首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Hydroperoxides have previously been shown to induce Ca2+ release from intact rat liver mitochondria via a specific release pathway. Here it is reported that, in rat brain mitochondria, a hydroperoxide-induced Ca2+ release is also operative but is of minor importance. Hydroperoxide stimulates Ca2+ release in the presence of ruthenium red about twofold at a Ca2+ load of 40 nmol/mg mitochondrial protein. After addition of hydroperoxide, Ca2+ release from brain mitochondria can still be evoked by Na+. In the presence of succinate and rotenone, hydroperoxide induces only a very limited oxidation of pyridine nucleotides, most probably due to the low level of glutathione peroxidase (EC 1.11.1.9) and glutathione reductase (EC 1.6.4.2) found in brain mitochondria. Similar to liver mitochondria, a NADase (EC 3.2.2.5) activity is found in brain mitochondria. Its localization and sensitivity toward ADP and ATP, however, is different from that of the liver mitochondrial enzyme.  相似文献   

2.
Morphological observations in some tissues indicate that dietary copper deficiency results in structural damage to mitochondria. The purpose of this study was to determine whether mitochondrial function is impaired as well. Male, weanling Sprague-Dawley rats were fed diets deficient or sufficient in copper for 4 weeks. Mitochondria were isolated from heart, liver, kidney cortex, and kidney medulla. P/O ratio, state 3 and state 4 respiration rates (oxygen consumed in the presence and absence of ADP, respectively), and acceptor control index (ratio of state 3:state 4) were determined using succinate or pyruvate/malate as substrate. State 3 respiration rate in mitochondria from copper-deficient hearts and livers was lower than in mitochondria from copper-sufficient hearts. Copper deficiency reduced the state 4 respiration rate only in cardiac mitochondria. Neither respiration rate was affected by copper deficiency in mitochondria from kidney medulla or cortex. P/O ratio was not significantly affected by copper deficiency in any tissue examined. Acceptor control index was reduced only in liver mitochondria. The observed decreases in respiration rates are consistent with decreased cytochrome c oxidase activity, shown by others to occur in mitochondria isolated from hearts and livers of copper-deficient rats.  相似文献   

3.
In animal models, brain ischemia causes changes in respiratory capacity, mitochondrial morphology, and cytochrome c release from mitochondria as well as a rise in cytosolic Ca2+ concentration. However, the causal relationship of the cellular processes leading to mitochondrial deterioration in brain has not yet been clarified. Here, by applying various techniques, we used isolated rat brain mitochondria to investigate how hypoxia/reoxygenation and nonphysiological Ca2+ concentrations in the low micromolar range affect active (state 3) respiration, membrane permeability, swelling, and morphology of mitochondria. Either transient hypoxia or a micromolar rise in extramitochondrial Ca2+ concentration, given as a single insult alone, slightly decreased active respiration. However, the combination of both insults caused devastating effects. These implied almost complete loss of active respiration, release of both NADH and cytochrome c, and rupture of mitochondria, as shown by electron microscopy. Mitochondrial respiration deteriorated even in the presence of cyclosporin A, documenting that membrane permeabilization occurred independent of mitochondrial permeability transition pore. Ca2+ has to enter the mitochondrial matrix in order to mediate this mitochondrial injury, because blockade of the mitochondrial Ca2+-transport system by ruthenium red in combination with CGP37157 completely prevented damage. Furthermore, protection of respiration from Ca2+-mediated damage by the adenine nucleotide ADP, but not by AMP, during hypoxia/reoxygenation is consistent with the delayed susceptibility of brain mitochondria to prolonged hypoxia, which is observed in vivo.  相似文献   

4.
Using different conditions mitochondria from hypothyroid rats can show both unchanged ADP/O ratios and lowered ADP/O ratios without evidence of uncoupling when compared with euthyroid controls. Raising the free Ca2+ concentration to around 25 nM progressively lowered the ADP/O ratio in hypothyroid but not in euthyroid mitochondria. Ruthenium Red did not alter this behaviour and further increasing the Ca2+ concentration to levels below those which stimulate State 3 respiration had no additional effect. Measurements of the free Ca2+ concentration in the mitochondrial suspending medium using a Quin 2 fluorescence assay showed that the mitochondria did not buffer the free Ca2+ at these low concentrations. At 25 nM-free Ca2+, addition of 10-13) M-T3 to hypothyroid mitochondria produced an immediate and significant increase in the ADP/O ratio without altering the free Ca2+ concentration. The hormone effect was maximal by 10(-11) M. The concentration of ATP synthetase can be estimated to lie at about 10 nM in these experiments. Hence it appears possible that a substantial amplification of the hormone signal may have taken place. Comparison with binding studies suggests that T3 may have been maximally stimulating when somewhat less than half its receptor sites had been filled. The possible mechanisms by which this receptor mediated alteration of the ADP/O ratio might be achieved are discussed.  相似文献   

5.
Isolated rat liver mitochondria, energized either by succinate oxidation or by ATP hydrolysis, present a transient increase in the rate of Ca2+ efflux concomitant to NAD(P)H oxidation by hydroperoxides when suspended in a medium containing 3 mM ATP, 4 mM Mg2+ and acetate as permeant anion. This is paralleled by an increase in the steady-state concentration of extramitochondrial Ca2+, a small decrease in delta psi and an increase in the rate of respiration and mitochondrial swelling. With the exception of mitochondrial swelling all other events were found to be reversible. If Ca2+ cycling was prevented by ruthenium red, the changes in delta psi, the rate of respiration and the extent of mitochondrial swelling were significantly diminished. In addition, there was no significant decrease in the content of mitochondrial pyridine nucleotides. Mitochondrial coupling was preserved after a cycle of Ca2+ release and re-uptake under these experimental conditions. It is concluded that hydroperoxide-induced Ca2+ efflux from intact mitochondria is related to the redox state of pyridine nucleotides.  相似文献   

6.
The effect of ethanol intake on liver mitochondrial functions was investigated by feeding rats with a liquid isocaloric diet containing various concentrations of ethanol. We found that after feeding the liquid diet for 2 to 3 months, the body weight of rats did not show a significant difference between treated and control groups. However, the mitochondrial respiration rate decreased significantly with the increase of ethanol concentration in the diet. We found that when the rats were fed on 10.8% ethanol, the average succinate-supported State 3 respiration rate decreased from 54.5 to 44.8 nmol O2/min/mg and the glutamate-malate-supported State 3 respiration rate decreased from 38.8 to 23.6 nmol O2/min/mg as compared with the control. Interestingly, we noted that ethanol intake caused a more drastic effect on State 3 respiration than on State 4 respiration, irrespective of the substrate utilized by the mitochondria. In addition, the respiratory control and ADP/O ratios were found to decrease concomitantly with the increase of ethanol level in the diet. Moreover, we found that the effect of ethanol on both respiratory control and ADP/O ratios of liver mitochondria was more pronounced in glutamate-malate-supported respiration than succinate-supported respiration. These results clearly demonstrate that ethanol intake by the rat can cause impairment of liver mitochondrial respiration and oxidative phosphorylation, and that these effects are exerted through damage to mitochondrial membranes.  相似文献   

7.
The seleno-organic compound ebselen mimics the glutathione-dependent, hydroperoxide reducing activity of glutathione peroxidase. The activity of glutathione peroxidase determines the rate of hydroperoxide-induced Ca2+ release from mitochondria. Ebselen stimulates Ca2+ release from mitochondria, accelerates mitochondrial respiration and uncoupling, and induces mitochondrial swelling, indicating a deterioration of mitochondrial function. These manifestations are abolished by cyclosporine A, a potent inhibitor of the mitochondrial permeability transition. However, when ebselen-induced Ca2+ cycling is prevented with ruthenium red, an inhibitor of the Ca2+ uniporter, or by chelation of extramitochondrial Ca2+ by EGTA, no detectable elevation of swelling or uncoupling is observed. The release of Ca2+ from mitochondria is delayed in the absence of rotenone, i.e. when pyridine nucleotides are maintained in the reduced state due to succinate-driven reversed electron flow. We suggest that ebselen induces Ca2+ release from intact mitochondria via an NAD+ hydrolysis-dependent mechanism.  相似文献   

8.
Ca2+ accumulation in energized rat liver mitochondria has been studied after the blockage of mitochondrial permeability transition pore (MPTP) by cyclosporin A. It is shown that Ca2+ transport is coupled to the countertransport of protons: from the matrix of mitochondria in the medium in the course of Ca2+ accumulation, and, on the contrary, from the medium to mitochondrial matrix after membrane depolarization. In standard incubation medium containing K+, Cl-, oxidation substrate (glutamate) and inorganic phosphate (H2PO4(-)) the observed stoichiometry of the exchange is 1Ca2+ : 1H+. In accordance with this exchange ratio, proton, as well as cation, transport follows the same first-order kinetics, which is characterized in both cases by very close values of reaction half-times and rate constants. It is shown that reversion of Ca2+ -uniporter, sensitive to ruthenium red, is necessary for Ca2+ - efflux from the matrix ofdeenergized mitochondria when MPTP is blocked by cyclosporin A. It is also shown that Ca2+ -uniporter reversion takes place only after membrane depolarization and permeabilization by protonophore CCCP. Calcium release from mitochondria in the presence of CCCP is accompanied by proton flow into the matrix. Both calcium and proton fluxes are sensitive to Ca2+ uniporter blocker, ruthenium red, which gives the evidence of the identity of Ca2+ -efflux and influx pathways. The data obtained lead to the conclusion that calcium-proton exchange is necessary for Ca2+ -uniporter reversion and the reversibility of energy-dependent Ca2+ -uptake in mitochondria.  相似文献   

9.
We investigated reports that mitochondria isolated from hypothyroid rats have decreased ADP/O and H+/O ratios. We observed no decrease in the H+/O ratio in mitochondria from hypothyroid rats, in the presence of either 2% (w/v) fatty-acid-free bovine serum albumin or 100 nM free Ca2+. The ADP/O ratio in mitochondria isolated from hypothyroid rats in the presence of 2% fatty-acid-free bovine serum albumin was measured. Under normal experimental conditions we found no decrease in the ADP/O ratio, relative to that measured for littermate controls. At the low concentrations of mitochondrial protein used in the previously reported studies, the ADP/O ratio of mitochondria from hypothyroid rats was decreased, whereas that for control rats was only slightly decreased. The difference between the ADP/O ratios measured for mitochondria form hypothyroid rats and from control rats under these conditions was eliminated by inhibition of endogenous adenylate kinase. We suggest that the lowering of the apparent ADP/O ratio in mitochondria from hypothyroid rats at low concentrations of mitochondrial protein is an experimental artefact resulting from the breakdown of ADP to AMP.  相似文献   

10.
The potential protective action of 1,4-dihydropyridine derivatives (cerebrocrast, gammapyrone, glutapyrone, and diethone) against oxidative stress was assessed on mitochondrial bioenergetics, inner membrane anion channel (IMAC), Ca2+-induced opening of the permeability transition pore (PTP), and oxidative damage induced by the oxidant pair adenosine diphosphate (ADP)/Fe2+ (lipid peroxidation) of mitochondria isolated from rat liver. By using succinate as the respiratory substrate, respiratory control ratio (RCR), ADP to oxygen ratio (ADP/O), state 3, state 4, and uncoupled respiration rates were not significantly affected by gammapyrone, glutapyrone, and diethone concentrations up to 100 microM. Cerebrocrast at concentrations higher than 25 microM depressed RCR, ADP/O, state 3, and uncoupled respiration rates, but increased three times state 4 respiration rate. The transmembrane potential (deltapsi) and the phosphate carrier rate were also decreased. At concentrations lower than 25 microM, cerebrocrast inhibited the mitochondrial IMAC and partially prevented Ca2+-induced opening of the mitochondrial PTP, whereas gammapyrone, glutapyrone, and diethone were without effect. Cerebrocrast, gammapyrone, and glutapyrone concentrations up to 100 microM did not affect ADP/Fe2+-induced lipid peroxidation of rat liver mitochondria, while very low diethone concentrations (up to 5 microM) inhibited it in a dose-dependent manner, as measured by oxygen consumption and thiobarbituric acid reactive substances formation. Diethone also prevented deltapsi dissipation due to lipid peroxidation initiated by ADP/Fe2+. It can be concluded that: none of the compounds interfere with mitochondrial bioenergetics at concentrations lower than 25 microM; cerebrocrast was the only compound that affected mitochondrial bioenergetics, but only for concentrations higher than 25 microM; at concentrations that did not affect mitochondrial bioenergetics (< or = 25 microM), only cerebrocrast inhibited the IMAC and partially prevented Ca2+-induced opening of the PTP; diethone was the only compound that expressed antioxidant activity at very low concentrations (< or = 5 microM). Cerebrocrast acting as an inhibitor of the IMAC and diethone acting as an antioxidant could provide effective protective roles in preventing mitochondria from oxidative damage, favoring their therapeutic interest in the treatment of several pathological situations known to be associated with cellular oxidative stress.  相似文献   

11.
Phosphate efflux from uncoupled rat liver mitochondria was completely inhibited when mersalyl plus butylmalonate and ATP were added to a sucrose suspending medium. Despite the total retention of phosphate a calcium efflux was observed even in presence of ruthenium red. Under the above conditions no phosphate is transported in association with the ADP/ATP carrier. While mersalyl completely blocked the phosphate release induced by ruthenium red or EGTA from coupled mitochondria it only partially inhibited the CA2+-efflux. The inhibition of Ca2+ efflux was almost completely abolished in the presence of acetate. The existence of a co-transport of Ca2+ associated with phosphate is discussed.  相似文献   

12.
Regulation of mitochondrial functions in vivo by catecholamines was examined indirectly by depleting the catecholamines stores by reserpine treatments of the experimental animals. Reserpine treatment resulted in decreased respiratory activity in liver and brain mitochondria with the two NAD+-linked substrates: glutamate and pyruvate + malate with succinate ATP synthesis rate decreased in liver mitochondria only. With ascorbate + TMPD system, the ADP/O ratio and ADP phosphorylation rate decreased in brain mitochondria. For the heart mitochondria, state 3 respiration rates decreased for all substrates. In the liver mitochondria basal ATPase activity decreased by 51%, but in the presence of Mg2+ and/or DNP increased significantly. In the brain and heart mitochondria ATPase activities were unchanged. The energy of activation in high temperature range increased liver mitochondrial ATPase while in brain mitochondria reserpine treatment resulted in abolishment in phase transition. Total phospholipid (TPL) content of the brain mitochondria increased by 22%. For the heart mitochondria TPL content decreased by 19% and CHL content decreased by 34%. Tissue specific differential effects were observed for the mitochondrial phospholipid composition. Liver mitochondrial membranes were more fluidized in the reserpine-treated group. The epinephrine and norepinephrine contents in the adrenals decreased by 68 and 77% after reserpine treatment.  相似文献   

13.
The effect of thyroid-hormone application on cytosolic and mitochondrial ATP/ADP ratio was investigated in rat liver in vivo and in the isolated perfused organ. In vivo the ATP/ADP ratio in livers from hypothyroid rats was 0.84 +/- 0.08 in the mitochondrial matrix and 5.6 +/- 0.9 in the cytosol, as was observed in euthyroid controls. In contrast, hyperthyroidism was followed by a significant decrease in the mitochondrial and by an increase in the cytosolic ATP/ADP ratio (to 0.34 +/- 0.06 and 11.3 +/- 2.8 respectively). In the perfused liver from hypothyroid animals, addition of L-3,3',5-tri-iodothyronine in the perfusate also provoked, within 2 h, a significant decrease in the mitochondrial ATP/ADP ratio, whereas the cytosolic ratio was unaffected. From these and previous data in the isolated perfused liver and in isolated mitochondria from hypothyroid and tri-iodothyronine-treated rats it is concluded that thyroid hormones increase mitochondrial respiration and ATP regeneration, which is associated with an acceleration of mitochondrial adenine nucleotide transport and significant alterations in the mitochondrial and cytosolic ATP/ADP ratios.  相似文献   

14.
Addition of iron(III)-gluconate complex to isolated rat liver mitochondria induced a net efflux of Ca2+ which was not inhibited by ruthenium red. This process resulted in the enhancement of Ca2+ cycling and a consequent membrane potential drop. Under these experimental conditions the content of mitochondrial glutathione did not appear to be critically modified, whereas an extensive oxidation of mitochondrial pyridine nucleotides was parallelly detected. Iron failed to induce appreciable changes in the oxidation level of pyridine nucleotides in mitochondria isolated from rats fed a selenium deficient diet, a condition in which mitochondrial glutathione peroxidase resulted inhibited by 80%. The iron-induced Ca2+ release in Se-deficient mitochondria appeared largely delayed and the membrane potential of these mitochondrial did not present gross alterations. Iron was also found to induce a transient increase in the mitochondrial cyanide-insensitive oxygen consumption. This effect was largely prevented by the addition of the hydrogen peroxide scavenger catalase. It was concluded that iron induced the activation of a specific Ca2+ efflux pathway via the oxidation of pyridine nucleotides due to the hydrogen peroxide metabolism by glutathione enzyme system.  相似文献   

15.
Mechanism of sodium independent calcium efflux from rat liver mitochondria   总被引:1,自引:0,他引:1  
On the basis of primarily two types of observations, it has been suggested that the Na+-independent Ca2+ efflux mechanism of rat liver mitochondria is a passive Ca2+-2H+ exchanger. First, when a pulse of acid is added to a suspension of mitochondria loaded with Ca2+, a pulse of intramitochondrial Ca2+ is often released, even in the presence of the inhibitor of mitochondrial Ca2+ influx, ruthenium red. Second, at a pH near 7, the stoichiometry of Ca2+ released to H+ taken up by Ca2+-loaded mitochondria, following treatment with ruthenium red, has been observed to be 1:2. This evidence for a Ca2+-2H+ exchanger is reexamined here by studying the release of Ca2+ upon acidification of the medium by addition of buffer, the dependence of liver mitochondrial Ca2+ efflux on external medium pH and intramitochondrial pH, and the Ca2+-Ca2+ exchange properties of the Ca2+ efflux mechanism. These studies show no pulse of mitochondrial Ca2+ efflux when pH is abruptly lowered by addition of buffer. The stoichiometry between Ca2+ and H+ fluxes is found to be highly pH dependent. The reported 1:2 stoichiometry between Ca2+ efflux and H+ influx is only observed at one pH. Furthermore, the rate of Ca2+ efflux from mitochondria is found to increase only very slightly at most as suspension pH is decreased. The rate of Ca2+ efflux is not found to increase with increasing intramitochondrial pH. Finally, no Ca2+-Ca2+ isotope exchange can be demonstrated over the Na+-independent efflux mechanism (i.e., in the presence of ruthenium red). It is concluded that these data do not support the hypothesis that the Na+-independent Ca2+ efflux mechanism is a passive Ca2+-2H+ exchanger.  相似文献   

16.
In rat liver mitochondria the amylrhodamine is responsible for uncoupling (respiratory stimulation in state 4) by two distinct processes. Immediately after amylrhodamine addition (2-12 microM) stimulation of respiration takes place. Respiration rate for this phase is constant in time, it is independent of the potassium or inorganic phosphate content in the medium, not inhibited by oligomycin, ruthenium red, cyclosporine A, N-ethyl-maleimide and EGTA. The second phase of the respiratory stimulation is not linear in time. Respiration rate within this phase increases with rising of potassium and phosphate content in the medium. This effect is abolished by oligomycin, ruthenium red, cyclosporine A, N-ethylmaleimide and EGTA. The beginning of respiratory increment coincides with the second phase of Ca2+ release from mitochondria.  相似文献   

17.
When intact rat heart mitochondria were pulsed with 150 nmol of CaCl2/mg of mitochondrial protein, only a marginal stimulation of the rate of oxygen consumption was observed. This result was obtained with mitochondria isolated in either the presence or absence of nagarse. In contrast, rat liver mitochondria under similar conditions demonstrated a rapid, reversible burst of respiration associated with energy-linked calcium accumulation. Direct analysis of calcium retention using 45Ca and Millipore filtration indicated that calcium was accumulated by heart mitochondria under the above conditions via a unique energy-dependent process. The rate of translocation by heart mitochondria was less than that of liver mitochondria; likewise the release of bound calcium back into the medium was also retarded. These results suggest that the slower accumulation and release of calcium is characteristic of heart mitochondria. The amound of calcium bound was independent of penetrant anions at low calcium concentrations. Above 100 nmol/mg of mitochondrial protein, the total calcium bound was increased by the presence of inorganic phosphate. Under nonrespiring conditions, a biphasic Scatchard plot indicative of binding sites with different affinities for Ca2+ was observed. The extrapolated constants are 7.5 nmol/mg bound with an apparent half-saturation value of 75 muM and 42.5 nmol/mg bound with half-saturation at 1.15 mM. The response of the reduced State 4 cytochrome b to pulsed additions of Ca2+ was used to calculate an energy-dependent half-saturation constant of 40 muM. When the concentration of free calcium was stabilized at low levels with Ca2+-EGTA buffers, the spectrophotometrically determined binding constant decreased two orders of magnitude to an apparent affinity of 4.16 X 10(-7) M. Primary of calcium transport over oxidative phosphorylation was not observed with heart mitochondria. The phosphorylation of ADP competed with Ca2+ accumulation, depressed the rates of cation transport, and altered the profile of respiration-linked H+ movements. Consistent with these result was the observation that with liver mitochondrial the magnitude of the cytochrome b oxidation-reduction shift was greater for Ca2+ than for ADP, whereas calcium responses never surpassed the ADP response in heart mitochondria. Furthermore, Mg2+ ingibited calcium accumulation by heart mitochondria while having only a slight effect upon calcium transport in liver mitochondria. The unique energetics of heart mitochondrial calcium transport are discussed relative to the regulated flux of cations during the cardiac excitation-relaxation cycle.  相似文献   

18.
Heart mitochondria isolated from 14- to 21-day-old chicks are highly coupled and often have respiratory control ratio (RCR) values exceeding 100. This paper presents data from a study of some of the properties of these mitochondria. The studies show that: (a) The ADP:O ratios and the state 4 rates of respiration are highly dependent upon the concentration of mitochondria at which these parameters are measured. (b) The mitochondrial isolate is contaminated with at least two divalent cation-stimulated ATPase, of which one is the F1F0-ATPase of broken mitochondria. (c) The oligomycin-sensitive component of state 4 respiration is completely inhibited by ethylene glycol bis(beta-amino-ethylether) N,N'-tetraacetic acid (EGTA). This inhibition is biphasic and attributable to the differential affinity of EGTA for Ca(II) and Mg(II). (d) Ca(II) and Mg(II) stimulate state 4 respiration, thereby depressing RCR values. These cations also decrease ADP:O ratios from greater than or equal to 3.25 to 3.0 for some NAD-linked substrates. (e) Uncoupled (i.e., oligomycin-insensitive) state 4 respiration can be abolished by treating the mitochondria with Nagarse and by preincubating mitochondria with exogenous substrate. (f) The ADP:O ratios obtained when these heart mitochondria oxidize pyruvate/malate, alpha-ketoglutarate, and beta-hydroxybutyrate are fractional and significantly greater than 3.0.  相似文献   

19.
The mitochondrial role opening (MPT) induced by Ca2+ has been studied in isolated rat heart mitochondria. MPT was characterized as cyclosporine A-inhibited swelling accompanied by the loss of membrane potential (deltapsim) and Ca2+ efflux after the Ca2+ -loading which was followed spectrophotometrically after the Ca2+ -arsenaso-III complex formation. It has been shown that in suspension of isolated mitochondria MPT was activated by low (with maximum at about 20 microM Ca2+) and high concentrations of Ca2+ (the concentration curve shows a saturation at about 1.0-1.5 mM). In all the cases an access of Ca2+ ions to the matrix space of the mitochondria was necessary for MPT induction. MPT activated by low concentrations of Ca2+ was accompanied by slow decrease of deltapsim and slow release of Ca2+, enhanced by ruthenium red (RR), and was independent of the substrate used (glutamate or succinate). It had not been observed if the respiratory chain was inhibited, even if the Ca2+ access to the inner mitochondrial membrane was provided by Ca2+ -ionophore A23187. At high Ca2+ concentrations rapid Ca2+ -uptake and release via Ca2+ -uniporter (inhibited by ruthenium red) followed by extensive swelling (pore formation) have been observed. It had been supposed that rapid MPT at high concentrations of Ca2+ was the result of Ca2+ entrance to the mitochondrial matrix and depolarisation of the mitochondrial membrane. The data obtained show two different mechanisms of Ca2+ -induced MPT. The one is sensitive to the redox-state of the electron transport chain and is abolished if the respiration is inhibited. The other is independent of mitochondrial respiration and needs only Ca2+ access to the inner mitochondrial membrane and Ca2+ binding to some specific sites leading to MPT opening.  相似文献   

20.
The aim of the present work was to investigate the mechanisms of oxidative damage of the liver mitochondria under diabetes and intoxication in rats as well as to evaluate the possibility of corrections of mitochondrial disorders by pharmacological doses of melatonin. The experimental (30 days) streptozotocin‐induced diabetes mellitus caused a significant damage of the respiratory activity in rat liver mitochondria. In the case of succinate as a respiratory substrate, the ADP‐stimulated respiration rate V3 considerably decreased (by 25%, p < 0·05) as well as the acceptor control ratio (ACR) V3/V2 markedly diminished (by 25%, p < 0·01). We observed a decrease of the ADP‐stimulated respiration rate V3 by 35% (p < 0·05), with glutamate as substrate. In this case, ACR also decreased (by 20%, p < 0·05). Surprisingly, the phosphorylation coefficient ADP/O did not change under diabetic liver damage. Acute rat carbon tetrachloride‐induced intoxication resulted in considerable decrease of the phosphorylation coefficient because of uncoupling of the oxidation and phosphorylation processes in the liver mitochondria. The melatonin administration during diabetes (10 mg·kg‐1 body weight, 30 days, daily) showed a considerable protective effect on the liver mitochondrial function, reversing the decreased respiration rate V3 and the diminished ACR to the control values both for succinate‐dependent respiration and for glutamate‐dependent respiration. The melatonin administration to intoxicated animals (10 mg·kg−1 body weight, three times) partially increased the rate of succinate‐dependent respiration coupled with phosphorylation. The impairment of mitochondrial respiratory plays a key role in the development of liver injury under diabetes and intoxication. Melatonin might be considered as an effector that regulates the mitochondrial function under diabetes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号