首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent years have seen the establishment of structural genomics centers that explicitly target integral membrane proteins. Here, we review the advances in targeting these extremely high-hanging fruits of structural biology in high-throughput mode. We observe that the experimental determination of high-resolution structures of integral membrane proteins is increasingly successful both in terms of getting structures and of covering important protein families, for example, from Pfam. Structural genomics has begun to contribute significantly toward this progress. An important component of this contribution is the set up of robotic pipelines that generate a wealth of experimental data for membrane proteins. We argue that prediction methods for the identification of membrane regions and for the comparison of membrane proteins largely suffice to meet the challenges of target selection for structural genomics of membrane proteins. In contrast, we need better methods to prioritize the most promising members in a family of closely related proteins and to annotate protein function from sequence and structure in absence of homology.  相似文献   

2.
结构基因组学研究与核磁共振   总被引:4,自引:0,他引:4  
各种生物的基因组DNA测序计划的完成,将结构生物学带入了结构基因组学时代.结构基因组学是对所有基因组产物结构的系统性测定,它运用高通量的选择、表达、纯化以及结构测定和计算分析手段,为基因组的每个蛋白质产物提供实验测定的结构或较好的理论模型,这将加速生命科学各个领域的研究.生物信息学、基因工程、结构测定技术等的发展为结构基因组学研究提供了保证.近年来核磁共振在技术方法上的进展,使其成为结构基因组学高通量结构分析中的一个关键方法.  相似文献   

3.
The first crucial step in any structural genomics project is the selection and prioritization of target proteins for structure determination. There may be a number of selection criteria to be satisfied, including that the proteins have novel folds, that they be representatives of large families for which no structure is known, and so on. The better the selection at this stage, the greater is the value of the structures obtained at the end of the experimental process. This value can be further enhanced once the protein structures have been solved if the functions of the given proteins can also be determined. Here we describe the methods used at either end of the experimental process: firstly, sensitive sequence comparison techniques for selecting a high-quality list of target proteins, and secondly the various computational methods that can be applied to the eventual 3D structures to determine the most likely biochemical function of the proteins in question.  相似文献   

4.
The problem of rational target selection for protein structure determination in structural genomics projects on microbes is addressed. A flexible computational procedure is described that directly incorporates the whole body of annotation available in the PEDANT genome database into the sequence clustering and selection process in order to identify proteins that are likely to possess currently unknown structural domains. Filtering out gene products based on predicted structural features, such as known three-dimensional structures and transmembrane regions, allows one to reduce the complexity of neighbor relationships between sequences and all but eliminates the need for further partitioning of single-linkage clusters into disjoint protein groups corresponding to homologous families. The results of a large-scale computation experiment in which exemplary target selection for 32 prokaryotic genomes was conducted are presented.  相似文献   

5.
Structural genomics has the goal of obtaining useful, three-dimensional models of all proteins by a combination of experimental structure determination and comparative model building. We evaluate different strategies for optimizing information return on effort. The strategy that maximizes structural coverage requires about seven times fewer structure determinations compared with the strategy in which targets are selected at random. With a choice of reasonable model quality and the goal of 90% coverage, we extrapolate the estimate of the total effort of structural genomics. It would take approximately 16,000 carefully selected structure determinations to construct useful atomic models for the vast majority of all proteins. In practice, unless there is global coordination of target selection, the total effort will likely increase by a factor of three. The task can be accomplished within a decade provided that selection of targets is highly coordinated and significant funding is available.  相似文献   

6.
7.
Structural genomics is a broad initiative of various centers aiming to provide complete coverage of protein structure space. Because it is not feasible to experimentally determine the structures of all proteins, it is generally agreed that the only viable strategy to achieve such coverage is to carefully select specific proteins (targets), determine their structure experimentally, and then use comparative modeling techniques to model the rest. Here we suggest that structural genomics centers refine the structure-driven approach in target selection by adopting function-based criteria. We suggest targeting functionally divergent superfamilies within a given structural fold so that each function receives a structural characterization. We have developed a method to do so, and an itemized survey of several functionally rich folds shows that they are only partially functionally characterized. We call upon structural genomics centers to consider this approach and upon computational biologists to further develop function-based targeting methods.  相似文献   

8.
Structural genomics (or proteomics) activities are critically dependent on the availability of high-throughput structure determination methodology. Development of such methodology has been a particular challenge for NMR based structure determination because of the demands for isotopic labeling of proteins and the requirements for very long data acquisition times. We present here a methodology that gains efficiency from a focus on determination of backbone structures of proteins as opposed to full structures with all sidechains in place. This focus is appropriate given the presumption that many protein structures in the future will be built using computational methods that start from representative fold family structures and replace as many as 70% of the sidechains in the course of structure determination. The methodology we present is based primarily on residual dipolar couplings (RDCs), readily accessible NMR observables that constrain the orientation of backbone fragments irrespective of separation in space. A new software tool is described for the assembly of backbone fragments under RDC constraints and an application to a structural genomics target is presented. The target is an 8.7 kDa protein from Pyrococcus furiosus, PF1061, that was previously not well annotated, and had a nearest structurally characterized neighbor with only 33% sequence identity. The structure produced shows structural similarity to this sequence homologue, but also shows similarity to other proteins, which suggests a functional role in sulfur transfer. Given the backbone structure and a possible functional link this should be an ideal target for development of modeling methods.  相似文献   

9.
Liu J  Hegyi H  Acton TB  Montelione GT  Rost B 《Proteins》2004,56(2):188-200
A central goal of structural genomics is to experimentally determine representative structures for all protein families. At least 14 structural genomics pilot projects are currently investigating the feasibility of high-throughput structure determination; the National Institutes of Health funded nine of these in the United States. Initiatives differ in the particular subset of "all families" on which they focus. At the NorthEast Structural Genomics consortium (NESG), we target eukaryotic protein domain families. The automatic target selection procedure has three aims: 1) identify all protein domain families from currently five entirely sequenced eukaryotic target organisms based on their sequence homology, 2) discard those families that can be modeled on the basis of structural information already present in the PDB, and 3) target representatives of the remaining families for structure determination. To guarantee that all members of one family share a common foldlike region, we had to begin by dissecting proteins into structural domain-like regions before clustering. Our hierarchical approach, CHOP, utilizing homology to PrISM, Pfam-A, and SWISS-PROT chopped the 103,796 eukaryotic proteins/ORFs into 247,222 fragments. Of these fragments, 122,999 appeared suitable targets that were grouped into >27,000 singletons and >18,000 multifragment clusters. Thus, our results suggested that it might be necessary to determine >40,000 structures to minimally cover the subset of five eukaryotic proteomes.  相似文献   

10.
It has been previously shown that protein sequences containing a quasi-repetitive assortment of amino acids are common in genomes and databases such as Swiss-Prot but are under-represented in the structure-based Protein Data Bank (PDB). Structural genomics groups have been using the absence of these “low-complexity” sequences for several years as a way to select proteins that have a good chance of successful structure determination. In this study, we examine the data deposited in the PDB as well as the available data from structural genomics groups in TargetDB and PepcDB to reveal interesting trends that could be taken into consideration when using low-complexity sequences as part of the target selection process.  相似文献   

11.
Structural genomics (or proteomics) activities are critically dependent on the availability of high-throughput structure determination methodology. Development of such methodology has been a particular challenge for NMR based structure determination because of the demands for isotopic labeling of proteins and the requirements for very long data acquisition times. We present here a methodology that gains efficiency from a focus on determination of backbone structures of proteins as opposed to full structures with all sidechains in place. This focus is appropriate given the presumption that many protein structures in the future will be built using computational methods that start from representative fold family structures and replace as many as 70% of the sidechains in the course of structure determination. The methodology we present is based primarily on residual dipolar couplings (RDCs), readily accessible NMR observables that constrain the orientation of backbone fragments irrespective of separation in space. A new software tool is described for the assembly of backbone fragments under RDC constraints and an application to a structural genomics target is presented. The target is an 8.7 kDa protein from Pyrococcus furiosus, PF1061, that was previously not well annotated, and had a nearest structurally characterized neighbor with only 33% sequence identity. The structure produced shows structural similarity to this sequence homologue, but also shows similarity to other proteins, which suggests a functional role in sulfur transfer. Given the backbone structure and a possible functional link this should be an ideal target for development of modeling methods. This revised version was published online in March 2005 with corrections to the references.  相似文献   

12.
We describe our strategy for selecting targets for protein structure determination in context of structural genomics of a single genome. In the course of target selection, we have studied two of the smallest microbial genomes, Mycoplasma genitalium and Mycoplasma pneumoniae. To our surprise, we found that only 71 Mycoplasma genes or their orthologues can be considered as easy targets for high-throughput structural studies--far fewer than expected. We discuss the methods and criteria used for target selection and the reasons explaining rarity of easy targets. First, despite the common opinion that protein folds can be predicted for only 30-50% of genes, the number of "truly unknown" structures is less than one-third. Second, due to the different codon usage, two thirds of Mycoplasma proteins cannot be directly expressed in E. coli in high-throughput manner and require substitution by their homologues from other organisms. Third, membrane or large multi-domain proteins are difficult targets because of solubility and size issues and often require identification and structure determination of protein domains. Finally, we propose different approaches to address the difficult targets.  相似文献   

13.
Current interests in structural genomics, and the associated need for high through-put structure determination methods, offer an opportunity to examine new nuclear magnetic resonance (NMR) methodology and the impact this methodology can have on structure determination of proteins. The time required for structure determination by traditional NMR methods is currently long, but improved hardware, automation of analysis, and new sources of data such as residual dipolar couplings promise to change this. Greatly improved efficiency, coupled with an ability to characterize proteins that may not produce crystals suitable for investigation by X-ray diffraction, suggests that NMR will play an important role in structural genomics programs.  相似文献   

14.
Structural genomics: computational methods for structure analysis   总被引:2,自引:0,他引:2       下载免费PDF全文
The success of structural genomics initiatives requires the development and application of tools for structure analysis, prediction, and annotation. In this paper we review recent developments in these areas; specifically structure alignment, the detection of remote homologs and analogs, homology modeling and the use of structures to predict function. We also discuss various rationales for structural genomics initiatives. These include the structure-based clustering of sequence space and genome-wide function assignment. It is also argued that structural genomics can be integrated into more traditional biological research if specific biological questions are included in target selection strategies.  相似文献   

15.

Background  

The availability of suitable recombinant protein is still a major bottleneck in protein structure analysis. The Protein Structure Factory, part of the international structural genomics initiative, targets human proteins for structure determination. It has implemented high throughput procedures for all steps from cloning to structure calculation. This article describes the selection of human target proteins for structure analysis, our high throughput cloning strategy, and the expression of human proteins in Escherichia colihost cells.  相似文献   

16.
The process of experimental determination of protein structure is marred with a high ratio of failures at many stages. With availability of large quantities of data from high-throughput structure determination in structural genomics centers, we can now learn to recognize protein features correlated with failures; thus, we can recognize proteins more likely to succeed and eventually learn how to modify those that are less likely to succeed. Here, we identify several protein features that correlate strongly with successful protein production and crystallization and combine them into a single score that assesses "crystallization feasibility." The formula derived here was tested with a jackknife procedure and validated on independent benchmark sets. The "crystallization feasibility" score described here is being applied to target selection in the Joint Center for Structural Genomics, and is now contributing to increasing the success rate, lowering the costs, and shortening the time for protein structure determination. Analyses of PDB depositions suggest that very similar features also play a role in non-high-throughput structure determination, suggesting that this crystallization feasibility score would also be of significant interest to structural biology, as well as to molecular and biochemistry laboratories.  相似文献   

17.
Structural genomics efforts contribute new protein structures that often lack significant sequence and fold similarity to known proteins. Traditional sequence and structure-based methods may not be sufficient to annotate the molecular functions of these structures. Techniques that combine structural and functional modeling can be valuable for functional annotation. FEATURE is a flexible framework for modeling and recognition of functional sites in macromolecular structures. Here, we present an overview of the main components of the FEATURE framework, and describe the recent developments in its use. These include automating training sets selection to increase functional coverage, coupling FEATURE to structural diversity generating methods such as molecular dynamics simulations and loop modeling methods to improve performance, and using FEATURE in large-scale modeling and structure determination efforts.  相似文献   

18.
19.
TargetDB: a target registration database for structural genomics projects   总被引:2,自引:0,他引:2  
TargetDB is a centralized target registration database that includes protein target data from the NIH structural genomics centers and a number of international sites. TargetDB, which is hosted by the Protein Data Bank (RCSB PDB), provides status information on target sequences and tracks their progress through the various stages of protein production and structure determination. A simple search form permits queries based on contributing site, target ID, protein name, sequence, status and other data. The progress of individual targets or entire structural genomics projects may be tracked over time, and target data from all contributing centers may also be downloaded in the XML format. AVAILABILITY: TargetDB is available at http://targetdb.pdb.org/  相似文献   

20.
The flood of new genomic sequence information together with technological innovations in protein structure determination have led to worldwide structural genomics (SG) initiatives. The goals of SG initiatives are to accelerate the process of protein structure determination, to fill in protein fold space and to provide information about the function of uncharacterized proteins. In the long-term, these outcomes are likely to impact on medical biotechnology and drug discovery, leading to a better understanding of disease as well as the development of new therapeutics. Here we describe the high throughput pipeline established at the University of Queensland in Australia. In this focused pipeline, the targets for structure determination are proteins that are expressed in mouse macrophage cells and that are inferred to have a role in innate immunity. The aim is to characterize the molecular structure and the biochemical and cellular function of these targets by using a parallel processing pipeline. The pipeline is designed to work with tens to hundreds of target gene products and comprises target selection, cloning, expression, purification, crystallization and structure determination. The structures from this pipeline will provide insights into the function of previously uncharacterized macrophage proteins and could lead to the validation of new drug targets for chronic obstructive pulmonary disease and arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号