首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The focus of the present study is the long term element of muscle fatigue provoked by prolonged intermittent contractions at submaximal force levels and analysed by force, surface electromyography (EMG) and mechanomyogram (MMG). It was hypothesized that fatigue related changes in mechanical performance of the biceps muscle are more strongly reflected in low than in high force test contractions, more prominent in the MMG than in the EMG signal and less pronounced following contractions controlled by visual compared to proprioceptive feedback. Further, it was investigated if fatigue induced by 30 min intermittent contractions at 30% as well as 10% of maximal voluntary contraction (MVC) lasted more than 30 min recovery. In six male subjects the EMG and MMG were recorded from the biceps brachii muscle during three sessions with fatiguing exercise at 10% with visual feedback and at 30% MVC with visual and proprioceptive feedback. EMG, MMG, and force were evaluated during isometric test contractions at 5% and 80% MVC before prolonged contraction and after 10 and 30 min of recovery. MVC decreased significantly after the fatiguing exercise in all three sessions and was still decreased even after 30 min of recovery. In the time domain significant increases after the fatiguing exercise were found only in the 5% MVC tests and most pronounced for the MMG. No consistent changes were found for neither EMG nor MMG in the frequency domain and feedback mode did not modify the results. It is concluded that long term fatigue after intermittent contractions at low force levels can be detected even after 30 min of recovery in a low force test contraction. Since the response was most pronounced in the MMG this may be a valuable variable for detection of impairments in the excitation-contraction coupling.  相似文献   

2.
The aim of the study was to investigate amplitude and frequency content of single motor unit (MU) electromyographic (EMG) and mechanomyographic (MMG) responses. Multi-channel surface EMG and MMG signals were detected from the dominant biceps brachii muscle of 10 volunteers during isometric voluntary contractions at 20%, 50%, and 80% of the maximal voluntary contraction (MVC) force. Each contraction was performed three times in the experimental session which was repeated in three non-consecutive days. Single MU action potentials were identified from the surface EMG signals and their times of occurrence used to trigger the averaging of the MMG signal. At each contraction level, the MUs with action potentials of highest amplitude were identified. Single MU EMG and MMG amplitude and mean frequency were estimated with normalized standard error of the mean within subjects (due to repetition of the measure in different trials and experimental sessions) smaller than 15% and 7%, respectively, in all conditions. The amplitude of the action potentials of the detected MUs increased with increasing force (mean +/- SD, 244 +/- 116 microV at 20% MVC, and 1426 +/- 638 microV at 80% MVC; P < 0.001) while MU MMG amplitude increased from 20% to 50% MVC (40.5 +/- 20.9 and 150 +/- 88.4 mm/s(2), respectively; P<0.001) and did not change significantly between 50% and 80% MVC (129 +/ -82.7 mm/s(2) at 80% MVC). MU EMG mean frequency decreased with contraction level (20% MVC: 97.2 +/- 13.9 Hz; 80% MVC: 86.2 +/- 11.4 Hz; P < 0.001) while MU MMG mean frequency increased (20% MVC: 33.2 +/- 6.8 Hz; 80% MVC: 40.1 +/- 6.1 Hz; P < 0.001). EMG peak-to-peak amplitude and mean frequency of individual MUs were not correlated with the corresponding variables of MMG at any contraction level.  相似文献   

3.
It is well accepted that a low intensity/long duration isometric contraction induces more low frequency fatigue (LFF) compared to a high-intensity/short-duration contraction. However, previous reports examined the intensity/duration of the contraction but did not control the level of fatigue when concluding fatigue is task dependent. The purpose of this study was to determine whether a long duration/low intensity fatiguing contraction would induce greater LFF than a short duration/high-intensity contraction when the quadriceps muscle was fatigued to similar levels. Eighteen healthy male subjects performed quadriceps contractions sustained at 35% and 65% of maximal voluntary contraction (MVC) on separate days, until the tasks induced a similar amount of fatigue (force generating capacity=45% MVC). Double pulse torque to single pulse torque ratio (D/S ratio) was obtained before, immediately and 5min after fatigue along with the electromyographic (EMG) signal from vastus medialis (VM) and rectus femoris (RF). The D/S ratio significantly (p<0.05) increased by 8.7+/-8.5% (mean+/-SD) and 10.2+/-9.2% after 35% and 65% tasks, respectively, and remained elevated 5min into recovery; however, there was no significant difference in ratio between the two sessions immediately or 5min post-fatigue (p>0.05) even though the endurance time for the 35% fatigue task (124+/-39.68s) was significantly longer (p=0.05) than that of the 65% task (63+/-17.73s). EMG amplitude and median power frequency (MPF) analysis also did not reveal any significant differences between these two sessions after fatigue. These findings indicate that LFF fatigue is fatigue dependent as well as task intensity/duration dependent. These findings assist us in understanding task dependency and muscle fatigue.  相似文献   

4.
In surface electromyogram (EMG) and mechanomyogram (MMG) the electrical and mechanical activities of recruited motor units (MU) are summated. Muscle fatigue influences the electrical and mechanical properties of the active MU. The aim of this study was to evaluate fatigue-induced changes in the electrical and mechanical properties of MU after a short recovery period, using an analysis of force, surface EMG and MMG. In seven subjects the EMG and MMG were recorded from the biceps brachii muscle during sustained isometric effort at 80% of the maximal voluntary contraction (MVC), before (test 1) and 10 min after (test 2) a fatiguing exercise. From the time and frequency domain analysis of the signals, the root mean square (rms) and the mean frequency () of the power spectrum were calculated. The results were that the mean MVC was 412 (SEM 90) N and 304 (SEM 85) N in fresh and fatigued muscle, respectively; during tests 1 and 2 the mean EMG rms increased from 0.403 (SEM 0.07) mV to 0.566 (SEM 0.09) mV and from 0.476 (SEM 0.07) mV to 0.63 (SEM 0.09) mV, respectively; during test 1 the mean MMG rms decreased from 9.4 (SEM 0.8) mV to 5.7 (SEM 0.9) mV; in contrast, during test 2 constantly lower values were observed throughout contraction; during tests 1 and 2 the EMG declined from 122 (SEM 7) Hz to 74 (SEM 7) Hz and from 106 (SEM 8) Hz to 60 (SEM 7) Hz, respectively; during test 1 the MMG increased in the first 6 s from 19.3 (SEM 1.4) Hz to 23.9 (SEM 2.9) Hz, falling to 13.9 (SEM 1.3) Hz at the end of contraction; in contrast, during test 2 the MMG declined continuously from 18.7 (SEM 1) Hz to 12.4 (SEM 0.8) Hz. The lower MVC after the fatiguing exercise and the changes in the EMG parameters confirmed that 10 min after the fatiguing exercise, the mechanical and electrical activities of MU were altered. In addition, the MMG results suggested that after a 10-min recovery, some highly fatigable MU might not be recruitable. Accepted: 9 June 1998  相似文献   

5.
The purposes of this study were to examine the mechanomyographic (MMG) and electromyographic (EMG) time and frequency domain responses of the vastus lateralis (VL) and rectus femoris (RF) muscles during isometric ramp contractions and compare the time-frequency of the MMG and EMG signals generated by the short-time Fourier transform (STFT) and continuous wavelet transform (CWT). Nineteen healthy subjects (mean+/-SD age=24+/-4 years) performed two isometric maximal voluntary contractions (MVCs) before and after completing 2-3, 6-s isometric ramp contractions from 5% to 100% MVC with the right leg extensors. MMG and surface EMG signals were recorded from the VL and RF muscles. Time domains were represented as root mean squared amplitude values, and time-frequency representations were generated using the STFT and CWT. Polynomial regression analyses indicated cubic increases in MMG amplitude, MMG frequency, and EMG frequency, whereas EMG amplitude increased quadratically. From 5% to 24-28% MVC, MMG amplitude remained stable while MMG frequency increased. From 24-28% to 76-78% MVC, MMG amplitude increased rapidly while MMG frequency plateaued. From 76-78% to 100% MVC, MMG amplitude plateaued (VL) or decreased (RF) while MMG frequency increased. EMG amplitude increased while EMG frequency changed only marginally across the force spectrum with no clear deflection points. Overall, these findings suggested that MMG may offer more unique information regarding the interactions between motor unit recruitment and firing rate that control muscle force production during ramp contractions than traditional surface EMG. In addition, although the STFT frequency patterns were more pronounced than the CWT, both algorithms produced similar time-frequency representations for tracking changes in MMG or EMG frequency.  相似文献   

6.
To investigate the time- and frequency-domain responses of mechanomyograms (MMGs) during the progressive fatigue induced by intermittent incremental contractions, a surface MMG was obtained from the three muscle heads of the quadriceps muscle in seven subjects while they performed isometric knee extensions lasting 7.6 min. Isometric intermittent incremental contractions started at 1% of the maximal voluntary contraction (MVC) for 3 s, with a 3-s relaxation period in between each contraction, and the contraction level was increased by 1% of MVC for every contraction (by 10% of MVC per min) up to exhaustion. Separate contractions with sufficient rest periods were also conducted to serve for the MMG characteristics without fatigue. The integrated MMG (iMMG) was linearly related to force in all of the muscles when fatigue was not involved. With regard to the incremental contractions, the relationship exhibited an ascending-descending shape, but the behavior was not the same for the individual muscle heads, especially for the rectus femoris muscle. A steep increase in the median frequency of MMG from around 60% of MVC corresponded to a decrease in iMMG. These results suggest that analysis of MMG in the time- and frequency-domain during an incremental protocol is a useful way of characterizing the motor unit recruitment strategy and fatigue properties of individual muscles. Accepted: 19 March 1998  相似文献   

7.
The purpose of this pilot study was to determine the influence of oral contraceptives (OC) on electromyography (EMG) and mechanomyography (MMG) during isometric (ISO) muscle actions of the rectus femoris. Two groups of women (Mean +/- SEM, 24 +/- 1 yrs, 1.68 +/- 0.02 m, 70.97 +/- 4.81 kg) were recruited and tested five times throughout one complete menstrual cycle. The first group (n=7) were not taking hormonal treatment (NOC) and the OC group (n=6) had been taking exogenous hormones for at least six months prior. Each participant performed maximal ISO muscle actions (MVC) of the leg extensors on a Cybex II isokinetic dynamometer followed by randomly assigned sub-maximal ISO muscle actions. Bipolar surface EMG electrodes were placed over the rectus femoris with a piezoelectric MMG recording device placed between the two electrodes. Three separate three way (group x day x %MVC) mixed factorial repeated measures ANOVAs were used to determine differences in torque, EMG and MMG between NOC and OC subjects. There were no significant three-way interactions involving group for normalized torque, EMG or MMG. These results indicated that OC does not have an effect on torque, EMG or MMG during ISO muscle actions of the rectus femoris.  相似文献   

8.
The purpose of this study was to examine the patterns for the mechanomyographic (MMG) and electromyographic (EMG) amplitude and mean power frequency (MPF) vs. torque relationships during submaximal to maximal isometric and isokinetic muscle actions. Seven men (mean +/- SD age, 22.4 +/- 1.3 years) volunteered to perform isometric and concentric isokinetic leg extension muscle actions at 20, 40, 60, 80, and 100% of maximal voluntary contraction (MVC) and peak torque (PT) on a Cybex II dynamometer. A piezoelectric MMG recording sensor was placed between bipolar surface EMG electrodes on the vastus medialis. Polynomial regression and separate 1-way repeated-measures analysis of variance were used to analyze the EMG amplitude, MMG amplitude, EMG MPF, and MMG MPF data for the isometric and isokinetic muscle actions. For the isometric muscle actions, EMG amplitude (R(2) = 0.999) and MMG MPF (R(2) = 0.946) increased to MVC, mean MMG amplitude increased to 60% MVC and then plateaued, and mean EMG MPF did not change (p > 0.05) across torque levels. For the isokinetic muscle actions, EMG amplitude (R(2) = 0.988) and MMG amplitude (R(2) = 0.933) increased to PT, but there were no significant mean changes with torque for EMG MPF or MMG MPF. The different torque-related responses for EMG and MMG amplitude and MPF may reflect differences in the motor control strategies that modulate torque production for isometric vs. dynamic muscle actions. These results support the findings of others and suggest that isometric torque production was modulated by a combination of recruitment and firing rate, whereas dynamic torque production was modulated primarily through recruitment.  相似文献   

9.
The purpose of this study was to investigate systematically if complementary knowledge could be obtained from the recordings of electromyography (EMG) and mechanomyography (MMG) signals. EMG and MMG activities were recorded from the first dorsal interosseous muscle during slow concentric, isometric, and eccentric contraction at 0, 25, 50, 75 and 100% of the maximal voluntary contraction (MVC). The combination of the EMG and MMG recordings during voluntary concentric-isometric-eccentric contraction showed significant different non-linear EMG/force and MMG/force relationships (P<0.001). The EMG root mean square (rms) values increased significantly from 0 to 50% MVC during concentric and isometric contraction and up to 75% MVC during eccentric contraction (P<0.05). The MMG rms values increased significantly from 0 to 50% MVC during concentric contraction (P<0.05). The non-linear relationships depended mainly on the type and the level of contraction together with the angular velocity. Furthermore, the type of contraction, the contraction level, and the angular velocity influenced the electromechanical efficiency evaluated as the MMG to EMG ratio (P<0.05). These results highlight that EMG and MMG provide complementary information about the electrical and mechanical activity of the muscle. Different activation strategies seem to be used during graded isometric and anisometric contraction.  相似文献   

10.
The purpose of this study was to investigate the influence of eccentric contractions (ECC) on the biceps (BB) and triceps brachii (TB) muscles during maximal voluntary contraction (MVC) of elbow flexors using electrical (EMG) and mechanomyographical activities (MMG). Each of 18 male students performed 25 submaximal contractions (50% MVC) of the elbow flexors. Root mean square amplitude (RMS) and median frequency (MDF) were calculated for the EMG and MMG signals recorded during MVC. All measurements were taken before, immediately after, 24, 48, 72, and 120 h post-ECC from the BB and TB muscles. MVC was reduced by 34% immediately after exercise and did not return to the resting value within 120 h (P0.05). The EMG MDF decreased significantly (P< or =0.05) in both muscles after ECC. The MMG RMS at 24h, 48, 72 and 120 h post-ECC was significantly lower compared to that recorded immediately after ECC in both muscles (P< or =0.05). The present research showed that (i) there were similar changes in electrical and mechanical activities during MVC after submaximal ECC in agonist and antagonist muscles suggesting a common drive controlling the agonist and antagonist motoneuron pool, (ii) the ECC induced different changes in EMG than in MMG immediately after ECC and during 120 h of recovery that suggested an increased tremor and contractile impairments, i.e., reduced rate of calcium release from the sarcoplasmic reticulum (acute effect), and changes in motor control mechanisms of agonist and antagonist muscles, and increased muscle stiffness (chronic effect).  相似文献   

11.
This study was to investigate the properties of mechanomyography (MMG), or muscle sound, of the paretic muscle in the affected side of hemiplegic subjects after stroke during isometric voluntary contractions, in comparison with those from the muscle in the unaffected side of the hemiplegic subjects and from the healthy muscle of unimpaired subjects. MMG and electromyography (EMG) signals were recorded simultaneously from the biceps brachii muscles of the dominant arm of unimpaired subjects (n=5) and the unaffected and affected arms of subjects after stroke (n=8), when performing a fatiguing maximal voluntary contraction (MVC) associated with the decrease in elbow flexion torque, and then submaximal elbow flexions at 20%, 40%, 60% and 80% MVCs. The root mean squared (RMS) values, the mean power frequencies (MPF, in the power density spectrum, PDS) of the EMG and MMG, and the high frequency rate (HF-rate, the ratio of the power above 15Hz in the MMG PDS) were used for the analysis. The MMG RMS decreased more slowly during the MVC in the affected muscle compared to the healthy and unaffected muscles. A transient increase could be observed in the MMG MPFs from the unaffected and healthy muscles during the MVC, associated with the decrease in their simultaneous EMG MPFs due to the muscular fatigue. No significant variation could be seen in the EMG and MMG MPFs in the affected muscles during the MVC. The values in the MPF and HF-rate of MMG from the affected muscles were significantly lower than those from the healthy and unaffected muscles (P<0.05) at the high contraction level (80% MVC). Both the MMG and EMG RMS values in the healthy and unaffected groups were found to be significantly higher than the affected group (P<0.05) at 60% and 80% MVCs. These observations were related to an atrophy of the fast-twitch fibers and a reduction of the neural input in the affected muscles of the hemiplegic subjects. The results in this study suggested MMG could be used as a complementary to EMG for the analysis on muscular characteristics in subjects after stroke.  相似文献   

12.
This study investigated biceps brachii oxygenation and myoelectrical activity during and following maximal eccentric exercise to better understand the repeated-bout effect. Ten men performed two bouts of eccentric exercise (ECC1, ECC2), consisting of 10 sets of 6 maximal lengthening contractions of the elbow flexors separated by 4 wk. Tissue oxygenation index minimum amplitude (TOI(min)), mean and maximum total hemoglobin volume by near-infrared spectroscopy, torque, and surface electromyography root mean square (EMG(RMS)) during exercise were compared between ECC1 and ECC2. Changes in maximal voluntary isometric contraction (MVC) torque, range of motion, plasma creatine kinase activity, muscle soreness, TOI(min), and EMG(RMS) during sustained (10-s) and 30-repeated isometric contraction tasks at 30% (same absolute force) and 100% MVC (same relative force) for 4 days postexercise were compared between ECC1 and ECC2. No significant differences between ECC1 and ECC2 were evident for changes in torque, TOI(min), mean total hemoglobin volume, maximum total hemoglobin volume, and EMG(RMS) during exercise. Smaller (P < 0.05) changes and faster recovery of muscle damage markers were evident following ECC2 than ECC1. During 30% MVC tasks, TOI(min) did not change, but EMG(RMS) increased 1-4 days following ECC1 and ECC2. During 100% MVC tasks, EMG(RMS) did not change, but torque and TOI(min) decreased 1-4 days following ECC1 and ECC2. TOI(min) during 100% MVC tasks and EMG(RMS) during 30% MVC tasks recovered faster (P < 0.05) following ECC2 than ECC1. We conclude that the repeated-bout effect cannot be explained by altered muscle activation or metabolic/hemodynamic changes, and the faster recovery in muscle oxygenation and activation was mainly due to faster recovery of force.  相似文献   

13.
The maximal rate of rise in muscle force [rate of force development (RFD)] has important functional consequences as it determines the force that can be generated in the early phase of muscle contraction (0-200 ms). The present study examined the effect of resistance training on contractile RFD and efferent motor outflow ("neural drive") during maximal muscle contraction. Contractile RFD (slope of force-time curve), impulse (time-integrated force), electromyography (EMG) signal amplitude (mean average voltage), and rate of EMG rise (slope of EMG-time curve) were determined (1-kHz sampling rate) during maximal isometric muscle contraction (quadriceps femoris) in 15 male subjects before and after 14 wk of heavy-resistance strength training (38 sessions). Maximal isometric muscle strength [maximal voluntary contraction (MVC)] increased from 291.1 +/- 9.8 to 339.0 +/- 10.2 N. m after training. Contractile RFD determined within time intervals of 30, 50, 100, and 200 ms relative to onset of contraction increased from 1,601 +/- 117 to 2,020 +/- 119 (P < 0.05), 1,802 +/- 121 to 2,201 +/- 106 (P < 0.01), 1,543 +/- 83 to 1,806 +/- 69 (P < 0.01), and 1,141 +/- 45 to 1,363 +/- 44 N. m. s(-1) (P < 0.01), respectively. Corresponding increases were observed in contractile impulse (P < 0.01-0.05). When normalized relative to MVC, contractile RFD increased 15% after training (at zero to one-sixth MVC; P < 0.05). Furthermore, muscle EMG increased (P < 0.01-0.05) 22-143% (mean average voltage) and 41-106% (rate of EMG rise) in the early contraction phase (0-200 ms). In conclusion, increases in explosive muscle strength (contractile RFD and impulse) were observed after heavy-resistance strength training. These findings could be explained by an enhanced neural drive, as evidenced by marked increases in EMG signal amplitude and rate of EMG rise in the early phase of muscle contraction.  相似文献   

14.
Ten young men sustained an isometric contraction of the knee extensor muscles at 20% of the maximum voluntary contraction (MVC) torque on three separate occasions in a seated posture. Subjects performed an isometric knee extension contraction on a fourth occasion in a supine posture. The time to task failure for the seated posture was similar across sessions (291 +/- 84 s; P > 0.05), and the MVC torque was similarly reduced across sessions after the fatiguing contraction (42 +/- 12%). The rate of increase in electromyograph (EMG) activity (%MVC) and torque fluctuations during the fatiguing contractions were similar across sessions. However, the rate of increase in EMG differed among the knee extensor muscles: the rectus femoris began at a greater amplitude (31.5 +/- 11.0%) compared with the vastus lateralis and vastus medialis muscles (18.8 +/- 5.3%), but it ended at a similar value (45.4 +/- 3.1%). The time to task failure and increase in EMG activity were similar for the seated and supine tasks; however, the reduction in MVC torque was greater for the seated posture. These findings indicate that the time to task failure for the knee extensor muscles that have a common tendon insertion did not alter over repeat sessions as had been observed for the elbow flexor muscles (Hunter SK and Enoka RM. J Appl Physiol 94: 108-118, 2003).  相似文献   

15.
To investigate the behavior of mechanomyogram (MMG) and electromyogram (EMG) signals in the time and frequency domains during sustained isometric contraction, MMG and surface EMG were obtained simultaneously from four muscles: upper trapezius (TP), anterior deltoid (DL), biceps brachii (BB), and brachioradialis (BR) of 10 healthy male subjects. Experimental conditions consisted of 27 combinations of 9 postures [3 shoulder angles (SA): 0 degree, 30 degrees, 60 degrees and 3 elbow angles (EA): 120 degrees, 90 degrees, 60 degrees] and 3 contraction levels: 20%, 40%, and 60% of maximum voluntary contraction (MVC). Subjective evaluations of fatigue were also assessed using the Borg scale at intervals of 60, 30, and 10 sec at 20%, 40%, and 60% MVC tests, respectively. The mean power frequency (MPF) and root mean square (RMS) of both signals were calculated. The current study found clear and significant relationships among physiological and psychological parameters on the one hand and SA and EA on the other. EA's effect on MVC was found to be significant. SA had a highly significant effect on both endurance time and Borg scale. In all experimental conditions, significant correlations were found between the changes in MPF and RMS of EMG in BB with SA and EA (or muscle length). In all four muscles, MMG frequency content was two or three times lower than EMG frequency content. During sustained isometric contraction, the EMG signal showed the well-known shift to lower frequencies (a continuous decrease from onset to completion of the contraction). In contrast, the MMG spectra did not show any shift, although its form changed (generally remaining about constant). Throughout the contraction, increased RMS of EMG was found for all tests, whereas in the MMG signal, a significant progressive increase in RMS was observed only at 20% MVC in all four muscles. This supports the hypothesis that the RMS amplitude of the MMG signal produced during contraction is highly correlated with force production. Possible explanations for this behavioral difference between the MMG and EMG signals are discussed.  相似文献   

16.
The present study compared three procedures for normalization of upper trapezius surface electromyographic (EMG) amplitudes: (a) a ramp procedure (providing data in per cent of maximal voluntary contraction, MVC); (b) a constant force procedure based on two reference contractions (two-force procedure) (%MVC) and (c) a procedure expressing muscle activation in per cent of a reference voluntary electrical activity (%RVE). The study also evaluated the repeatability of the ramp and the RVE procedures and estimated the force exertion (%MVC) corresponding to the RVE. To illustrate the ergonomic effect of different normalization procedures, trapezius EMG during two work tasks was compared after normalization by the two-force and the RVE procedures. Fifteen subjects participated in the whole study. We found that force estimates obtained by the ramp procedure equation could be translated to force estimates obtained by the two-force procedure by the equation: %MVC2force = − 0.6 + 0.9*%MVCramp, although with a considerable imprecision due to large inter-individual differences. In the ramp procedure, the intra-individual test-retest coefficient of variation (CV) depended on the force level; it was 45% at 5% MVC and 10% at 30% MVC. The CV of the RVE was 15%. The reference contraction used in the RVE procedure corresponded from 13–79% MVC (median 33%MVC). The load reducing effect of an ergonomic intervention was less obvious with the RVE procedure than with the two-force procedure due to a larger inter-individual variation. The advantages and disadvantages of the different procedures are discussed.  相似文献   

17.
The purpose of this investigation was to determine the mechanomyographic (MMG) amplitude and mean power frequency (MPF) versus torque (or force) relationships during isokinetic and isometric muscle actions of the biceps brachii. Ten adults (mean +/- SD age = 21.6 +/- 1.7 years) performed submaximal to maximal isokinetic and isometric muscle actions of the dominant forearm flexors. Following determination of isokinetic peak torque (PT) and the isometric maximum voluntary contraction (MVC), the subjects randomly performed submaximal step muscle actions in 10% increments from 10% to 90% PT and MVC. Polynomial regression analyses indicated that MMG amplitude increased linearly with torque during both the isokinetic (r2 = 0.982) and isometric (r2 = 0.956) muscle actions. From 80% to 100% of isometric MVC, however, MMG amplitude appeared to plateau. Cubic models provided the best fit for the MMG MPF versus isokinetic (R2 = 0.786) and isometric (R2 = 0.940) torque relationships, although no significant increase in MMG MPF was found from 10% to 100% of isokinetic PT. For the isometric muscle actions, however, MMG MPF remained relatively stable from 10% to 50% MVC, increased from 50% to 80% MVC, and decreased from 80% to 100% MVC. The results demonstrated differences in the MMG amplitude and MPF versus torque relationships between the isokinetic and isometric muscle actions. These findings suggested that the time and frequency domains of the MMG signal may be useful for describing the unique motor control strategies that modulate dynamic versus isometric torque production.  相似文献   

18.
Findings from five separate studies of EMG changes and muscle fatigue during prolonged low-level static contractions are summarized, and the possible mechanisms behind the changes are briefly discussed. Sustained static contractions (10%, 7% and 5% MVC) of up to 1 h duration were performed by finger flexors, elbow flexors and extensors, and knee extensors. In one experiment, intermittent static arm pulling (triceps) (10 s contraction and 5 s rest, average work load 14% and 10% MVC) was performed for 7 h. The endurance time for the sustained contractions was around one hour for 10% MVC, and it was shown--all in all--that the concept of "indefinite" endurance times at contractions below 15-20% MVC cannot be maintained. After 5% MVC sustained contractions for one hour a 12% reduction in MVC was seen, and significant increases in EMG amplitude and decreases in the mean spectral frequency of the EMG-power spectrum were found. Marked differences were also seen in the EMG changes in the elbow flexors and extensors, and transcutaneous electrical stimulation of the knee extensors showed that low frequency fatigue was present after the contraction. With intermittent contractions similar changes in the EMG parameters were seen after 2-3 h of contractions at 14% MVC. On average, during contractions of 10% MVC no EMG changes were detected. Increased extracellular potassium concentration in the contracting muscles is suggested as a possible explanation of these findings.  相似文献   

19.
Women are capable of longer endurance times compared with men for contractions performed at low to moderate intensities. The purpose of the study was 1) to determine the relation between the absolute target force and endurance time for a submaximal isometric contraction and 2) to compare the pressor response and muscle activation patterns of men [26.3 +/- 1.1 (SE) yr] and women (27.5 +/- 2.3 yr) during a fatiguing contraction performed with the elbow flexor muscles. Maximal voluntary contraction (MVC) force was greater for men (393 +/- 23 vs. 177 +/- 7 N), which meant that the average target force (20% of MVC) was greater for men (79.7 +/- 6.5 vs. 36.7 +/- 2.0 N). The endurance time for the fatiguing contractions was 118% longer for women (1,806 +/- 239 vs. 829 +/- 94 s). The average of the rectified electromyogram (%MVC) for the elbow flexor muscles at exhaustion was similar for men (31 +/- 2%) and women (30 +/- 2%). In contrast, the heart rate and mean arterial pressure (MAP) were less at exhaustion for women (94 +/- 6 vs. 111 +/- 7 beats/min and 121 +/- 5 vs. 150 +/- 6 mmHg, respectively). The target force and change in MAP during the fatiguing contraction were exponentially related to endurance time (r(2) = 0.68 and r(2) = 0.64, respectively), whereas the change in MAP was linearly related to target force (r(2) = 0.51). The difference in fatigability of men and women when performing a submaximal contraction was related to the absolute contraction intensity and was limited by mechanisms that were distal to the activation of muscle.  相似文献   

20.
Eighteen adults performed isometric muscle actions of the leg extensors at 25, 50, 75, and 100% maximal voluntary contraction (%MVC) at leg flexion angles of 25, 50, and 75 degrees. The results indicated that isometric torque production increased as leg flexion angle increased (75 degrees > 50 degrees > 25 degrees). For each muscle tested (rectus femoris, vastus lateralis, and vastus medialis), the EMG amplitude increased up to 100%MVC at each leg flexion angle (25, 50, and 75 degrees). The MMG amplitude for each muscle, however, increased up to 100%MVC at 25 and 50 degrees of leg flexion, but plateaued from 75 to 100%MVC at 75 degrees of leg flexion. We hypothesize that the varied patterns for the MMG amplitude-isometric torque relationships were due to leg flexion angle differences in: (1) muscle stiffness, (2) intramuscular fluid pressure, or (3) motor unit firing frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号