首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Much of the extant polymorphism has been attributed to spatial and temporal variation among selection regimes. Analysis of models entailing two alleles at a single locus has demonstrated that polymorphism may result from variation among selection regimes which prescribe monomorphism if constant. This relationship is studied in the context of several alleles at a locus.One result which is not valid with only two alleles is that variation among selection regimes which specify polymorphic equilibria may lead to a stable monomorphic equilibrium. The analyses of temporal variation and total panmixia spatial variation among environments show that temporal variation allows the simultaneous stability of equilibrium configurations which cannot be simultaneously stable under total panmixia spatial variation (hard or soft selection). The principle that polymorphism is more readily maintained with spatial than temporal variation is invalidated.Supported in part by Purdue Research Foundation and National Science Foundation (USA) grant MCS-8002227  相似文献   

2.
It is well known that in a subdivided population subject to soft selection with two alleles at one locus, instability of both fixation states (a “protected polymorphism”) entails at least one stable polymorphic equilibrium. Although stable polymorphic and monomorphic equilibria can coexist in general, a stable fixation state (monomorphic equilibrium) precludes the existence of any polymorphic equilibrium under the circumstances of haploid or submultiplicative diploid viabilities. This provides that a stable monomorphism is robust against random fluctuations in allele frequencies. It also increases the known circumstances where there is a unique globally attracting stable equilibrium, i.e., where allele frequencies are determined by the selection-migration structure independent of the history of the system.  相似文献   

3.
Ubeda F  Haig D 《Genetics》2005,170(3):1345-1357
We present a model of a primary locus subject to viability selection and an unlinked locus that causes sex-specific modification of the segregation ratio at the primary locus. If there is a balanced polymorphism at the primary locus, a population undergoing Mendelian segregation can be invaded by modifier alleles that cause sex-specific biases in the segregation ratio. Even though this effect is particularly strong if reciprocal heterozygotes at the primary locus have distinct viabilities, as might occur with genomic imprinting, it also applies if reciprocal heterozygotes have equal viabilities. The expected outcome of the evolution of sex-specific segregation distorters is all-and-none segregation schemes in which one allele at the primary locus undergoes complete drive in spermatogenesis and the other allele undergoes complete drive in oogenesis. All-and-none segregation results in a population in which all individuals are maximally fit heterozygotes. Unlinked modifiers that alter the segregation ratio are unable to invade such a population. These results raise questions about the reasons for the ubiquity of Mendelian segregation.  相似文献   

4.
The Evolution of the Y Chromosome with X-Y Recombination   总被引:1,自引:0,他引:1       下载免费PDF全文
A. G. Clark 《Genetics》1988,119(3):711-720
A theoretical population genetic model is developed to explore the consequences of X-Y recombination in the evolution of sex chromosome polymorphism. The model incorporates one sex-determining locus and one locus subject to natural selection. Both loci have two alleles, and the rate of classical meiotic recombination between the loci is r. The alleles at the sex-determining locus specify whether the chromosome is X or Y, and the alleles at the selected locus are arbitrarily labeled A and a. Natural selection is modeled as a process of differential viabilities. The system can be expressed in terms of three recurrence equations, one for the frequency of A on the X-bearing gametes produced by females, one for each of the frequency of A on the X- and Y-bearing gametes produced by males. Several special cases are examined, including X chromosome dominance and symmetric selection. Unusual equilibria are found with the two sexes having very different allele frequencies at the selected locus. A significant finding is that the allowance of recombination results in a much greater opportunity for polymorphism of the Y chromosome. Tighter linkage results in a greater likelihood for equilibria with a large difference between the sex chromosomes in allele frequency.  相似文献   

5.
A two locus deterministic population genetic model is analysed. One locus is under viability selection, the other under fertility selection with both forms of selection completely symmetric. It is shown that linkage equilibrium may occur at two different equilibrium points. For a two-locus polymorphism to be stable, it is necessary that the viability locus be overdominant but not necessary that the fertility locus, considered separately, be able to support a stable polymorphism. The overlaps in stability are not as complex as under two locus symmetric fertilities, but considerably more complex than with symmetric viabilities. Extensions of the analysis for the central linkage equilibrium point with multiple viability and fertility loci are indicated.Research supported in part by NIH grants GM 28106 and GM 10452  相似文献   

6.
The potential of maintaining multilocus polymorphism by migration-selection balance is studied. A large population of diploid individuals is distributed over finitely many demes connected by migration. Generations are discrete and nonoverlapping, selection may vary across demes, and loci are multiallelic. It is shown that if migration and recombination are strong relative to selection, then with weak or no epistasis and intermediate dominance at every locus and in every deme, arbitrarily many alleles can be maintained at arbitrarily many loci at a stable equilibrium. If migration is weak relative to selection and recombination, then with weak or no epistasis and intermediate dominance at every locus and in every deme, as many alleles as there are demes can be maintained at arbitrarily many loci at equilibrium. In both cases open sets of such parameter combinations are constructed, thus the results are robust with respect to small, but arbitrary, perturbations in the parameters. For weak migration, the number of demes is, in fact, a generic upper bound to the number of alleles that can be maintained at any locus. Thus, several scenarios are identified under which multilocus polymorphism can be maintained by migration-selection balance when this is impossible in a panmictic population.   相似文献   

7.
A theoretical and numerical assessment of genetic variability   总被引:4,自引:4,他引:0       下载免费PDF全文
Karlin S  Feldman MW 《Genetics》1981,97(2):475-493
The equilibrium behavior of one-locus viability selection models is studied numerically. The selection schemes include randomly chosen viabilities, viabilities chosen to measure a hypothetical distance between the alleles making up the genotype and viabilities that obey various allelic dominance relations. From 3 to 8 alleles are considered. Among the key conclusions are (1) equilibria that are most polymorphic do not usually have the highest mean fitness, (2) the more structure there is in the choice of the viability model, the greater is the level of polymorphism at equilibrium, and (3) for the numbers of alleles chosen here, the equilibrium reached by iteration from the centroid of the allele frequency simplex is the best predictor of the equilibrium attainable from randomly chosen starting vectors. Preliminary evidence shows that this is not the case for 16 alleles.  相似文献   

8.
We examine the characteristics of non-equilibrium dynamics produced by a simple well-known model of frequency-dependent selection at a single diploid locus. An examination of the parameter space of this “pairwise-interaction model” (PIM) revealed non-equilibrium dynamics for polymorphisms of 3, 4 and 5 alleles; both allele-frequency cycling and aperiodic trajectories were detected. We measured the number, cycle length and domains of attraction of the various attractors produced by the model. The domains of attraction tended to be smaller, and the cycles longer, for systems with larger number of alleles. Fitnesses that parametrized negative frequency-dependent selection were more likely to allow cycling, and these cycles also had larger domains of attraction. Aperiodic trajectories were detected only in cases with 4 or 5 alleles. The genetic cycles produced by the model do not have periods as short as those predicted in ecological models with cycling (such as predator–prey population cycles, etc.). Consequently, in a real-world system, PIM allele-frequency cycling is likely to be indistinguishable from stable equilibria when observed over short time scales.  相似文献   

9.
On the Origin of Meiotic Reproduction: A Genetic Modifier Model   总被引:2,自引:1,他引:1       下载免费PDF全文
We study the conditions under which a rare allele that modifies the relative rates of meiotic reproduction and apomixis increases in a population in which meiotic reproduction entails selfing as well as random outcrossing. A distinct locus, at which mutation maintains alleles that are lethal in homozygous form, determines viability. We find that low viability of carriers of the lethal alleles, high rates of selfing, dominance of the introduced modifier allele, and lower rates of recombination promote the evolution of meiosis. Meiotic reproduction can evolve even in the absence of linkage between the modifier and the viability locus. The adaptive value of meiotic reproduction depends on the relative viabilities of offspring derived by meiosis and by apomixis, and on associations between the modifier and the viability locus. Meiotic reproduction, particularly under selfing, generates more diverse offspring, including those with very high and very low viability. Elimination of offspring with low viability generates positive associations between enhancers of meiotic reproduction and high viability. In addition, partial selfing generates positive associations in heterozygosity (identity disequilibrium) between the modifier and the viability locus, even in the absence of linkage. The two kinds of associations together can compensate for initial reductions in mean offspring viability under meiotic reproduction.  相似文献   

10.
The dynamic stability of an evolutionarily stable strategy (ESS) is analyzed for a diploid species under individual viability selection. An individual's viability depends on the genotypic frequencies at a single autosomal locus through a payoff matrix determined by phenotypic behaviours (i.e. strategies). It is shown that an ESS of this payoff matrix is dynamically stable if there are at most three alleles — an intuitive result that strengthens the importance of static game-theoretic methods in genetic models.Author for correspondence  相似文献   

11.
Spencer HG 《Genetics》2003,164(4):1689-1692
I derive several properties of the model proposed by Gavrilets for maternal selection at a single diallelic locus. Most notably, (i) stable oscillations of genotype frequencies (i.e., cycling) can occur and (ii) in the special case in which maternal effects and standard viability selection act multiplicatively, maternal selection effectively acts on maternally derived alleles only.  相似文献   

12.
Conditions for the origin of partial sporophytic self-incompatibility (SSI) are obtained from two quantitative models, which differ with respect to the determination of offspring viability. Offspring viability depends solely on the source (self or nonself) of the fertilizing pollen in the first model, which describes changes only at a primitive S-locus itself. Two loci evolve in the second model: overdominant viability selection maintains an arbitrary number of alleles at one locus, with SSI under the control of a separate locus. In both cases, the origin of SSI requires that the relative change in the numbers of offspring derived by the two reproductive modes compensate for the twofold cost of outcrossing. In the first model studied, the viability of inbred offspring fully determines the relative change in the numbers of inbred and outbred offspring produced. In the second model, the relative change in offspring numbers depends in addition on associations between the S-locus and the viability locus. Because these two-locus associations are comparable in magnitude to the differences between the viabilities of inbred and outbred offspring, SSI can arise under less restrictive conditions than expected from the one-locus model. Greater allelic multiplicity at the viability locus facilitates the origin of SSI by reducing the relative viability of inbred offspring. Tight linkage between the S-locus and the viability locus and high rates of receipt of self-pollen promote the generation and maintenance of associations between the S-locus and the viability locus. In populations in which more than two viability alleles are maintained, the active S-allele can invade even in the absence of linkage with the viability locus. The present study establishes that incompatibility systems can arise in response to identity disequilibrium between a modifier of incompatibility and a locus subject to overdominant viability selection; in particular, compensation for the twofold cost of outcrossing does not require preexisting gametic level disequilibria.  相似文献   

13.
Summary A symmetric viability model for two loci with two alleles at one locus and m alleles at the other is suggested and analyzed. The analysis of the equilibria is complete if the two loci are absolutely linked, while if recombination is allowed the analysis is incomplete. The dynamics of the mode! resemble those of the two locus two allele model, namely that for loose linkage there will be no correlation between the loci and for tight linkage there may be strong correlation. The major caveats to this are: 1. The equilibria stable for tight linkage may belong to an array of different structures dependent on the selection and the number of alleles. 2. If both loci are overdominant in viability, the stable equilibria always contain all alleles segregating in the population; otherwise, the stable equilibria may only be two locus two allele high complementarity equilibria for tight linkage. 3. For intermediate linkage values and special selection values the boundary two locus two allele high complementarity equilibria may be stable simultaneously with the totally polymorphic central point at which there is no association between the loci.Dedicated to the memory of Ove Frydenberg.Research supported in part by a grant from the Danish Natural Science Research Council, a grant from National Science Foundation, U.S.A., and by USPHS grant NIH 10452-09-11.  相似文献   

14.
15.
Summary Twenty-three spontaneous yellow mutants were isolated from two stable green strains of the unicellular green alga Chlamydomonas reinhardtii. Genetic characterization indicated that 22 of 23 mutants had a mutation at the y-1 locus, and all 22 y-1 alleles were unstable. Crosses designed to follow the inheritance of instability at the y-1 locus showed that instability is caused by a single genetic factor located at the y-1 locus or very close to it.  相似文献   

16.
Although many studies confirm long-term small isolated populations (e.g. island endemics) commonly sustain low neutral genetic variation as a result of genetic drift, it is less clear how selection on adaptive or detrimental genes interplay with random forces. We investigated sequence variation at two major histocompatibility complex (Mhc) class II loci on a porpoise endemic to the upper Gulf of California, México (Phocoena sinus, or vaquita). Its unique declining population is estimated around 500 individuals. Single-strand conformation polymorphism analysis revealed one putative functional allele fixed at the locus DQB (n = 25). At the DRB locus, we found two presumed functional alleles (n = 29), differing by a single nonsynonymous nucleotide substitution that could increase the stability at the dimer interface of alphabeta-heterodimers on heterozygous individuals. Identical trans-specific DQB1 and DRB1 alleles were identified between P. sinus and its closest relative, the Burmeister's porpoise (Phocoena spinipinnis). Comparison with studies on four island endemic mammals suggests fixation of one allele, due to genetic drift, commonly occurs at the DQA or DQB loci (effectively neutral). Similarly, deleterious alleles of small effect are also effectively neutral and can become fixed; a high frequency of anatomical malformations on vaquita gave empirical support to this prediction. In contrast, retention of low but functional polymorphism at the DRB locus was consistent with higher selection intensity. These observations indicated natural selection could maintain (and likely also purge) some crucial alleles even in the face of strong and prolonged genetic drift and inbreeding, suggesting long-term small populations should display low inbreeding depression. Low levels of Mhc variation warn about a high susceptibility to novel pathogens and diseases in vaquita.  相似文献   

17.
For a single autosomal locus with multiple alleles both an island and a multiple-niche model with discrete nonoverlapping generations are formulated for the maintenance of genetic variability. Both models incorporate viability selection in an arbitrary way and allow for genotypic differences in the pertinent migration structure. Random drift is ignored, and mating is at random. A global analysis is given for the island model in the neutral case. For a subdivided population, conditions are derived for the existence of a protected polymorphism, and the model is examined in some special two-niche cases. Of particular consideration is the loss of neutral alleles due solely to population regulation and genotype-dependent migration, and the possible existence of equilibrium clines without selection.M. M. was supported by USPHS Pre-doctoral training grant No. GM 7197 to the University of Chicago; this work represents part of the author's Doctoral dissertation.  相似文献   

18.
Anderson RJ  Spencer HG 《Genetics》1999,153(4):1949-1958
Many single-locus, two-allele selection models of genomic imprinting have been shown to reduce formally to one-locus Mendelian models with a modified parameter for genetic dominance. One exception is the model where selection at the imprinted locus affects the sexes differently. We present two models of maternal inactivation with differential viability in the sexes, one with complete inactivation, and the other with a partial penetrance for inactivation. We show that, provided dominance relations at the imprintable locus are the same in both sexes, a globally stable polymorphism exists for a range of viabilities that is independent of the penetrance of imprinting. The conditions for a polymorphism are the same as in previous models with differential viability in the sexes but without imprinting and in a model of the paternal X-inactivation system in marsupials. The model with incomplete inactivation is used to illustrate the analogy between imprinting and dominance by comparing equilibrium bifurcation plots for fixed values of dominance and penetrance. We also derive a single expression for the dominance parameter that leaves the frequency and stability of equilibria unchanged for all levels of inactivation. Although an imprinting model with sex differences does not formally reduce to a nonimprinting scheme, close theoretical parallels clearly exist.  相似文献   

19.
Summary Variation at polymorphic isozyme loci was analyzed in Nantucket pine tip moth (NPTM) populations from 5 geographic locations. At the North Carolina location, populations representing 3 generations at 3 local sites were also studied. Four of the loci investigated (LAP, MDH, -GPDH and AK), although variable, had few alleles per locus (3–5) and few differences among populations in allele frequencies. At each locus, all populations had the same allele at a high frequency.At the PGM locus, fifteen alleles were identified and allelic frequencies varied among populations. At least eight alleles were present within a population and, in most populations, two or more alleles had high frequencies that differed among populations. An excess of homozygotes over Hardy-Weinberg expectations was found for 7 out of the 10 populations studied, indicating the probable existence of some form of inbreeding structure or populational subdivision within sampled stands.Joint consideration of the results observed for PGM and the other four loci is counterindicative of neutrality at all loci and strongly indicative of genetic differentiation among locally disjunct populations.Published as Paper No. 6751 of the Journal Series of the North Carolina Agricultural Research Service  相似文献   

20.
The evolution of a selectively neutral locus that controls the degree to which alleles at a single selected locus are linked with a particular set of chromosomes in a permanent translocation heterozygote is studied. With complete selfing and fitness overdominance a new allele at the modifying locus will increase in frequency if it increases the linkage of all alleles at the selected locus to a particular set of chromosomes. With random mating a new allele at the modifying locus will increase when rare if it increases the linkage of alleles at the selected locus to a particular set of chromosomes. In addition, a parameter analogous to the coefficient of linkage disequilibrium in usual two-locus models with random mating must be nonzero if a new allele at the modifying locus is to increase in frequency at a geometric rate when rare. With mixed selfing and random mating a new allele at the modifying locus will apparently increase when rare only if it increases the linkage of alleles at the selected locus to a particular set of chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号