首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A resonance light scattering (RLS) detection method for protein was developed, using a flow-injection system based on the enhancement of RLS signals from Biebrich scarlet (BS) by protein. The enhanced RLS intensities at 286.0 nm, in acidic aqueous medium, were proportional to the protein concentration over the range 0.005-18 microg/mL and 0.008-16 microg/mL for human serum albumin (HSA) and bovine serum albumin (BSA), respectively, with corresponding limits of detection (3sigma) of 5.00 ng/mL for HSA, and 7.80 ng/mL for BSA. The method was successfully applied to the quantification of total proteins in human serum samples.  相似文献   

2.
A flow injection analysis (FIA) system combined with Rayleigh light scattering (RLS) detection is developed for the sensitive and rapid determination of protein concentration in human serum sample. This method is based on the weak intensity of RLS of Eriochrome Black T (EBT, 2-hydroxy-1-(1-hydroxy-2-naphthylazo)-6-nitronaphthalene-4-sulfonic acid sodium salt), which can be enhanced by the addition of protein in weakly acidic solution. The effects of pH and interfering species on the determination of protein were examined. Calibrations for protein, based on RLS intensity, were linear in the concentration ranges of 7-36 microg/ml for human serum album (HSA) and 8-44 microg/ml for bovine serum album (BSA). The detection limits of the method were found to be 0.882 and 2.507 microg/ml for HSA and BSA, respectively. A relative standard deviation of 0.76% (n=5) was obtained with 20 microg/ml HSA standard solution. The FIA-RLS method was more stable than the general RLS method, and the average RSD value of FIA-RLS was less than that of the general RLS. The sample rate was determined to be 90 samples per hour.  相似文献   

3.
Resonance light scattering (RLS) of Congo red (CR) was greatly enhanced by BSA (HSA) in the presence of Triton X-100 (TX-100). In sodium citrate-HCl buffer (pH 2.7-3.0), the enhanced intensity of resonance light scattering at 360 nm was in proportion to the concentration of proteins [corrected] The linear relationship was obtained between the resonance light scattering intensity and proteins in the range 5.0 x 10(-8)-8.0 x 10(-6) g/mL and 1.0 x 10(-9)-6.0 x 10(-6) g/mL for BSA and HSA, respectively. Their detection limits were 1.4 x 10(-8) g/mL and 2.8 x 10(-10) g/mL (S:N = 3), respectively. Synthetic and actual samples were analysed satisfactorily.  相似文献   

4.
A simple and high-sensitivity method has been developed for the determination of proteins in aqueous solutions by resonance light scattering (RLS) technique. At pH 3.4 and ionic strength 1.2 x 10(-3), the weak RLS intensity of sodium lauroyl sarcosinate was greatly enhanced by the addition of proteins with the maximum peak located at 391 nm. Under the optimum conditions, the enhanced RLS intensities were in proportion to the concentrations of proteins in the range of 0.04 to 2.1 microg/mL for lysozyme, 0.0025 to 1.2 microg/mL for bovine serum albumin, 0.0075 to 0.9 microg/mL for human serum albumin, 0.02 to 1.4 microg/mL for gamma-globulin, 0.02 to 0.8 microg/mL for egg albumin, and 0.01 to 0.6 microg/mL for hemoglobin. Low detection limits ranging from 0.8 ng/mL to 4.3 ng/mL depending on the kind of proteins that have been achieved. The protein concentrations in synthetic samples and real biochemical samples were determined with satisfactory results. This method presented here is not only sensitive and simple but also reliable and suitable for practical bioassay applications.  相似文献   

5.
Liu S  Yang Z  Liu Z  Kong L 《Analytical biochemistry》2006,353(1):108-116
Gold nanoparticles with a 12-nm diameter were used as probes for the determination of proteins by resonance Rayleigh-scattering techniques. In weak acidic solution, large amounts of citrate anions will self-assemble on the surface of positively charged gold nanoparticles to form supermolecular compounds with negative charges. Below the isoelectric point, proteins with positive charges such as human serum albumin (HSA), bovine serum albumin (BSA), and ovalbumin (Ova) can bind gold nanoparticles to form larger volume products (the diameter of the binding product of gold nanoparticles with HSA is 23 nm.) through electrostatic force, hydrogen bonds, and hydrophobic effects, which can result in a red shift of the maximum absorption wavelength, the remarkable enhancement of the resonance Rayleigh-scattering intensity (RRS), and the appearance of the RRS spectra. At the same time, the second-order-scattering (SOS) and frequency-doubling-scattering (FDS) intensities are also enhanced. The binding products of gold nanoparticles with different proteins have similar spectral characteristics and the maximum wavelengths are located near 303 nm for RRS, 540 nm for SOS, and 390 for FDS, respectively. The scattering enhancement (DeltaI) is directly proportional to the concentration of proteins. Among them, the RRS method has the highest sensitivity and the detection limits are 0.38 ng/ml for HSA, 0.45 ng/ml for BSA, and 0.56 ng/ml for Ova, separately. The methods have good selectivity. A new RRS method for the determination of trace proteins using a gold nanoparticle probe has been developed. Because gold nanoparticle probes do not need to be modified chemically in advance, the method is very simple and fast.  相似文献   

6.
The binding modes of cepharanthine (CEPT) with bovine serum albumin (BSA) and human serum albumin (HSA) have been established by reproducing physiological conditions, which is very important to understand the pharmacokinetics and toxicity of CEPT. These spectral data were further analyzed by the multivariate curve resolution‐alternating least squares method. Moreover, the concentration profiles and pure spectra of three species (BSA/HSA, CEPT and CEPT–BSA/HSA) and the apparent equilibrium constants Kapp were evaluated. The experimental results showed that CEPT could quench the fluorescence intensity of BSA/HSA by a combined quenching (static and dynamic) procedure. The binding constant (K), the thermodynamic parameters (ΔG, ΔH and ΔS) and binding subdomain were measured, and indicated that CEPT could spontaneously bind to BSA/HSA on subdomain IIA through the hydrophobic interactions. The effect of CEPT on the secondary structure of proteins has been analyzed by circular dichroism, 3D fluorescence and Fourier transform infrared spectra. The binding distance between CEPT and tryptophan of BSA/HSA was 2.305/1.749 nm, which is based on the Förster resonance energy transfer theory. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A photophysical study on the binding interaction of an efficient cancer cell photosensitizer, norharmane (NHM), with model transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA), has been performed using a combination of steady-state and time-resolved fluorescence techniques. The emission profile undergoes a remarkable change upon addition of the proteins to the buffered aqueous solution of the photosensitizer. The polarity-dependent prototropic transformation is responsible for the remarkable sensitivity of this biological fluorophore to the protein environments. A marked increase in the fluorescence anisotropy in the proteinous environments indicates that the albumin proteins introduce motional restriction on the drug molecule. Light has been thrown on the denaturing action of urea on the probe-bound protein. The probable binding site of the drug in proteins has also been assessed from the combination of denaturation study, micropolarity measurement, and fluorescence resonance energy transfer (FRET) study. The present study suggests that the stability of serum albumins is enhanced upon binding with the drug.  相似文献   

8.
Noncovalent interactions between two squarylium dyes and various model proteins have been explored. NN127 and SQ-3 are symmetric and asymmetric squarylium dyes, respectively, the fluorescence emissions of which have been shown to be enhanced upon complexation with proteins such as bovine serum albumin (BSA), human serum albumin (HSA), beta-lactoglobulin A, and trypsinogen. Although these dyes are poorly soluble in aqueous solution, they can be dissolved first in methanol followed by dilution with aqueous buffer without precipitation, and are then suitable for use as fluorescent labels in protein determination studies. The nature of interactions between these dyes and proteins was studied using a variety of buffer systems, and it was found that electrostatic interactions are involved but not dominant. Dye/protein stoichiometries in the noncovalent complexes were found to be 1:1 for SQ-3, although various possible stoichiometries were found for NN127 depending upon pH and protein. Association constants on the order of 10(5) and 10(7) were found for noncovalent complexes of SQ-3 and NN127, respectively, with HSA, indicating stronger interactions of the symmetric dye with proteins. Finally, HSA complexes with NN127 were determined by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). In particular, NN127 shows promise as a reagent capable of fluorescently labeling analyte proteins for analysis by CE-LIF without itself being significantly fluorescent under the aqueous solution conditions studied herein.  相似文献   

9.
The binding affinity of fluorescein and of phenylbutazone to human serum albumin (HSA) and to bovine serum albumin (BSA), respectively, as well as of the two drugs together to each protein in dilute aqueous solution has been studied by means of gel permeation chromatography, circular dichroism, U.V. absorption and fluorescence spectroscopy. Identity of and/or interdependence between primary binding sites for the two ligands considered on HSA and BSA are evidenced and correlated with a simple theoretical approach to mixed drugs binding.  相似文献   

10.
The interactions between 1-benzoyl-4-p-chlorphenyl thiosemicarbazide (BCPT) and bovine serum albumin (BSA) or human serum albumin (HSA) have been studied by fluorescence spectroscopy. By the analysis of fluorescence spectrum and fluorescence intensity, it was showed that BCPT has a strong ability to quench the intrinsic fluorescence of both bovine serum albumin and human serum albumin through a static quenching procedure. The binding constants of BCPT with BSA or HSA were determined at different temperatures based on the fluorescence quenching results. The binding sites were obtained and the binding force were suggested to be mainly hydrophobic. The effect of common ions on the binding constants was also investigated. A new fluorescence spectroscopy assay of the proteins is presented. The linear range is 5.36-67.0 microg mL(-1) with recovery of 101.1% for BSA, and the linear range is 8.28-144.9 microg mL(-1) with recovery of 102.6% for HSA. Determination of the proteins in bovine serum or in human serum by this method gives results which are very close to those obtained by using Coomassie Brilliant Blue G-250 colorimetry. A practical method was proposed for the determination of BCPT in human serum samples.  相似文献   

11.
The water proton relaxation rate enhancement of Mn(II) bound to bovine serum albumin (BSA) and the association constant for manganese to BSA have already been determined, but such determinations have not been done for human serum albumin (HSA) and other human serum proteins and also for human serum. In this work, NMR T1 values in aqueous solutions of serum proteins and serum were measured versus increasing concentration of Mn(II). Proton relaxation rate enhancements (epsilon*) caused by different manganese concentrations were determined for each solution and 1/epsilon* was fitted against concentrations of Mn(II). Proton relaxation rate enhancements (epsilonb) of Mn(II) bound to albumin, gamma-globulin, (alpha+beta)-globulins and serum were found to be 13.69, 3.09, 8.62, and 10.87, respectively. Free and bound manganese fractions, resulted from each addition of Mn(II) to the sample, were determined by using corresponding (epsilon*) and the epsilonb values. Association constants for Mn(II) to HSA and gamma-globulin were calculated as 1.84 x 10(4) M(-1) and 2.35 x 10(4) M(-1), respectively. Present data suggest that the proton relaxation rate enhancement of Mn(II) in serum is caused by Mn(II) bound to various serum constituents. Data also suggest that association constants for Mn(II) to gamma-globulin are nearly the same as that to HSA.  相似文献   

12.
Chlorotetracycline (CTC) can react with europium ions Eu3+, and the complex emits the intrinsic fluorescence of Eu3+. The intensity is greatly enhanced by proteins and this forms the basis of a new fluorimetric method for determination of protein. Further research indicates that under optimum conditions, the enhanced intensity of fluorescence is in proportion to the concentration of proteins, in the range 2.0 x 10(-7)-1.0 x 10(-5) g/mL for bovine serum albumin (BSA) (linear equation, I(f) = 34.35933 + 11.54467 x 10(6)C)(r = 0.99895) and 8.0 x 10(-7)-1.0 x 10(-5) g/mL for human serum albumin (HSA) (linear equation, I(f) = 76.58881 + 5.3569 x 10(6)C) (r = 0.99283). Detection limits (S/N = 3) were 8.9 x 10(-9) g/mL for BSA and 3.3 x 10(-8) g/mL for HSA. In an assay for BSA in calf serum, this method gave a value close to that determined by the UV spectrophotometric method.  相似文献   

13.
The interaction between lomefloxacin (LMF) and two drug carrier proteins, human serum albumin (HSA) and serum transferrin (TF), were studied and compared by fluorescence quenching, resonance light scattering (RLS), and circular dichroism (CD) spectroscopic along with molecular modeling. Fluorescence data show that LMF has a stronger quenching effect on HSA than on TF. The binding constant and the number of binding sites were calculated as 6.00 x 10(5) M(-1) and 0.77 for HSA, and 4.66 x 10(5) M(-1) and 1.02, for TF, respectively. Also, these binding parameters were calculated by RLS data, as a novel approach and were compared to that obtained from fluorescence. The micro-environment changes of Trp residues were evident in both proteins. The quantitative analysis of the secondary structure in both proteins further confirmed the drug-induced conformational changes. The distance (r) between donors (HSA and TF) and acceptor (LMF) were obtained by fluorescence resonance energy transfer (FRET) theory and found to be 1.83 nm and 1.71 nm for HSA and TF respectively. Moreover, molecular modeling studies suggested the sub-domain IB in HSA and N-lobe in TF as the candidate place for the formation of the binding site of LMF on these proteins.  相似文献   

14.
The fluorescence of acridine orange (AO) is greatly quenched by the anionic surfactant sodium dodecyl benzene sulphonate (SDBS), but when protein is added into the AO-SDBS system, the fluorescence intensity of the latter is enhanced again. Based on this, a new fluorimetric method of determination of protein was developed. Under optimum conditions, the enhanced intensity of fluorescence is in proportion to the concentration of protein, such as bovine serum albumin (BSA), human serum albumin (HSA) and egg albumin (EA), over a wide range with detection limits at the 10(-9) g/mL level. This method has been satisfactorily used for the determination of protein in samples. We compared results using 280 nm and 490 nm excitation wavelengths and the mechanism of the assay.  相似文献   

15.
The fluorescence intensity of the morin-Al(3+) complex was greatly enhanced by proteins in the presence of sodium dodecyl benzene sulphonate (SDBS). Based on this, a new fluorimetric method for the determination of protein was developed. Under optimum conditions, the enhanced intensity of fluorescence was in proportion to the concentration of proteins in the range 1.0 x 10(-8)-1.3 x 10(-5) g/mL for bovine serum albumin (BSA), 4.0 x 10(-8)-1.2 x 10(-5) g/mL for egg albumin (EA) and 5.0 x 10(-8)-1.2 x 10(-5) g/mL for human serum albumin (HSA). Their detection limits (S:N = 3) were 5.0 x 10(-9), 1.8 x 10(-8) and 1.6 x 10(-8) g/mL, respectively. The interaction mechanism was also studied.  相似文献   

16.
This study was designed to examine the interactions of ergosterol with bovine serum albumin (BSA) and human serum albumin (HSA) under physiological conditions with the drug concentrations in the range of 2.99-105.88?μM and the concentration of proteins was fixed at 5.0?μM. The analysis of emission spectra quenching at different temperatures revealed that the quenching mechanism of HSA/BSA by ergosterol was the static quenching. The number of binding sites n and the binding constants K were obtained at various temperatures. The distance r between ergosterol and HSA/BSA was evaluated according to F?ster non-radioactive energy transfer theory. The results of synchronous fluorescence, 3D fluorescence, FT-IR, CD and UV-Vis absorption spectra showed that the conformations of HSA/BSA altered in the presence of ergosterol. The thermodynamic parameters, free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) for BSA-ergosterol and HSA-ergosterol systems were calculated by the van't Hoff equation and discussed. Besides, with the aid of three site markers (for example, phenylbutazone, ibuprofen and digitoxin), we have reported that ergosterol primarily binds to the tryptophan residues of BSA/HSA within site I (subdomain II A).  相似文献   

17.
In this work, the spectral responses of hypocrellin B (HB) to the microenvironments of various biomolecules were studied, with human serum albumin (HSA), bovine serum albumin (BSA) and ovalbumin (OVA) used as the models for proteins, sodium alginate (SOA) and hyaluronan (HYA) for polysaccharides and liposomes for lipid membranes. Generally, compared to those in aqueous solution, the absorbance and fluorescence of HB were all strengthened in the model systems except for the fluorescence in HYA. Specially, according to the spectral responses of HB, the microenvironments in biomolecules and liposomes could be set in a sequence of hydrophobic grades, i.e., liposomes > proteins > polysaccharides. Further, R(F/A), a parameter defined as the ratio of the fluorescence intensity to the absorbance, was proposed to identify the microenvironment quantitatively. It was found that the R(F/A) could not only distinguish various types of biomolecules but also identify specific binding from nonspecific binding to proteins or polysaccharides.  相似文献   

18.
In this study, a CdSe/ZnS quantum dot (QD)-based immunosensor using a simple optical system for human serum albumin (HSA) detection is developed. Monoclonal anti-HSA (AHSA) immobilized on 3-aminopropyltriethoxysilane (APTES)-modified glass was used to capture HSA specifically. Bovine serum albumin (BSA) was used to block non-specific sites. The solution, containing AHSA-QD complex prepared by mixing biotinylated polyclonal anti-HSA and streptavidin coated QD, was used to conjugate with the HSA molecules captured on AHSA/BSA/APTES-modified glass for the modification of HSA with QD. A simple optical system, comprising a diode laser (405 nm), an optical lens, a 515-nm-long pass filter, and an Si-photodiode, was used to detect fluorescence and convert it to photocurrent. The current intensity was determined by the amount of QD specifically conjugated with HSA, and was therefore HSA-concentration-dependent and could be used to quantify HSA concentration. The detection limit of the pure QD solution was ~3.5×10(-12) M, and the detection limit for the CdSe/ZnS QD-based immunosensor developed in this study was approximately 3.2×10(-5) mg/ml. This small optical biosensing system shows considerable potential for future applications of on-chip liver-function detection.  相似文献   

19.
In neutral medium, rifamycin antibiotics such as rifapentin (RFPT), rifampicin (RFP), rifandin (RFD) and rifamycin SV (RFSV) can bind with human serum albumin (HSA) and bovine serum albumin (BSA) to form complexes, resulting in the quenching of the intrinsic fluorescence (lambda(ex)/lambda(em) = 285/355 nm) of the BSA and HSA. The quenching intensity (DeltaF) is directly proportional to the concentration of the rifamycin antibiotics. Therefore, a new analytical method was established to determine trace rifamycin antibiotics. The method had fairly high sensitivity and the detecting limits (3sigma) for RFPT, RFP, RFD and RFSV were 0.85, 0.98, 1.83, 1.89 ng/mL, respectively, for the HSA system and 0.76, 0.89, 1.55, 1.77 ng/mL, respectively, for the BSA system. All relative standard deviations (RSDs) were <3.8%. In this work, the characteristics of the fluorescence spectra were studied and the optimum reaction conditions and influencing factors were investigated. The influence of coexisting substances was tested and the results showed that the method had good selectivity and could be applied to determine trace rifamycin antibiotics in medicine capsules and urine samples. Taking the RFSV-serum albumin system as an example, the reaction mechanisms, such as binding constants, binding sites, binding distance and the type of fluorescence quenching, were investigated.  相似文献   

20.
We have previously reported that bovine serum albumin (BSA) and other proteins that do not contain prosthetic groups exhibited a weak light absorption in the visible, only detectable by pulsed laser-induced optoacoustic spectroscopy (LIOAS). Human serum albumin (HSA) exhibited signals 25% higher than those observed with BSA. Signals comparable to those obtained with BSA were observed with poly(L-Trp, L-Lys), poly(L-Trp, L-Arg) or poly(L-Trp, L-Orn) at pH 7.0. No signals were obtained when tryptophan was replaced by other amino acids or when free tryptophan or the tripeptide Lys-Trp-Lys was assayed (pH 7.0). Tryptophan in HCl 5 N produced LIOAS signals similar to those produced by tryptophan-containing copolymers. Moreover, the absorption peak could be observed in a UV-VIS spectrophotometer. Therefore, the LIOAS signals obtained with BSA, HSA, and tryptophan-containing random copolymers may be attributed to a new transition of the indole moiety of their tryptophan residues when "protonated". Tryptophan residues of proteins are known to participate in π-cation interactions, which are important in protein stability and function. As a matter of fact, HSA and BSA contain an internal tryptophan in close proximity to lysine and arginine residues and therefore suitable for π-cation interactions. The strength of this type of interaction strongly depends on distances and relative orientations of both amino acid residues. Accordingly, these interactions should be highly sensitive to conformational changes. Based on preliminary results that have shown that LIOAS signal at 532 nm depended on the aggregation state of BSA and/or on the oxidation state of its Cys-34, we postulate that the LIOAS signal observed with proteins and tryptophan-containing polypeptides are related to Trp-Lys or Trp-Arg interactions and that the intensity of the signal depends on the strength of such interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号