共查询到20条相似文献,搜索用时 15 毫秒
1.
Ran regulates nuclear import and export pathways by coordinating the assembly and disassembly of transport complexes. These transport reactions are linked to the GTPase cycle and subcellular distribution of Ran. Mog1 is an evolutionarily conserved nuclear protein that binds RanGTP and stimulates guanine nucleotide release, suggesting Mog1 regulates the nuclear transport functions of Ran. In the present study, we have characterized the nuclear import pathway of Mog1, and we have defined the domain in Mog1 that stimulates GTP release from Ran. In permeabilized cells, nuclear import of Mog1 is independent of exogenously added factors, and is inhibited by wheat germ agglutinin, indicating that translocation of Mog1 involves physical interactions with the nuclear pore complex. In contrast to RanGEF, which is restricted to the nucleus, Mog1 shuttles between the nucleus and the cytoplasm. Single-point mutations in acidic residues of Mog1 (Asp25, Asp34, Glu37) dramatically reduce GTP release and Ran binding activity, whereas mutation of a single basic residue (Arg30) renders Mog1 hyperactive for GTP release. These mutations map within a conserved, solvent-exposed loop in Mog1 that is functionally similar to the β-wedge used by RanGEF to promote nucleotide release from Ran. These data suggest that Mog1 and RanGEF use similar mechanisms to facilitate guanine nucleotide release from Ran. 相似文献
2.
3.
Grant JE Guo LW Vestling MM Martemyanov KA Arshavsky VY Ruoho AE 《The Journal of biological chemistry》2006,281(10):6194-6202
Dynamic regulation of G-protein signaling in the phototransduction cascade ensures the high temporal resolution of vision. In a key step, the activated alpha-subunit of transducin (Galphat-GTP) activates the cGMP phosphodiesterase (PDE) by binding the inhibitory gamma-subunit (PDEgamma). Significant progress in understanding the interaction between Galphat and PDEgamma was achieved by solving the crystal structure of the PDEgamma C-terminal peptide bound to Galphat in the transition state for GTP hydrolysis (Slep, K. C., Kercher, M. A., He, W., Cowan, C. W., Wensel, T. G., and Sigler, P. B. (2001) Nature 409, 1071-1077). However, some of the structural elements of each molecule were absent in the crystal structure. We have probed the binding surface between the PDEgamma C terminus and activated Galphat bound to guanosine 5'-O-(3-thio)-triphosphate (GTPgammaS) using a series of full-length PDEgamma photoprobes generated by intein-mediated expressed protein ligation. For each of seven PDEgamma photoprobe species, expressed protein ligation allowed one benzoyl-L-phenylalaine substitution at selected hydrophobic C-terminal positions, and the addition of a biotin affinity tag at the extreme C terminus. We have detected photocross-linking from several PDEgamma C-terminal positions to the Galphat-GTPgammaS N terminus, particularly from PDEgamma residue 73. The overall percentage of cross-linking to the Galphat-GTPgammaSN terminus was analyzed using a far Western method for examining Galphat-GTPgammaS proteolytic digestion patterns. Furthermore, mass spectrometric analysis of cross-links to Galphat from a benzoyl-phenylalanine replacement at PDEgamma position 86 localized the region of photoinsertion to Galphat N-terminal residues Galphat-(22-26). This novel Galphat/PDEgamma interaction suggests that the transducin N terminus plays an active role in signal transduction. 相似文献
4.
5.
The 1.9 A resolution X-ray crystal structure of Ran-binding protein Mog1p shows that it has a unique fold based on a six-stranded antiparallel beta-sheet backed on both sides by an extensive alpha-helix. The topology of some elements of Mog1p secondary structure resemble a portion of nuclear transport factor 2 (NTF2), but the hydrophobic cavity and surrounding negatively charged residues that are important in the NTF2-RanGDP interaction are not conserved in Mog1p. In addition to binding RanGTP, Mog1p forms a 1:1 complex with RanGDP and so binds Ran independent of its nucleotide state. Mog1p and NTF2 compete for binding to RanGDP indicating that their binding sites on RanGDP are sufficiently close to prevent both proteins binding simultaneously. Although there may be some overlap between the Mog1p and NTF2 binding sites on RanGDP, these sites are not identical. Sequence analysis of Mog1p homologues from Schizosaccharomyces pombe, human, and Caenorhabditis elegans in the context of the Mog1p crystal structure indicates the presence of a cluster of highly conserved surface residues consistent with an interaction site for Ran. 相似文献
6.
Yelena V Budovskaya Hiroko Hama Daryll B DeWald Paul K Herman 《The Journal of biological chemistry》2002,277(1):287-294
Vps34p is a phosphatidylinositol 3-kinase that is part of a membrane-associated complex with the Vps15p protein kinase. This kinase complex is required for the delivery of soluble proteins to the lysosomal/vacuolar compartment of eukaryotic cells. This study examined the Vps34p-Vps15p association and identified the domains within each protein that were important for this interaction. Using several different approaches, the interaction domain within Vps34p was mapped to a 28-amino acid element near its C terminus. This Vps34p motif was both necessary and sufficient for the interaction with Vps15p. Two-hybrid mapping experiments indicated that two separate regions of Vps15p were required for the association with Vps34p; they are the N-terminal protein kinase domain and a set of three tandem repeats of about 39 amino acids each. Neither domain alone was sufficient for the interaction. These Vps15p repeat elements are similar in sequence to the HEAT motifs that have been implicated in protein interactions in other proteins, including the Huntingtin protein. Finally, these studies identified a novel motif at the very C terminus of Vps34p that was required for phosphatidylinositol 3-kinase activity. This domain is highly conserved specifically in all Vps34p-like phosphatidylinositol 3-kinases but is not required for the interaction with Vps15p. This study thus represents a first step toward a better understanding of how this Vps15p.Vps34p kinase complex is assembled and regulated in vivo. 相似文献
7.
8.
Maurer P Redd M Solsbacher J Bischoff FR Greiner M Podtelejnikov AV Mann M Stade K Weis K Schlenstedt G 《Molecular biology of the cell》2001,12(3):539-549
Xpo1p (Crm1p) is the nuclear export receptor for proteins containing a leucine-rich nuclear export signal (NES). Xpo1p, the NES-containing protein, and GTP-bound Ran form a complex in the nucleus that translocates across the nuclear pore. We have identified Yrb1p as the major Xpo1p-binding protein in Saccharomyces cerevisiae extracts in the presence of GTP-bound Gsp1p (yeast Ran). Yrb1p is cytoplasmic at steady-state but shuttles continuously between the cytoplasm and the nucleus. Nuclear import of Yrb1p is mediated by two separate nuclear targeting signals. Export from the nucleus requires Xpo1p, but Yrb1p does not contain a leucine-rich NES. Instead, the interaction of Yrb1p with Xpo1p is mediated by Gsp1p-GTP. This novel type of export complex requires the acidic C-terminus of Gsp1p, which is dispensable for the binding to importin beta-like transport receptors. A similar complex with Xpo1p and Gsp1p-GTP can be formed by Yrb2p, a relative of Yrb1p predominantly located in the nucleus. Yrb1p also functions as a disassembly factor for NES/Xpo1p/Gsp1p-GTP complexes by displacing the NES protein from Xpo1p/Gsp1p. This Yrb1p/Xpo1p/Gsp1p complex is then completely dissociated after GTP hydrolysis catalyzed by the cytoplasmic GTPase activating protein Rna1p. 相似文献
9.
Hepatitis C virus core protein blocks interferon signaling by interaction with the STAT1 SH2 domain 总被引:5,自引:0,他引:5
Lin W Kim SS Yeung E Kamegaya Y Blackard JT Kim KA Holtzman MJ Chung RT 《Journal of virology》2006,80(18):9226-9235
10.
Merithew E Stone C Eathiraj S Lambright DG 《The Journal of biological chemistry》2003,278(10):8494-8500
The Rab5 effector early endosome antigen 1 (EEA1) is a parallel coiled coil homodimer with an N-terminal C(2)H(2) Zn(2+) finger and a C-terminal FYVE domain. Rab5 binds to independent sites at the N and C terminus of EEA1. To gain further insight into the structural determinants for endosome tethering and fusion, we have characterized the interaction of Rab5C with truncation and site-specific mutants of EEA1 using quantitative binding measurements. The results demonstrate that the C(2)H(2) Zn(2+) finger is both essential and sufficient for the N-terminal interaction with Rab5. Although the heptad repeat C-terminal to the C(2)H(2) Zn(2+) finger provides the driving force for stable homodimerization, it does not influence either the affinity or stoichiometry of Rab5 binding. Hydrophobic residues predicted to cluster on a common face of the C(2)H(2) Zn(2+) finger play a critical role in the interaction with Rab5. Although the homologous C(2)H(2) Zn(2+) finger of the Rab5 effector Rabenosyn binds to Rab5 with comparable affinity, the analogous C(2)H(2) Zn(2+) finger of the yeast homologue Vac1 shows no detectable interaction with Rab5, reflecting non-conservative substitutions of critical residues. Large changes in the intrinsic tryptophan fluorescence of Rab5 accompany binding to the C(2)H(2) Zn(2+) finger of EEA1. These observations can be explained by a mode of interaction in which a partially exposed tryptophan residue located at the interface between the switch I and II regions of Rab5 lies within a hydrophobic interface with a cluster of non-polar residues in the C(2)H(2) Zn(2+) finger of EEA1. 相似文献
11.
12.
Nef is secreted from infected cells in exosomes and is found in abundance in the sera of HIV-infected individuals. Secreted exosomal Nef (exNef) induces apoptosis in uninfected CD4+ T cells and may be a key component of HIV pathogenesis. The exosomal pathway has been implicated in HIV-1 virus release, suggesting a possible link between these two viral processes. However, the underlying mechanisms and cellular components of exNef secretion have not been elucidated. We have previously described a Nef motif, the secretion modification region (SMR; amino acids 66 to 70), that is required for exNef secretion. In silico modeling data suggest that this motif can form a putative binding pocket. We hypothesized that the Nef SMR binds a cellular protein involved in protein trafficking and that inhibition of this interaction would abrogate exNef secretion. By using tandem mass spectrometry and coimmunoprecipitation with a novel SMR-based peptide (SMRwt) that blocks exNef secretion and HIV-1 virus release, we identified mortalin as an SMR-specific cellular protein. A second set of coimmunoprecipitation experiments with full-length Nef confirmed that mortalin interacts with Nef via Nef''s SMR motif and that this interaction is disrupted by the SMRwt peptide. Overexpression and microRNA knockdown of mortalin revealed a positive correlation between exNef secretion levels and mortalin protein expression. Using antibody inhibition we demonstrated that the Nef/mortalin interaction is necessary for exNef secretion. Taken together, this work constitutes a significant step in understanding the underlying mechanism of exNef secretion, identifies a novel host-pathogen interaction, and introduces an HIV-derived peptide with antiviral properties. 相似文献
13.
Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. 总被引:30,自引:4,他引:30 下载免费PDF全文
The anaerobic bacterium Clostridium botulinum produces several related neurotoxins that block exocytosis of synaptic vesicles in nerve terminals and that are responsible for the clinical manifestations of botulism. Recently, it was reported that botulinum neurotoxin type B as well as tetanus toxin act as zinc-dependent proteases that specifically cleave synaptobrevin, a membrane protein of synaptic vesicles (Link et al., Biochem. Biophys. Res. Commun., 189, 1017-1023; Schiavo et al., Nature, 359, 832-835). Here we report that inhibition of neurotransmitter release by botulinum neurotoxin type C1 was associated with the proteolysis of HPC-1 (= syntaxin), a membrane protein present in axonal and synaptic membranes. Breakdown of HPC-1/syntaxin was selective since no other protein degradation was detectable. In vitro studies showed that the breakdown was due to a direct interaction between HPC-1/syntaxin and the toxin light chain which acts as a metallo-endoprotease. Toxin-induced cleavage resulted in the generation of a soluble fragment of HPC-1/syntaxin that is 2-4 kDa smaller than the native protein. When HPC-1/syntaxin was translated in vitro, cleavage occurred only when translation was performed in the presence of microsomes, although a full-length product was obtained in the absence of membranes. However, susceptibility to toxin cleavage was restored when the product of membrane-free translation was subsequently incorporated into artificial proteoliposomes. In addition, a translated form of HPC-1/syntaxin, which lacked the putative transmembrane domain at the C-terminus, was soluble and resistant to toxin action. We conclude that HPC-1/syntaxin is involved in exocytotic membrane fusion.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
The carboxyl terminus of p53 is a target of a variety of signals for regulation of p53 DNA binding. Growth suppressor c-Abl interacts with p53 in response to DNA damage and overexpression of c-Abl leads to G(1) growth arrest in a p53-dependent manner. Here, we show that c-Abl binds directly to the carboxyl-terminal regulatory domain of p53 and that this interaction requires tetramerization of p53. Importantly, we demonstrate that c-Abl stimulates the DNA-binding activity of wild-type p53 but not of a carboxyl-terminally truncated p53 (p53Delta363C). A deletion mutant of c-Abl that does not bind to p53 is also incapable of activating p53 DNA binding. These data suggest that the binding to the p53 carboxyl terminus is necessary for c-Abl stimulation. To investigate the mechanism for this activation, we have also shown that c-Abl stabilizes the p53-DNA complex. These results led us to hypothesize that the interaction of c-Abl with the C terminus of p53 may stabilize the p53 tetrameric conformation, resulting in a more stable p53-DNA complex. Interestingly, the stimulation of p53 DNA-binding by c-Abl does not require its tyrosine kinase activity, indicating a kinase-independent function for c-Abl. Together, these results suggest a detailed mechanism by which c-Abl activates p53 DNA-binding via the carboxyl-terminal regulatory domain and tetramerization. 相似文献
15.
Smyczynski C Roudier F Gissot L Vaillant E Grandjean O Morin H Masson T Bellec Y Geelen D Faure JD 《The Journal of biological chemistry》2006,281(35):25475-25484
16.
Denning D Mykytka B Allen NP Huang L Al Burlingame Rexach M 《The Journal of cell biology》2001,154(5):937-950
The nucleoporins Nup60p, Nup2p, and Nup1p form part of the nuclear basket structure of the Saccharomyces cerevisiae nuclear pore complex (NPC). Here, we show that these necleoporins can be isolated from yeast extracts by affinity chromatography on karyopherin Kap95p-coated beads. To characterize Nup60p further, Nup60p-coated beads were used to capture its interacting proteins from extracts. We find that Nup60p binds to Nup2p and serves as a docking site for Kap95p-Kap60p heterodimers and Kap123p. Nup60p also binds Gsp1p-GTP and its guanine nucleotide exchange factor Prp20p, and functions as a Gsp1p guanine nucleotide dissociation inhibitor by reducing the activity of Prp20p. Yeast lacking Nup60p exhibit minor defects in nuclear export of Kap60p, nuclear import of Kap95p-Kap60p-dependent cargoes, and diffusion of small proteins across the NPC. Yeast lacking Nup60p also fail to anchor Nup2p at the NPC, resulting in the mislocalization of Nup2p to the nucleoplasm and cytoplasm. Purified Nup60p and Nup2p bind each other directly, but the stability of the complex is compromised when Kap60p binds Nup2p. Gsp1p-GTP enhances by 10-fold the affinity between Nup60p and Nup2p, and restores binding of Nup2p-Kap60p complexes to Nup60p. The results suggest a dynamic interaction, controlled by the nucleoplasmic concentration of Gsp1p-GTP, between Nup60p and Nup2p at the NPC. 相似文献
17.
c-Jun N-terminal kinase (JNK)-mediated cell signaling pathways are regulated endogenously in part by protein-protein interactions with glutathione S-transferase P1-1 (GSTP1-1) (). Using purified recombinant proteins, combined with fluorescence resonance energy transfer technology, we have found that the C terminus of JNK is critical to the interaction with GSTP1-1. The apparent K(d) for full-length JNK was 188 nm and for a C-terminal fragment (residues 200-424) 217 nm. An N-terminal fragment (residues 1-206) did not bind to GSTP1-1. Increased expression of the C-terminal JNK fragment in a tetracycline-inducible transfected NIH3T3 cell line produced a concentration-dependent increase in the kinase activity of JNK under normal, unstressed growth conditions indicating a dominant-negative effect. This suggests that the fragment can compete with endogenous full-length functional JNK resulting in dissociation of the GSTP1-1-JNK interaction and concomitant JNK enzyme activation. By using an antibody to hemagglutinin-tagged C-JNK, a concentration-dependent co-immunoprecipitation of GSTP1-1 was achieved. These data provide evidence for direct interactions between the C-terminal of JNK and GSTP1-1 and a rationale for considering GSTP1-1 as a critical ligand-binding protein with a role in regulating kinase pathways. 相似文献
18.
The interaction of caldesmon with the COOH terminus of actin 总被引:1,自引:0,他引:1
R Crosbie S Adams J M Chalovich E Reisler 《The Journal of biological chemistry》1991,266(30):20001-20006
Caldesmon interacts with the NH2-terminal region of actin. It is now shown in airfuge centrifugation experiments that modification of the penultimate cysteine residue of actin significantly weakens its binding to caldesmon both in the presence and absence of tropomyosin. Furthermore, as revealed by fluorescence measurements, caldesmon increases the exposure of the COOH-terminal region of actin to the solvent. This effect of caldesmon, like its inhibitory effect on actomyosin ATPase activity, is enhanced in the presence of tropomyosin. Proteolytic removal of the last three COOH-terminal residues of actin, containing the modified cysteine residue, restores the normal binding between caldesmon and actin. These results establish a correlation between the binding of caldesmon to actin and the conformation of the COOH-terminal region of actin and suggest an indirect rather than direct interaction between caldesmon and this part of actin. 相似文献
19.