首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rhesus macaques (Macaca mulatta) are the most widely used nonhuman primate species in biomedical research. To create new opportunities for genetic and genomic studies using rhesus monkeys, we constructed a genetic linkage map of the rhesus genome. This map consists of 241 microsatellite loci, all previously mapped in the human genome. These polymorphisms were genotyped in five pedigrees of rhesus monkeys totaling 865 animals. The resulting linkage map covers 2048 cM including all 20 rhesus autosomes, with average spacing between markers of 9.3 cM. Average heterozygosity among those markers is 0.73. This linkage map provides new comparative information concerning locus order and interlocus distances in humans and rhesus monkeys. The map will facilitate whole-genome linkage screens to locate quantitative trait loci (QTLs) that influence individual variation in phenotypic traits related to basic primate anatomy, physiology, and behavior, as well as QTLs relevant to risk factors for human disease.  相似文献   

2.
M. D. Edwards  C. W. Stuber    J. F. Wendel 《Genetics》1987,116(1):113-125
Individual genetic factors which underlie variation in quantitative traits of maize were investigated in each of two F2 populations by examining the mean trait expressions of genotypic classes at each of 17-20 segregating marker loci. It was demonstrated that the trait expression of marker locus classes could be interpreted in terms of genetic behavior at linked quantitative trait loci (QTLs). For each of 82 traits evaluated, QTLs were detected and located to genomic sites. The numbers of detected factors varied according to trait, with the average trait significantly influenced by almost two-thirds of the marked genomic sites. Most of the detected associations between marker loci and quantitative traits were highly significant, and could have been detected with fewer than the 1800-1900 plants evaluated in each population. The cumulative, simple effects of marker-linked regions of the genome explained between 8 and 40% of the phenotypic variation for a subset of 25 traits evaluated. Single marker loci accounted for between 0.3% and 16% of the phenotypic variation of traits. Individual plant heterozygosity, as measured by marker loci, was significantly associated with variation in many traits. The apparent types of gene action at the QTLs varied both among traits and between loci for given traits, although overdominance appeared frequently, especially for yield-related traits. The prevalence of apparent overdominance may reflect the effects of multiple QTLs within individual marker-linked regions, a situation which would tend to result in overestimation of dominance. Digenic epistasis did not appear to be important in determining the expression of the quantitative traits evaluated. Examination of the effects of marked regions on the expression of pairs of traits suggests that genomic regions vary in the direction and magnitudes of their effects on trait correlations, perhaps providing a means of selecting to dissociate some correlated traits. Marker-facilitated investigations appear to provide a powerful means of examining aspects of the genetic control of quantitative traits. Modifications of the methods employed herein will allow examination of the stability of individual gene effects in varying genetic backgrounds and environments.  相似文献   

3.
利用双单倍体群体剖析水稻产量及其相关性状的遗传基础   总被引:23,自引:0,他引:23  
主效QTL、上位性效应和它们与环境的互作(QE)都是数量性状的重要遗传因素。利用籼粳交珍汕97/武育粳2号F1植株上的花药进行组织培养得到的190个双单倍体群体和179个微卫星标记,通过两年两重复田间试验,采用混合线性模型方法分析了9个控制水稻产量及其相关性状的遗传效应,得到57个主效QTL,41对上位性互作,8对QTL与环境的互作和7对上位性效应与环境的互作。单个主效QTL解释这些性状1.3%~25.8%的表型方差。各性状QTL的累积表型贡献率达11.5%~66.8%。大多数性状之间具有显著的表型相关性,相关性较高的性状之间常具有较多共同或紧密连锁的QTL。结果表明,基因的多效性或紧密连锁可能是性状相关的重要遗传基础。  相似文献   

4.
Dissecting the genetic architecture of fitness-related traits in wild populations is key to understanding evolution and the mechanisms maintaining adaptive genetic variation. We took advantage of a recently developed genetic linkage map and phenotypic information from wild pedigreed individuals from Ram Mountain, Alberta, Canada, to study the genetic architecture of ecologically important traits (horn volume, length, base circumference and body mass) in bighorn sheep. In addition to estimating sex-specific and cross-sex quantitative genetic parameters, we tested for the presence of quantitative trait loci (QTLs), colocalization of QTLs between bighorn sheep and domestic sheep, and sex × QTL interactions. All traits showed significant additive genetic variance and genetic correlations tended to be positive. Linkage analysis based on 241 microsatellite loci typed in 310 pedigreed animals resulted in no significant and five suggestive QTLs (four for horn dimension on chromosomes 1, 18 and 23, and one for body mass on chromosome 26) using genome-wide significance thresholds (Logarithm of odds (LOD) >3.31 and >1.88, respectively). We also confirmed the presence of a horn dimension QTL in bighorn sheep at the only position known to contain a similar QTL in domestic sheep (on chromosome 10 near the horns locus; nominal P<0.01) and highlighted a number of regions potentially containing weight-related QTLs in both species. As expected for sexually dimorphic traits involved in male-male combat, loci with sex-specific effects were detected. This study lays the foundation for future work on adaptive genetic variation and the evolutionary dynamics of sexually dimorphic traits in bighorn sheep.  相似文献   

5.
Pleiotropy refers to a single genetic locus that affects more than one phenotypic trait. Pleiotropic effects of genetic loci are thought to play an important role in evolution, reflecting functional and developmental relationships among phenotypes. In a previous study, we examined pleiotropic effects displayed by quantitative trait loci (QTLs) on murine mandibular morphology in relation to mandibular structure and function. In replicating most of our previous QTLs and increasing our sample size, this study strengthens and extends our earlier results. As in our previous study, we find that QTL effects tend to be restricted to developmentally or functionally related traits. In addition, we examine patterns of differential dominance for pleiotropic QTL effects. Differential dominance occurs when dominance patterns for a single locus vary among traits. We find that multivariate overdominance is a common and substantial phenomenon, and may potentially provide an explanation for the persistence of heterozygosity in natural populations.  相似文献   

6.
The identification of quantitative trait loci (QTLs) affecting agronomically important traits enable to understand their underlying genetic mechanisms and genetic basis of their complex interactions. The aim of the present study was to detect QTLs for 12 agronomic traits related to staygreen, plant early development, grain yield and its components, and some growth characters by analyzing replicated phenotypic datasets from three crop seasons, using the population of 168 F7 RILs of the cross 296B × IS18551. In addition, we report mapping of a subset of genic-microsatellite markers. A linkage map was constructed with 152 marker loci comprising 149 microsatellites (100 genomic- and 49 genic-microsatellites) and three morphological markers. QTL analysis was performed by using MQM approach. Forty-nine QTLs were detected, across environments or in individual environments, with 1–9 QTLs for each trait. Individual QTL accounted for 5.2–50.4% of phenotypic variance. Several genomic regions affected multiple traits, suggesting the phenomenon of pleiotropy or tight linkage. Stable QTLs were identified for studied traits across different environments, and genetic backgrounds by comparing the QTLs in the study with previously reported QTLs in sorghum. Of the 49 mapped genic-markers, 18 were detected associating either closely or exactly as the QTL positions of agronomic traits. EST marker Dsenhsbm19, coding for a key regulator (EIL-1) of ethylene biosynthesis, was identified co-located with the QTLs for plant early development and staygreen trait, a probable candidate gene for these traits. Similarly, such exact co-locations between EST markers and QTLs were observed in four other instances. Collectively, the QTLs/markers identified in the study are likely candidates for improving the sorghum performance through MAS and map-based gene isolations.  相似文献   

7.
The genetic architecture determinants of yield traits in peanut (Arachis hypogaea L.) are poorly understood. In the present study, an effort was made to map quantitative trait loci (QTLs) for yield traits using recombinant inbred lines (RIL). A genetic linkage map was constructed containing 609 loci, covering a total of 1557.48 cM with an average distance of 2.56 cM between adjacent markers. The present map exhibited good collinearity with the physical map of diploid species of Arachis. Ninety-two repeatable QTLs were identified for 11 traits including height of main stem, total branching number, and nine pod- and seed-related traits. Of the 92 QTLs, 15 QTLs were expressed across three environments and 65 QTLs were newly identified. Twelve QTLs for the height of main stem and the pod- and seed-related traits explaining more than 10 % of phenotypic variation showed a great potential for marker-assisted selection in improving these traits. 相似文献   

8.
Molecular diversity, structure and domestication of grasses   总被引:19,自引:0,他引:19  
Map-based cloning has been considered problematic for isolating quantitative trait loci (QTLs) due to the confounding phenotypic effects of environment and other QTLs. However, five recent studies, all in plants, have succeeded in cloning QTLs using map-based methods. We review the important features of these studies and evaluate the prospects for broader application of the techniques. Successful map-based cloning requires that QTLs represent single genes that can be isolated in near-isogenic lines, and that genotypes can be unambiguously inferred by progeny testing. In plants or animals for which map-based cloning of genes with discrete phenotypes is feasible, the modified procedures required for QTLs should not be limiting in most cases. The choice between map-based cloning and alternative methods will depend on details of the species and traits being studied.  相似文献   

9.
Understanding the genetic architecture of quantitative traits begins with identifying the genes regulating these traits, mapping the subset of genetically varying quantitative trait loci (QTLs) in natural populations, and pinpointing the molecular polymorphisms defining QTL alleles. Studies in Drosophila have revealed large numbers of pleiotropic genes that interact epistatically to regulate quantitative traits, and large numbers of QTLs with sex-, environment- and genotype-specific effects. Multiple molecular polymorphisms in regulatory regions of candidate genes are often associated with variation for complex traits. These observations offer valuable lessons for understanding the genetic basis of variation for complex traits in other organisms, including humans.  相似文献   

10.
In the context of genetics and breeding research on multiple phenotypic traits, reconstructing the directional or causal structure between phenotypic traits is a prerequisite for quantifying the effects of genetic interventions on the traits. Current approaches mainly exploit the genetic effects at quantitative trait loci (QTLs) to learn about causal relationships among phenotypic traits. A requirement for using these approaches is that at least one unique QTL has been identified for each trait studied. However, in practice, especially for molecular phenotypes such as metabolites, this prerequisite is often not met due to limited sample sizes, high noise levels and small QTL effects. Here, we present a novel heuristic search algorithm called the QTL+phenotype supervised orientation (QPSO) algorithm to infer causal directions for edges in undirected phenotype networks. The two main advantages of this algorithm are: first, it does not require QTLs for each and every trait; second, it takes into account associated phenotypic interactions in addition to detected QTLs when orienting undirected edges between traits. We evaluate and compare the performance of QPSO with another state-of-the-art approach, the QTL-directed dependency graph (QDG) algorithm. Simulation results show that our method has broader applicability and leads to more accurate overall orientations. We also illustrate our method with a real-life example involving 24 metabolites and a few major QTLs measured on an association panel of 93 tomato cultivars. Matlab source code implementing the proposed algorithm is freely available upon request.  相似文献   

11.
12.
Summary We report that plant height quantitative trait loci (QTLs) identified in a given small population are not consistent with QTLs identified in other small populations, and that most QTLs are in close proximity to mapped qualitative genetic loci. These observations provide evidence to support the hypothesis that qualitative genetic loci are the same loci that affect quantitative traits, and affirm that these modest experiments probably identify real QTLs.  相似文献   

13.
Amino acids are both constituents of proteins, providing the essential nutrition for humans and animals, and signalling molecules regulating the growth and development of plants. Most cultivars of maize are deficient in essential amino acids such as lysine and tryptophan. Here, we measured the levels of 17 different total amino acids, and created 48 derived traits in mature kernels from a maize diversity inbred collection and three recombinant inbred line (RIL) populations. By GWAS, 247 and 281 significant loci were identified in two different environments, 5.1 and 4.4 loci for each trait, explaining 7.44% and 7.90% phenotypic variation for each locus in average, respectively. By linkage mapping, 89, 150 and 165 QTLs were identified in B73/By804, Kui3/B77 and Zong3/Yu87‐1 RIL populations, 2.0, 2.7 and 2.8 QTLs for each trait, explaining 13.6%, 16.4% and 21.4% phenotypic variation for each QTL in average, respectively. It implies that the genetic architecture of amino acids is relative simple and controlled by limited loci. About 43.2% of the loci identified by GWAS were verified by expression QTL, and 17 loci overlapped with mapped QTLs in the three RIL populations. GRMZM2G015534, GRMZM2G143008 and one QTL were further validated using molecular approaches. The amino acid biosynthetic and catabolic pathways were reconstructed on the basis of candidate genes proposed in this study. Our results provide insights into the genetic basis of amino acid biosynthesis in maize kernels and may facilitate marker‐based breeding for quality protein maize.  相似文献   

14.
Understanding genetic characteristics in rice populations will facilitate exploring evolutionary mechanisms and gene cloning. Numerous molecular markers have been utilized in linkage map construction and quantitative trait locus (QTL) mappings. However, segregation-distorted markers were rarely considered, which prevented understanding genetic characteristics in many populations. In this study, we designed a 384-marker GoldenGate SNP array to genotype 283 recombination inbred lines (RILs) derived from 93-11 and Nipponbare Oryza sativa crosses. Using 294 markers that were highly polymorphic between parents, a linkage map with a total genetic distance of 1,583.2 cM was constructed, including 231 segregation-distorted markers. This linkage map was consistent with maps generated by other methods in previous studies. In total, 85 significant quantitative trait loci (QTLs) with phenotypic variation explained (PVE) values≥5% were identified. Among them, 34 QTLs were overlapped with reported genes/QTLs relevant to corresponding traits, and 17 QTLs were overlapped with reported sterility-related genes/QTLs. Our study provides evidence that segregation-distorted markers can be used in linkage map construction and QTL mapping. Moreover, genetic information resulting from this study will help us to understand recombination events and segregation distortion. Furthermore, this study will facilitate gene cloning and understanding mechanism of inter-subspecies hybrid sterility and correlations with important agronomic traits in rice.  相似文献   

15.
In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck.) in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids) that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs) for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL) co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits, 149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the genome suggesting that: 1) genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2) master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic improvement of spruce.  相似文献   

16.
Mice have proved to be powerful models for understanding obesity in humans and farm animals. Single-gene mutants and genetically modified mice have been used successfully to discover genes and pathways that can regulate body weight. For polygenic obesity, the most common pattern of inheritance, many quantitative trait loci (QTLs) have been mapped in crosses between selected and inbred mouse lines. Most QTL effects are additive, and diet, age and gender modify the genetic effects. Congenic, recombinant inbred, advanced intercross, and chromosome substitution strains are needed to map QTLs finely, to identify the genes underlying the traits, and to examine interactions between them.  相似文献   

17.
Mei, Prunus mume Sieb. et Zucc., is an ornamental plant popular in East Asia and, as an important member of genus Prunus, has played a pivotal role in systematic studies of the Rosaceae. However, the genetic architecture of botanical traits in this species remains elusive. This paper represents the first genome-wide mapping study of quantitative trait loci (QTLs) that affect stem growth and form, leaf morphology and leaf anatomy in an intraspecific cross derived from two different mei cultivars. Genetic mapping based on a high-density linkage map constricted from 120 SSRs and 1,484 SNPs led to the detection of multiple QTLs for each trait, some of which exert pleiotropic effects on correlative traits. Each QTL explains 3-12% of the phenotypic variance. Several leaf size traits were found to share common QTLs, whereas growth-related traits and plant form traits might be controlled by a different set of QTLs. Our findings provide unique insights into the genetic control of tree growth and architecture in mei and help to develop an efficient breeding program for selecting superior mei cultivars.  相似文献   

18.
Seed quality in tomato is associated with many complex physiological and genetic traits. While plant processes are frequently controlled by the action of small‐ to large‐effect genes that follow classic Mendelian inheritance, our study suggests that seed quality is primarily quantitative and genetically complex. Using a recombinant inbred line population of Solanum lycopersicum × Solanum pimpinellifolium, we identified quantitative trait loci (QTLs) influencing seed quality phenotypes under non‐stress, as well as salt, osmotic, cold, high‐temperature and oxidative stress conditions. In total, 42 seed quality traits were analysed and 120 QTLs were identified for germination traits under different conditions. Significant phenotypic correlations were observed between germination traits under optimal conditions, as well as under different stress conditions. In conclusion, one or more QTLs were identified for each trait with some of these QTLs co‐locating. Co‐location of QTLs for different traits can be an indication that a locus has pleiotropic effects on multiple traits due to a common mechanistic basis. However, several QTLs also dissected seed quality in its separate components, suggesting different physiological mechanisms and signalling pathways for different seed quality attributes.  相似文献   

19.
Zhang F  Zhai HQ  Paterson AH  Xu JL  Gao YM  Zheng TQ  Wu RL  Fu BY  Ali J  Li ZK 《PloS one》2011,6(1):e14541
Great progress has been made in genetic dissection of quantitative trait variation during the past two decades, but many studies still reveal only a small fraction of quantitative trait loci (QTLs), and epistasis remains elusive. We integrate contemporary knowledge of signal transduction pathways with principles of quantitative and population genetics to characterize genetic networks underlying complex traits, using a model founded upon one-way functional dependency of downstream genes on upstream regulators (the principle of hierarchy) and mutual functional dependency among related genes (functional genetic units, FGU). Both simulated and real data suggest that complementary epistasis contributes greatly to quantitative trait variation, and obscures the phenotypic effects of many 'downstream' loci in pathways. The mathematical relationships between the main effects and epistatic effects of genes acting at different levels of signaling pathways were established using the quantitative and population genetic parameters. Both loss of function and "co-adapted" gene complexes formed by multiple alleles with differentiated functions (effects) are predicted to be frequent types of allelic diversity at loci that contribute to the genetic variation of complex traits in populations. Downstream FGUs appear to be more vulnerable to loss of function than their upstream regulators, but this vulnerability is apparently compensated by different FGUs of similar functions. Other predictions from the model may account for puzzling results regarding responses to selection, genotype by environment interaction, and the genetic basis of heterosis.  相似文献   

20.
An increasing interest to convert lignocellulosic biomass into biofuels has highlighted the potential of using willows for this purpose, due to its fast growth in short rotation coppice systems. Here, we use a mapping population of 463 individuals of a cross between Salix viminalis and S. viminalis × S. schwerinii to investigate the genetic background of different wood chemical traits, information of importance for breeding towards different uses of wood. Furthermore, using a subset of the mapping population, the correlation between biogas production and chemical traits was investigated. The phenotyping of wood was carried by Furrier-transformed-Infrared spectrometry (FT-IR) and water content analysis. Quantitative trait loci (QTLs) analysis was used to identify regions in the genome of importance for the phenotypic variation of these chemical traits. We found 27 QTLs for various traits. On linkage group (LG) VI-1, QTLs for signals assigned to G-lignin, lignin, and the S/G ratio were collocated and on LG XIV we found a cluster of QTLs representing signals assigned to lignin, cellulose, hemicellulose, and water. The QTLs explained from 3.4 to 6.9% of the phenotypic variation indicating a quantitative genetic background where many genes influence the traits. For the biogas production, a positive and negative correlation was seen with the signals assigned to acetyl and lignin, respectively. This study represents a first step in the understanding of the genetic background of wood chemical traits for willows, information needed for complementary studies, mapping of important genes, and for breeding of varieties for biofuel production purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号