SREBP1a) inhibited ABCA1 promoter activity in an LXRE-dependent manner and decreased both macrophage ABCA1 expression and cholesterol efflux. Expression of ABCA1 in animal tissues was inversely correlated to active SREBP1. Oxysterols inactivated SREBP1 in wild type macrophages but not in LDLR(-/-) cells. Oxysterol synergized with nonsteroid LXR ligand induced ABCA1 expression in wild type macrophages but blocked induction in LDLR(-/-) cells. Taken together, our studies suggest that LDLR is critical in the regulation of cholesterol efflux and ABCA1 expression in macrophage. Lack of the LDLR impairs sterol-induced macrophage ABCA1 expression by a sterol regulatory element-binding protein 1-dependent mechanism that can result in reduced cholesterol efflux and lipid accumulation in macrophages under hypercholesterolemic conditions.  相似文献   

4.
5.
We recently reported that lecithin:cholesterol acyltransferase (LCAT) knock-out mice, particularly in the LDL receptor knock-out background, are hypersensitive to insulin and resistant to high fat diet-induced insulin resistance (IR) and obesity. We demonstrated that chow-fed Ldlr-/-xLcat+/+ mice have elevated hepatic endoplasmic reticulum (ER) stress, which promotes IR, compared with wild-type controls, and this effect is normalized in Ldlr-/-xLcat-/- mice. In the present study, we tested the hypothesis that hepatic ER cholesterol metabolism differentially regulates ER stress using these models. We observed that the Ldlr-/-xLcat+/+ mice accumulate excess hepatic total and ER cholesterol primarily attributed to increased reuptake of biliary cholesterol as we observed reduced biliary cholesterol in conjunction with decreased hepatic Abcg5/g8 mRNA, increased Npc1l1 mRNA, and decreased Hmgr mRNA and nuclear SREBP2 protein. Intestinal NPC1L1 protein was induced. Expression of these genes was reversed in the Ldlr-/-xLcat-/- mice, accounting for the normalization of total and ER cholesterol and ER stress. Upon feeding a 2% high cholesterol diet (HCD), Ldlr-/-xLcat-/- mice accumulated a similar amount of total hepatic cholesterol compared with the Ldlr-/-xLcat+/+ mice, but the hepatic ER cholesterol levels remained low in conjunction with being protected from HCD-induced ER stress and IR. Hepatic ER stress correlates strongly with hepatic ER free cholesterol but poorly with hepatic tissue free cholesterol. The unexpectedly low ER cholesterol seen in HCD-fed Ldlr-/-xLcat-/- mice was attributable to a coordinated marked up-regulation of ACAT2 and suppressed SREBP2 processing. Thus, factors influencing the accumulation of ER cholesterol may be important for the development of hepatic insulin resistance.  相似文献   

6.
Class I P-glycoproteins [Pgp; MDR1 (ABCB1) in humans, mdr1a and mdr1b in mice] confer resistance to structurally diverse chemotherapeutic drugs in cultured cells and intact animals, but the function of these proteins in normal physiology remains poorly characterized. Based on studies in cell culture, a putative role for class I Pgp in absorption and intracellular trafficking of sterols has been proposed. We examined wild-type and mdr1a(-/)-/1b(-/)- mice to determine whether class I Pgp affects cholesterol absorption and esterification in vivo. Using a dual-isotope protocol, absorption of orally administered radiolabeled cholesterol into serum did not differ between wild-type and mdr1a(-/)-/1b(-/)- mice, demonstrating that class I Pgp is not essential for overall absorption of cholesterol through the intestine. However, the ratio of oral to intravenous labeled cholesterol in liver was decreased significantly in mdr1a(-/)-/1b(-/)- mice. In the liver, but not other tested organs, deletion of class I Pgp enhanced kinetics of esterification of an oral bolus of radiolabeled cholesterol without affecting esterification of cholesterol administered intravenously. Steady-state hepatic content of cholesterol and esterified cholesterol also were unaffected by absence of mdr1a and mdr1b.Thus, in normal animals, class I Pgp functions to kinetically increase hepatic accumulation and decrease esterification of orally administered cholesterol in vivo.  相似文献   

7.
8.
9.
Although statin therapy is a cornerstone of current low density lipoprotein (LDL)-lowering strategies, there is a need for additional therapies to incrementally lower plasma LDL cholesterol. In this study, we investigated the effect of several methylenedioxyphenol derivatives in regulating LDL cholesterol through induction of LDL receptor (LDLR). INV-403, a modified methylenedioxyphenol derivative, increased LDLR mRNA and protein expression in HepG2 cells in a dose- and time-dependent fashion. These effects were apparent even under conditions of HMG-CoA reductase inhibition. Electrophoresis migration shift assays demonstrated that INV-403 activates SREBP2 but not SREBP1c, with immunoblot analysis showing an increased expression of the mature form of SREBP2. Knockdown of SREBP2 reduced the effect of INV-403 on LDLR expression. The activation of SREBP2 by INV-403 is partly mediated by Akt/GSK3β pathways through inhibition of phosphorylation-dependent degradation by ubiquitin-proteosome pathway. Treatment of C57Bl/6j mice with INV-403 for two weeks increased hepatic SREBP2 levels (mature form) and upregulated LDLR with concomitant lowering of plasma LDL levels. Transient expression of a LDLR promoter-reporter construct, a SRE-mutant LDLR promoter construct, and a SRE-only construct in HepG2 cells revealed an effect predominantly through a SRE-dependent mechanism. INV-403 lowered plasma LDL cholesterol levels through LDLR upregulation. These results indicate a role for small molecule approaches other than statins for lowering LDL cholesterol.  相似文献   

10.
11.
12.
Enterocyte cholesterol homeostasis reflects aggregated rates of sterol synthesis, efflux, and uptake from plasma and gut lumen. Cholesterol synthesis and LDL uptake are coordinately regulated by sterol regulatory element-binding proteins (SREBP), whereas sterol efflux is regulated by liver X receptors (LXR). How these processes are coordinately regulated in enterocytes, the site of cholesterol absorption, is not well understood. Here, we treat mice with ezetimibe to investigate the effect of blocking cholesterol absorption on intestinal SREBPs, LXRs, and their effectors. Ezetimibe increased nuclear SREBP-2 8-fold. HMG-CoA reductase (HMGR) and LDL receptor (LDLR) mRNA levels increased less than 3-fold, whereas their protein levels increased 30- and 10-fold, respectively. Expression of inducible degrader of LDLR (IDOL), an LXR-regulated gene that degrades LDLRs, was reduced 50% by ezetimibe. Coadministration of ezetimibe with the LXR agonist T0901317 abolished the reduction in IDOL and prevented the increase in LDLR protein. Ezetimibe-stimulated LDLR expression was independent of proprotein convertase subtilisin/kexin type 9 (PSCK9), a protein that degrades LDLRs. To maintain cholesterol homeostasis in the face of ezetimibe, enterocytes boost LDL uptake by increasing LDLR number, and they boost sterol synthesis by increasing HMGR and other cholesterologenic genes. These studies reveal a hitherto undescribed homeostatic network in enterocytes triggered by blockade of cholesterol absorption.  相似文献   

13.
Niemann-Pick type C (NPC) disease is a multisystem disorder resulting from mutations in the NPC1 gene that encodes a protein involved in intracellular cholesterol trafficking. Significant liver dysfunction is frequently seen in patients with this disease. The current studies used npc1 mutant mice to investigate the association between liver dysfunction and unesterified cholesterol accumulation, a hallmark of NPC disease. Data from 92 npc1(-/-) mice (age range, 9-56 days) revealed a significant positive correlation between the plasma activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and whole liver cholesterol content. In 56 day old npc1(-/-) mice that had been fed from 35 days of age a rodent diet or the same diet containing either cholesterol (1.0%, w/w) or ezetimibe (a sterol absorption inhibitor; 0.0125%, w/w), whole liver cholesterol content averaged 33.5 +/- 1.1, 87.9 +/- 1.7, and 20.8 +/- 0.9 mg, respectively. Again, plasma ALT and AST activities were positively correlated with hepatic cholesterol content. In contrast, plasma transaminase levels remained in the normal range in npc1(+/+) mice, in which hepatic esterified cholesterol content had been increased by 72-fold by feeding a high-cholesterol, high-fat diet. These studies suggest that the late endosomal/lysosomal content of unesterified cholesterol correlates with cell damage in NPC disease.  相似文献   

14.
Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the contribution of the LDL receptor-related protein 1 (LRP1) to this process is not known. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR)-deficient background (macLRP1-/-). After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp +/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.  相似文献   

15.
Expression of genes involved in cholesterol biosynthesis in male germ cells is insensitive to the negative cholesterol feedback regulation, in contrast to cholesterol level-sensitive/sterol regulatory element binding protein (SREBP)-dependent gene regulation in somatic cells. The role of sterol regulatory element binding proteins in spermatogenic cells was an enigma until recently, when a soluble, 55 kDa cholesterol-insensitive form of SREBP2 (SREBP2gc) was discovered [Mol. Cell. Endocrinol. 22 (2002) 8478], being translated from a germ cell-specific SREBP2 mRNA. Our RT-PCR results also show that SREBP2 as well as SREBP1c mRNAs are detectable in prepubertal and postpubertal male germ cells while SREBP1a is not detected. Surprisingly, three SREBP2 immunoreactive proteins (72, 63 and 55 kDa), that are not present in mouse liver nuclei, reside in testis nuclei of prepubertal and adult mice. The 55 kDa protein is likely SREBP2gc, the other two isoforms are novel. HPLC measurements in liver and testes of fasted prepubertal and postpubertal mice showed no significant difference in cholesterol level. However, FF-MAS and lanosterol/testis-meiosis activating sterol (T-MAS) intermediates that are detectable mainly in testes, increase in fasted postpubertal mice which coincides well with the elevated level of 68 kDa SREBP2. Similar to SREBP2gc, the two novel SREBP2 immunoreactive proteins seem to be insensitive to the level of cholesterol.  相似文献   

16.

Background

Apolipoprotein E (ApoE), a cholesterol carrier associated with atherosclerosis, is a major risk factor for Alzheimer''s disease (AD). The low-density lipoprotein receptor (LDLR) regulates ApoE levels in the periphery and in the central nervous system. LDLR has been identified on astrocytes and a number of studies show that it modulates amyloid deposition in AD transgenic mice. However these findings are controversial on whether LDLR deletion is beneficial or detrimental on the AD-like phenotype of the transgenic mice.

Methodology/Principal Findings

To investigate the role of LDLR in the development of the amyloid related phenotype we used an APP/PS1 transgenic mouse (5XFAD) that develops an AD-like pathology with amyloid plaques, astrocytosis and microgliosis. We found that 4 months old 5XFAD transgenic mice on the LDLR deficient background (LDLR-/-) have increased amyloid plaque deposition. This increase is associated with a significant decrease in astrocytosis and microgliosis in the 5XFAD/LDLR-/- mice. To further elucidate the role of LDLR in relation with ApoE we have generated 5XFAD transgenic mice on the ApoE deficient (ApoE-/-) or the ApoE/LDLR double deficient background (ApoE-/-/LDLR -/-). We have found that ApoE deletion in the 4 months old 5XFAD/ApoE-/- mice decreases amyloid plaque formation as expected, but has no effect on astrocytosis or microgliosis. By comparison 5XFAD/ApoE-/-LDLR -/- double deficient mice of the same age have increased amyloid deposition with decreased astrocytosis and microgliosis.

Conclusions

Our analysis shows that LDL deficiency regulates astrocytosis and microgliosis in an AD mouse model. This effect is independent of ApoE, as both 5XFAD/LDLR -/- and 5XFAD/ApoE-/- LDLR -/- mice show reduction in inflammatory response and increase in amyloid deposition compared to control mice. These results demonstrate that LDLR regulates glial response in this mouse model independently of ApoE and modifies amyloid deposition.  相似文献   

17.
Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) is a testis-specific gonadotropin-regulated RNA helicase that is present in Leydig cells (LCs) and germ cells and is essential for spermatid development and completion of spermatogenesis. Normal basal levels of testosterone in serum and LCs were observed in GRTH null (GRTH(-/-)) mice. However, testosterone production was enhanced in LCs of GRTH(-/-) mice compared with WT mice by both in vivo and in vitro human chorionic gonadotropin stimulation. LCs of GRTH(-/-) mice had swollen mitochondria with a significantly increased cholesterol content in the inner mitochondrial membrane. Basal protein levels of SREBP2, HMG-CoA reductase, and steroidogenic acute regulatory protein (StAR; a protein that transports cholesterol to the inner mitochondrial membrane) were markedly increased in LCs of GRTH(-/-) mice compared with WT mice. Gonadotropin stimulation caused an increase in StAR mRNA levels and protein expression in GRTH(-/-) mice versus WT mice, with no further increase in SREBP2 and down-regulation of HMG-CoA reductase protein. The half-life of StAR mRNA was significantly increased in GRTH(-/-) mice. Moreover, association of StAR mRNA with GRTH protein was observed in WT mice. Human chorionic gonadotropin increased GRTH gene expression and its associated StAR protein at cytoplasmic sites. Taken together, these findings indicate that, through its negative role in StAR message stability, GRTH regulates cholesterol availability at the mitochondrial level. The finding of an inhibitory action of GRTH associated with gonadotropin-mediated steroidogenesis has provided insights into a novel negative autocrine molecular control mechanism of this helicase in the regulation of steroid production in the male.  相似文献   

18.
Fatty acid esterification of dolichol and cholesterol in Niemann-Pick type C1 mouse (Balb/c NIH npc1(-/-)) livers was investigated in response to treatment with peroxisomal proliferators. These inducers have hypolipidemic properties and influence the mevalonate pathway and the intracellular transport of the final products of this biosynthetic route. Such inducers are consequently interesting to use in a disease model with defective intracellular transport of lipids. In wild-type mice, the levels of dolichol and cholesterol found as free alcohols were not changed to any great extent upon treatment with the peroxisomal inducers dehydroepiandrosterone, clofibrate and diethylhexylphtalate. In contrast, the amounts of dolichyl esters increased whereas cholesteryl esters decreased by the same treatments. The rate of enzymatic esterification of dolichol in isolated microsomes was accordingly elevated after 5- to 7-day treatments with the efficient peroxisomal proliferators DEHP and PFOA, while the corresponding esterification of cholesterol was decreased. Upon peroxisomal induction in npc1(-/-) mice, the enzymatic dolichol esterification in vitro increased whereas the low concentration of dolichyl esters remained unchanged. The results thus demonstrate that the induction of fatty acid esterification of dolichol in vivo is impaired in npc1(-/-) mouse liver. It is therefore proposed that the intracellular lipid transport defect in npc1(-/-) mouse liver disables either dolichol and/or the fatty acid from reaching the site of esterification in vivo. This proposal was strengthened by the finding that the amount of dolichol was decreased in an isolated Golgi fraction from npc1(-/-) mice.  相似文献   

19.
Insulin receptor substrate (IRS)-2(-/-) mice develop diabetes because of insulin resistance in the liver and failure to undergo beta-cell hyperplasia. Here we show by DNA chip microarray analysis that expression of the sterol regulatory element-binding protein (SREBP)-1 gene, a downstream target of insulin, was paradoxically increased in 16-week-old IRS-2(-/-) mouse liver, where insulin-mediated intracellular signaling events were substantially attenuated. The expression of SREBP-1 downstream genes, such as the spot 14, ATP citrate-lyase, and fatty acid synthase genes, was also increased. Increased liver triglyceride content in IRS-2(-/-) mice assures the physiological importance of SREBP-1 gene induction. IRS-2(-/-) mice showed leptin resistance; low dose leptin administration, enough to reduce food intake and body weight in wild-type mice, failed to do so in IRS-2(-/-) mice. Interestingly, high dose leptin administration reduced SREBP-1 expression in IRS-2(-/-) mouse liver. Thus, IRS-2 gene disruption results in leptin resistance, causing an SREBP-1 gene induction, obesity, fatty liver, and diabetes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号