首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Transient and steady-state changes caused by acetate utilization were studied in perfused rat heart. The transient period occupied 6min and steady-state changes were followed in a further 6min of perfusion. 2. In control perfusions glucose oxidation accounted for 75% of oxygen utilization; the remaining 25% was assumed to represent oxidation of glyceride fatty acids. With acetate in the steady state, acetate oxidation accounted for 80% of oxygen utilization, which increased by 20%; glucose oxidation was almost totally suppressed. The rate of tricarboxylate-cycle turnover increased by 67% with acetate perfusion. The net yield of ATP in the steady state was not altered by acetate. 3. Acetate oxidation increased muscle concentrations of acetyl-CoA, citrate, isocitrate, 2-oxoglutarate, glutamate, alanine, AMP and glucose 6-phosphate, and lowered those of CoA and aspartate; the concentrations of pyruvate, ATP and ADP showed no detectable change. The times for maximum changes were 1min, acetyl-CoA, CoA, alanine and AMP; 6min, citrate, isocitrate, glutamate and aspartate; 2-4min, 2-oxoglutarate. Malate concentration fell in the first minute and rose to a value somewhat greater than in the control by 6min. There was a transient and rapid rise in glucose 6-phosphate concentration in the first minute superimposed on the slower rise over 6min. 4. Acetate perfusion decreased the output of lactate, the muscle concentration of lactate and the [lactate]/[pyruvate] ratio in perfusion medium and muscle in the first minute; these returned to control values by 6min. 5. During the first minute acetate decreased oxygen consumption and lowered the net yield of ATP by 30% without any significant change in muscle ATP or ADP concentrations. 6. The specific radioactivities of cycle metabolites were measured during and after a 1min pulse of [1-(14)C]acetate delivered in the first and twelfth minutes of acetate perfusion. A model based on the known flow rates and concentrations of cycle metabolites was analysed by computer simulation. The model, which assumed single pools of cycle metabolites, fitted the data well with the inclusion of an isotope-exchange reaction between isocitrate and 2-oxoglutarate+bicarbonate. The exchange was verified by perfusions with [(14)C]bicarbonate. There was no evidence for isotope exchange between citrate and acetyl-CoA or between 2-oxoglutarate and malate. There was rapid isotope equilibration between 2-oxoglutarate and glutamate, but relatively poor isotope equilibration between malate and aspartate. 7. It is concluded that the citrate synthase reaction is displaced from equilibrium in rat heart, that isocitrate dehydrogenase and aconitate hydratase may approximate to equilibrium, that alanine aminotransferase is close to equilibrium, but that aspartate transamination is slow for reasons that have yet to be investigated. 8. The slow rise in citrate concentration as compared with the rapid rise in that of acetyl-CoA is attributed to the slow generation of oxaloacetate by aspartate aminotransferase. 9. It is proposed that the tricarboxylate cycle may operate as two spans: acetyl-CoA-->2-oxoglutarate, controlled by citrate synthase, and 2-oxoglutarate-->oxaloacetate, controlled by 2-oxoglutarate dehydrogenase; a scheme for cycle control during acetate oxidation is outlined. The initiating factors are considered to be changes in acetyl-CoA, CoA and AMP concentrations brought about by acetyl-CoA synthetase. 10. Evidence is presented for a transient inhibition of phosphofructokinase during the first minute of acetate perfusion that was not due to a rise in whole-tissue citrate concentration. The probable importance of metabolite compartmentation is stressed.  相似文献   

2.
1. The extractions of glucose, lactate, pyruvate and free fatty acids by dog heart in vivo were calculated from measurements of their arterial and coronary sinus blood concentration. Elevation of plasma free fatty acid concentrations by infusion of intralipid and heparin resulted in increased extraction of free fatty acids and diminished extractions of glucose, lactate and pyruvate by the heart. It is suggested that metabolism of free fatty acids by the heart in vivo, as in vitro, may impair utilization of these substrates. These effects of elevated plasma free fatty acid concentrations on extractions by the heart in vivo were reversed by injection of dichloroacetate, which also improved extraction of lactate and pyruvate by the heart in vivo in alloxan diabetes. 2. Sodium dichloroacetate increased glucose oxidation and pyruvate oxidation in hearts from fed normal or alloxan-diabetic rats perfused with glucose and insulin. Dichloroacetate inhibited oxidation of acetate and 3-hydroxybutyrate and partially reversed inhibitory effects of these substrates on the oxidation of glucose. In rat diaphragm muscle dichloroacetate inhibited oxidation of acetate, 3-hydroxybutyrate and palmitate and increased glucose oxidation and pyruvate oxidation in diaphragms from alloxan-diabetic rats. Dichloroacetate increased the rate of glycolysis in hearts perfused with glucose, insulin and acetate and evidence is given that this results from a lowering of the citrate concentration within the cell, with a consequent activation of phosphofructokinase. 3. In hearts from normal rats perfused with glucose and insulin, dichloroacetate increased cell concentrations of acetyl-CoA, acetylcarnitine and glutamate and lowered those of aspartate and malate. In perfusions with glucose, insulin and acetate, dichloroacetate lowered the cell citrate concentration without lowering the acetyl-CoA or acetylcarnitine concentrations. Measurements of specific radioactivities of acetyl-CoA, acetylcarnitine and citrate in perfusions with [1-(14)C]acetate indicated that dichloroacetate lowered the specific radio-activity of these substrates in the perfused heart. Evidence is given that dichloroacetate may not be metabolized by the heart to dichloroacetyl-CoA or dichloroacetylcarnitine or citrate or CO(2). 4. We suggest that dichloroacetate may activate pyruvate dehydrogenase, thus increasing the oxidation of pyruvate to acetyl-CoA and acetylcarnitine and the conversion of acetyl-CoA into glutamate, with consumption of aspartate and malate. Possible mechanisms for the changes in cell citrate concentration and for inhibitory effects of dichloroacetate on the oxidation of acetate, 3-hydroxybutyrate and palmitate are discussed.  相似文献   

3.
1. The effect of acetoacetate on glucose metabolism was compared in the soleus, a slow-twitch red muscle, and the extensor digitorum longus, a muscle composed of 50% fast-twitch red and 50% white fibres. 2. When incubated for 2h in a medium containing 5 mM-glucose and 0.1 unit of insulin/ml, rates of glucose uptake, lactate release and glucose oxidation in the soleus were 19.6, 18.6 and 1.47 micronmol/h per g respectively. Acetoacetate (1.7 mM) diminished all three rates by 25-50%; however, it increased glucose conversion into glycogen. In addition, it caused increases in tissue glucose, glucose 6-phosphate and fructose 6-phosphate, suggesting inhibition of phosphofructokinase. The concentrations of citrate, an inhibitor of phosphofructokinase, and of malate were also increased. 3. Rates of glucose uptake and lactate release in the extensor digitorum longus were 50-80% of those in the soleus. Acetoacetate caused moderate increases in tissue glucose 6-phosphate and possibly citrate, but it did not decrease glucose uptake or lactate release. 4. The rate of glycolysis in the soleus was approximately five times that previously observed in the perfused rat hindquarter, a muscle preparation in which acetoacetate inhibits glucose oxidation, but does not alter glucose uptake or glycolysis. A similar rate of glycolysis was observed when the soleus was incubated with a glucose-free medium. Under these conditions, tissue malate and the lactate/pyruvate ratio in the medium were decreased, and acetoacetate did not decrease lactate release or increase tissue citrate or glucose 6-phosphate. An intermediate rate of glycolysis, which was not decreased by acetoacetate, was observed when the soleus was incubated with glucose, but not insulin. 5. The data suggest that acetoacetate glucose inhibits uptake and glycolysis in red muscle under conditions that resemble mild to moderate exercise. They also suggest that the accumulation of citrate in these circumstances is linked to the rate of glycolysis, possibly through the generation of cytosolic NADH and malate formation.  相似文献   

4.
1. In the isolated perfused rat heart, the contractile activity and the oxygen uptake were varied by altering the aortic perfusion pressure, or by the atrial perfusion technique (;working heart'). 2. The maximum increase in the contractile activity brought about an eightfold increase in the oxygen uptake. The rate of glycolytic flux rose, while tissue contents of hexose monophosphates, citrate, ATP and creatine phosphate decreased, and contents of ADP and AMP rose. 3. The changes in tissue contents of adenine nucleotides during increased heart work were time-dependent. The ATP content fell temporarily (30s and 2min) after the start of left-atrial perfusion; at 5 and 10min values were normal; and at 30 and 60min values were decreased. ADP and AMP values were increased in the first 15min, but were at control values 30 or 60min after the onset of increased heart work. 4. During increased heart work changes in the tissue contents of adenine nucleotide and of citrate appeared to play a role in altered regulation of glycolysis at the level of phosphofructokinase activity. 5. In recirculation experiments increased heart work for 30min was associated with increased entry of [(14)C]glucose (11.1mm) and glycogen into glycolysis and a comparable increase in formation of products of glycolysis (lactate, pyruvate and (14)CO(2)). There was no major accumulation of intermediates. Glycogen was not a major fuel for respiration. 6. Increased glycolytic flux in Langendorff perfused and working hearts was obtained by the addition of insulin to the perfusion medium. The concomitant increases in the tissue values of hexose phosphates and of citrate contrasted with the decreased values of hexose monophosphates and of citrate during increased glycolytic flux obtained by increased heart work. 7. Decreased glycolytic flux in Langendorff perfused hearts was obtained by using acute alloxan-diabetic and chronic streptozotocin-diabetic rats; in the latter condition there were decreased tissue contents of hexose phosphates and of citrate. There were similar findings when working hearts from streptozotocin-diabetic rats with insulin added to the medium were compared with normal hearts. 8. The effects of insulin addition or of the chronic diabetic state could be explained in terms of an action of insulin on glucose transport. Increased heart work also acted at this site, but in addition there was evidence for altered regulation of glycolysis mediated by changes in tissue contents of adenine nucleotides or of citrate.  相似文献   

5.
A mathematical model was used to study the role of various allosteric regulatory mechanisms in the oxidation of glucose and fatty acids by muscle energy metabolism. A large number of such mechanisms were shown to be involved in simultaneous oxidation of both substrates: glycolysis is regulated by the ATP/ADP ratio at the phosphofructokinase (PFK) step; the control over pyruvate dehydrogenase is exercised by the NADHm/NADm+ and CoAsAc/CoAsH ratios as well as by the level of pyruvate; the Krebs cycle is regulated by oxaloacetate and citrate concentrations in the citrate synthase reaction and by the ATP/ADP and NADHm/NADm+ ratios in the isocitrate dehydrogenase reaction. The inhibition of PFK and pyruvate dehydrogenase by excess of CoAsAcyl as well as the inhibition of PFK by citrate are additional equivalent regulatory mechanisms. When glucose alone is oxidized, the levels of citrate, CoAsAcyl, NADHm and CoAsAc decrease drastically within the whole range of physiological ATPase loads; the only regulating factors that remain efficient are the ATP/ADP ratio in glycolysis, the level of pyruvate at the pyruvate dehydrogenase step, the ATP/ADP ratio and the levels of CoAsAc, oxaloacetate and isocitrate in the Krebs cycle.  相似文献   

6.
A scheme is presented that shows how the reactions involved in gluconeogenesis, glycolysis and the tricarboxylic acid cycle are linked in rat liver. Equations are developed that show how label is redistributed in aspartate, glutamate and phosphopyruvate when it is introduced as specifically labelled pyruvate or glucose either at a constant rate (steady-state theory) or at a variable rate (non-steady-state theory). For steady-state theory the fractions of label introduced as specifically labelled pyruvate that are incorporated into glucose and carbon dioxide are also given, and for both theories the specific radioactivities of aspartate and glutamate relative to the specific radioactivity of the substrate. The theories allow for entry of label into the tricarboxylic acid cycle via both oxaloacetate and acetyl-CoA, for (14)CO(2) fixation and for loss of label from the tricarboxylic acid cycle in glutamate, but not for losses in citrate. They also allow for incomplete symmetrization of label in oxaloacetate due to incomplete equilibration with fumarate both in the extramitochondrial part of the cell and in the mitochondrion on entry of oxaloacetate into the tricarboxylic acid cycle. In the latter case failure both of oxaloacetate to equilibrate with malate and of malate to equilibrate with fumarate are considered.  相似文献   

7.
1. The regulation of glycolysis and pyruvate oxidation under varying conditions of ATP and oxygen consumption was studied in isolated perfused rat hearts. Potassium-induced arrest was employed to inhibit the ATP consumption of the heart. 2. Under the experimental conditions, the beating heart used solely glucose as the oxidisable substrate. The glycolytic flux through the aldolase step decreased in pace with the decreasing oxygen consumption during the potassium-induced arrest of the heart. The decrease in glucose oxidation was larger than the inhibition of the oxygen consumption, suggesting that the arrested heart switches to fatty acid oxidation. The time course and percentage changes of the inhibition of pyruvate oxidation and the decrease in the amount of the active form of pyruvate dehydrogenase suggest that the amount of active pyruvate dehydrogenase is the main regulator of pyruvate oxidation in the perfused heart. 3. To test the relative significance of the possible mechanisms regulating covalent interconversions of pyruvate dehydrogenase, the following parameters were measured in response to the potassium-induced cardiac arrest: concentrations of pyruvate, acetyl-CoA, CoA-SH, citrate, alpha-oxoglutarate, ATP, ADP, AMP, creatine, creatine phosphate and inorganic phosphate and the mitochondrial NADH/NAD+ ratio. In cardiac tissue the adenylate system is not a good indicator of the energy state of the mitochondrion, even when the concentrations of AMP and free cytosolic ADP are calculated from the adenylate kinase and creatine kinase equilibria. Only creatine phosphate and inorganic phosphate undergo significant changes, but evidence of the participation of the latter compounds in the regulation of the pyruvate dehydrogenase interconversions is lacking. The potassium-induced arrest of the heart resulted in a decrease in pyruvate, a slight increase in acetyl-CoA, a large increase in the concentration of citrate and an increase in the mitochondrial NADH/NAD+. The results can be interpreted as showing that in the heart, the pyruvate dehydrogenase interconversions are mainly regulated by the pyruvate concentration and the mitochondrial redox state. Concentrations of all the regulators tested shifted to directions which one would expect to result in a decrease in the amount of active pyruvate dehydrogenase, but the changes were quite small. Therefore, the energy-linked regulation of pyruvate dehydrogenase in intact tissue is possibly mediated by the equilibrium relations between the cellular redox state and the phosphorylation potential recently confirmed in cardiac tissue.  相似文献   

8.
J.K. Hiltunen  I.E. Hassinen 《BBA》1976,440(2):377-390
1. The regulation of glycolysis and pyruvate oxidation under varying conditions of ATP and oxygen consumption was studied in isolated perfused rat hearts. Potassium-induced arrest was employed to inhibit the ATP consumption of the heart.2. Under the experimental conditions, the beating heart used solely glucose as the oxidisable substrate. The glycolytic flux through the aldolase step decreased in pace with the decreasing oxygen consumption during the potassium-induced arrest of the heart. The decrease in glucose oxidation was larger than the inhibition of the oxygen consumption, suggesting that the arrested heart switches to fatty acid oxidation.The time course and percentage changes of the inhibition of pyruvate oxidation and the decrease in the amount of the active form of pyruvate dehydrogenase suggest that the amount of active pyruvate dehydrogenase is the main regulator of pyruvate oxidation in the perfused heart.3. To test the relative significance of the possible mechanisms regulating covalent interconversions of pyruvate dehydrogenase, the following parameters were measured in response to the potassium-induced cardiac arrest: concentrations of pyruvate, acetyl-CoA, CoA-SH, citrate, α-oxoglutarate, ATP, ADP, AMP, creatine, creatine phosphate and inorganic phosphate and the mitochondrial NADH/NAD+ ratio.In cardiac tissue the adenylate system is not a good indicator of the energy state of the mitochondrion, even when the concentrations of AMP and free cytosolic ADP are calculated from the adenylate kinase and creatine kinase equilibria. Only creatine phosphate and inorganic phosphate undergo significant changes, but evidence of the participation of the latter compounds in the regulation of the pyruvate dehydrogenase interconversions is lacking.The potassium-induced arrest of the heart resulted in a decrease in pyruvate, a slight increase in acetyl-CoA, a large increase in the concentration of citrate and an increase in the mitochondrial NADH/NAD+.The results can be interpreted as showing that in the heart, the pyruvate dehydrogenase interconversions are mainly regulated by the pyruvate concentration and the mitochondrial redox state. Concentrations of all the regulators tested shifted to directions which one would expect to result in a decrease in the amount of active pyruvate dehydrogenase, but the changes were quite small. Therefore, the energy-linked regulation of pyruvate dehydrogenase in intact tissue is possibly mediated by the equilibrium relations between the cellular redox state and the phosphorylation potential recently confirmed in cardiac tissue.  相似文献   

9.
Functional glycolytic capacity and its regulation have been studied in the fetal guinea-pig heart during O2 deprivation in situ and in the Langendorff perfused heart. Anaerobic glycolytic flux, at 2 mumol/min per g wet wt. was similar in the 48-50 and 60-65 days fetal and adult guinea-pig heart, despite lower fetal phosphofructokinase activity. During O2 deprivation in situ and in the perfused heart glucose was the major substrate, with glycogen making a smaller contribution. Glycolytic capacity became more tightly regulated during fetal heart development. Thus at 48-50 days glycolysis was increased during O2 deprivation by substrate supply, but at 60-65 days activation of phosphofructokinase was required also. Low malate/aspartate cycle activity in the fetal heart was suggested by the absence of an increase in malate and alanine at the expense of aspartate. The large proportion of aerobic glycolytic flux converted to lactate concurred with this. Because of the low O2 consumption and relatively high aerobic glycolytic flux, the proportion of glycolytically-derived ATP was 3-4 fold higher in the fetal than adult heart, and may explain its functional resistance to O2 deprivation.  相似文献   

10.
The mitochondrial transporter, the aspartate/glutamate carrier (AGC), is a necessary component of the malate/aspartate cycle, which promotes the transfer into mitochondria of reducing equivalents generated in the cytosol during glycolysis. Without transfer of cytosolic reducing equivalents into mitochondria, neither glucose nor lactate can be completely oxidized. In the present study, immunohistochemistry was used to demonstrate the absence of AGC from retinal glia (Müller cells), but its presence in neurons and photoreceptor cells. To determine the influence of the absence of AGC on sources of ATP for glutamate neurotransmission, neurotransmission was estimated in both light- and dark-adapted retinas by measuring flux through the glutamate/glutamine cycle and the effect of light on ATP-generating reactions. Neurotransmission was 80% faster in the dark as expected, because photoreceptors become depolarized in the dark and this depolarization induces release of excitatory glutamate neurotransmitter. Oxidation of [U-14C]glucose, [1-14C]lactate, and [1-14C]pyruvate in light- and dark-adapted excised retinas was estimated by collecting 14CO2. Neither glucose nor lactate oxidation that require participation of the malate/aspartate shuttle increased in the dark, but pyruvate oxidation that does not require the malate/aspartate shuttle increased to 36% in the dark. Aerobic glycolysis was estimated by measuring the rate of lactate appearance. Glycolysis was 37% faster in the dark. It appears that in the retina, ATP consumed during glutamatergic neurotransmission is replenished by ATP generated glycolytically within the retinal Müller cells and that oxidation of glucose within the Müller cells does not occur or occurs only slowly.  相似文献   

11.
A method is described by which the cytoplasmic and mitochondrial content of malate, oxaloacetate, aspartate, glutamate, 2-oxoglutarate, isocitrate, and citrate can be calculated. The values so obtained confirm that oxaloacetate occurs mainly in the cytosol. Aspartate, glutamate, and 2-oxoglutarate appear to be mainly located in the cytosol. Considerable redistribution of these metabolites occurs in the different nutritional and hormonal states. The redox state of the nicotinamide nucleotides in the two compartments has been calculated using the compartmented values. The mitochondrial redox state of the NADP couple appears to be far more reduced than has hitherto been thought. Control of the glycolytic pathway is vested in phosphofructokinase, pyruvate kinase, and glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase. The most important modifier of hepatic phosphofructokinase seems to be fructose-6-phosphate, which may act by changing the Ki; for citrate, thus permitting a sufficient concentration of citrate to be present in the cytosol for fatty acid synthesis without inhibition of phosphofructokinase. This overcomes the difficulty of the requirement for a rapid glycolytic flux simultaneously with lipid synthesis from citrate. Ultimate control of glycolysis may rest with glucokinase. The extent of deviation of triose phosphate isomerase from equilibrium is suggested as an index of glycolytic pathway flux and direction. Compartmentation of metabolites in the span pyruvate to phosphoenolpyruvate provided additional evidence for an increased flux through the control enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase in gluconeogenesis. The possibility that cAMP may be a positive effector of phosphoenolpyruvate carboxykinase is considered. The source of reducing equivalents for gluconeogenesis is examined. It is concluded that transfer of carbon occurs both as malate and aspartate, and that the requirement for reducing equivalents is met in part by the transfer of malate to the cytosol and in part by NADH generated by the fumarate cycle geared to urea production.  相似文献   

12.
Glucagon and N,(6)O(2)-dibutyryl cyclic adenosine 3',5'-cyclic monophosphate (Bt(2)cAMP) inhibit fatty acid synthesis from acetate by more than 90% and prevent citrate formation in chick hepatocytes metabolizing glucose. With substrates that enter glycolysis at or below triose-phosphates, e.g., fructose, lactate, or pyruvate, Bt(2)cAMP has no effect on the citrate level and its inhibitory effect on fatty acid synthesis is substantially reversed. Because acetyl-CoA carboxylase requires a tricarboxylic acid activator for activity, it is proposed that regulation of fatty acid synthesis by Bt(2)cAMP is due, in part, to changes in the citrate level. Reduced citrate formation appears to result from a cAMP-induced inhibition of glycolysis. Bt(2)cAMP inhibits (14)CO(2) production from [1-(14)C]-, [6-(14)C]-, and [U-(14)C]glucose and has little effect on (14)CO(2) formation from [1-(14)C]- or [2-(14)C]pyruvate or from [1-(14)C]fructose. [(14)C]Lactate formation from glucose is depressed 50% by Bt(2)cAMP. In the presence of an inhibitor of mitochondrial pyruvate transport lactate accumulation is enhanced, but continues to be lowered 50% by Bt(2)cAMP. The activity of phosphofructokinase is greatly decreased in Bt(2)cAMP-treated cells while the activities of pyruvate kinase and acetyl-CoA carboxylase are unaffected. It appears that decreased glycolytic flux and decreased citrate formation result from depressed phosphofructokinase activity. Fatty acid synthesis from [(14)C]acetate is partially inhibited by Bt(2)cAMP in the presence of fructose, lactate, and pyruvate despite a high citrate level. Incorporation of [(14)C]fructose, [(14)C]pyruvate, or [(14)C]lactate into fatty acids is similarly depressed by Bt(2)cAMP. Synthesis of cholesterol from [(14)C]acetate or [2-(14)C]pyruvate is unaffected by Bt(2)cAMP. These results implicate a second site of inhibition of fatty acid synthesis by Bt(2)cAMP that involves the utilization, but not the production, of cytoplasmic acetyl-CoA.-Clarke, S. D., P. A. Watkins, and M. D. Lane. Acute control of fatty acid synthesis by cyclic AMP in the chick liver cell: possible site of inhibition of citrate formation.  相似文献   

13.
Several metabolites, including those of glycolysis, the citric acid cycle, the hexose monophosphate shunt, glutamate, aspartate, and Coenzyme A were measured in defined parietal cell-enriched freeze-dried sections of dog gastric biopsies derived from nonsecreting and secreting tissue. In addition, NH3, ribulose 5-phosphate, glycerol, and succinate were measured in perchloric acid extracts of biopsies. The onset of secretion increased the level of glycolytic intermediates including pyruvate and lactate with the most marked increase being in fructose 1,6-diphosphate levels. The level of 6-phosphogluconate and ribulose 5-phosphate also increased, in spite of a constant NADP+/NADPH ratio. The levels of all the citric acid cycle intermediates measured also rose, the most marked rise being in malate and fumarate. The levels of glycerol, acetyl-CoA, and CoA increased, but the ratio of the latter intermediates remained constant. Calculation of the ratio of the oxidized to reduced form of diphosphopyridine nucleotide indicated a fall of the ratio in the cytoplasm and a rise in the mitochondria. From these data, it is concluded that the major energy source for acid secretion is due to an increase in citric acid cycle activity and that glycolysis, and probably also fatty acid oxidation, is stimulated to provide mitochondrial substrate.  相似文献   

14.
15.
Measurement of adipose-tissue metabolites in vivo   总被引:6,自引:5,他引:1       下载免费PDF全文
1. The concentrations of glucose, pyruvate, lactate, citrate, glutamate, malate and aspartate were measured in epididymal adipose tissue from starved, fed and starved-re-fed rats. 2. To measure these intermediates it was necessary to correct for their concentration in the extracellular tissue space, which was considered to be most satisfactorily equated with the glucose space. This space in vivo was 7.42, 4.90 and 7.54ml./100g. wet wt. of tissue in adipose tissue taken from starved, fed and starved-re-fed rats respectively. After correction for the glucose space, the concentrations of metabolites (nmoles/g. of cells) in epididymal adipose tissue of fed rats were: pyruvate, 8.5; lactate, 50.3; citrate, 18.5; glutamate, 100.0; malate, 6.4; aspartate, 34.2. 3. Starvation for 72hr. resulted in a fall in pyruvate and aspartate concentrations to 3.57 and 25.1nmoles/g.; starvation for 72hr. followed by re-feeding for 72hr. caused an increase in glutamate and aspartate concentrations to 140 and 67.6nmoles/g. 4. These changes are interpreted with regard to the simultaneous alteration in lipogenesis that occurs during the starvation-re-feeding cycle.  相似文献   

16.
1. Epididymal adipose tissues obtained from rats that had been previously starved, starved and refed a high fat diet for 72h, starved and refed bread for 144h or fed a normal diet were incubated in the presence of insulin+glucose or insulin+glucose+acetate. 2. Measurements were made of the whole-tissue concentrations of hexose phosphates, triose phosphates, glycerol 1-phosphate, 3-phosphoglycerate, 6-phosphogluconate, adenine nucleotides, acid-soluble CoA, long-chain fatty acyl-CoA, malate and citrate after 1h of incubation. The release of lactate, pyruvate and glycerol into the incubation medium during this period was also determined. 3. The rates of metabolism of glucose in the hexose monophosphate pathway, the glycolytic pathway, the citric acid cycle and into glyceride glycerol, fatty acids and lactate+pyruvate were also determined over a 2h period in similarly treated tissues. The metabolism of acetate to CO(2) and fatty acids in the presence of glucose was also measured. 4. The activities of acetyl-CoA carboxylase, fatty acid synthetase and isocitrate dehydrogenase were determined in adipose tissues from starved, starved and fat-refed, and alloxan-diabetic animals and also in tissues from animals that had been starved and refed bread for up to 96h. Changes in these activities were compared with the ability of similar tissues to incorporate [(14)C]glucose into fatty acids in vitro. 5. The activities of acetyl-CoA carboxylase and fatty acid synthetase roughly paralleled the ability of tissues to incorporate glucose into fatty acids. 6. Rates of triglyceride synthesis and fatty acid synthesis could not be correlated with tissue concentrations of long-chain fatty acyl-CoA, citrate or glycerol 1-phosphate. In some cases changes in phosphofructokinase flux rates could be correlated with changes in citrate concentration. 7. The main lesion in fatty acid synthesis in tissues from starved, starved and fat-refed, and alloxan-diabetic rats appeared to reside at the level of pyruvate utilization and to be related to the rate of endogenous lipolysis. 8. It is suggested that pyruvate utilization by the tissue may be regulated by the metabolism of fatty acids within the tissue. The significance of this in directing glucose utilization away from fatty acid synthesis and into glyceride-glycerol synthesis is discussed.  相似文献   

17.
In isolated hepatocytes from normal fed rats, the subcellular distribution of malate, citrate, 2-oxoglutarate, glutamate, aspartate, oxaloacetate, acetyl-CoA and CoASH has been determined by a modified digitonin method. Incubation with various substrates (lactate, pyruvate, alanine, oleate, oleate plus lactate, ethanol and aspartate) markedly changed the total cellular amounts of metabolites, but their distribution between the cytosolic and mitochondrial compartments was kept fairly constant. In the presence of lactate, pyruvate or alanine, about 90% of cellular aspartate, malate and oxaloacetate, and 50% of citrate was located in the cytosol. The changes in acetyl-CoA in the cytosol were opposite to those in the mitochondrial space, the sum of both remaining nearly constant. The mitochondrial acetyl-CoA/CoASH ratio ranged from 0.3-0.9 and was positively correlated with the rate of ketone body formation. The mitochondrial/cytosolic (m/c) concentration gradients for malate, citrate, 2-oxoglutarate, glutamate, aspartate, oxaloacetate, acetyl-CoA and CoASH averaged from hepatocytes under different substrate conditions were determined to be 1.0, 8.8, 1.6, 2.2, 0.5, 0.7, 13 and 40, respectively. From the distribution of citrate, a pH difference of 0.3 across the inner mitochondrial membrane was calculated, yet lower values resulted from the m/c gradients of 2-oxoglutarate, glutamate and malate. The mass action ratios for citrate synthase and mitochondrial aspartate aminotransferase have been calculated from the metabolite concentrations measured in the mitochondrial pellet fraction. A comparison with the respective equilibrium constants indicates that in intact hepatocytes, neither enzyme maintains its reactants at equilibrium. On the assumption that mitochondrial malate dehydrogenase and 3-hydroxybutyrate dehydrogenase operate near equilibrium, the concentration of free oxaloacetate appears to be 0.3-2 micron, depending on the substrate used. Plotting the calculated free mitochondrial oxaloacetate concentration against the citrate concentration measured in the mitochondrial pellet yielded a hyperbolic saturation curve, from which an apparent Km of citrate synthase for oxaloacetate in the intact cells of 2 micron can be derived, which is comparable to the value determined with purified rat liver citrate synthase. The results are discussed with respect to the supply of substrates and effectors of anion carriers and of key enzymes of the tricarboxylic acid cycle and fatty acid biosynthesis.  相似文献   

18.
1. In order to assess whether the potential ability of heart ventricular muscle and liver to metabolise substrates such as alanine, aspartate and lactate varies as the sheep matures and its nutrition changes, the activities of the following enzymes were determined in tissues of lambs obtained at varying intervals between 50 days after conception to 16 weeks after birth and in livers from adult pregnant ewes: lactate dehydrogenase (EC 1.1.1.27), alanine aminotransferase (EC 2.6.1.2), pyruvate kinase (EC 2.7.1.40), pyruvate carboxylase (EC 6.4.1.1), phosphoenolpyruvate carboxykinase (GTP)(EC 4.1.1.32), malate dehydrogenase (EC 1.1.1.37), aspartate aminotransferase (EC 2.6.1.1) and citrate (si)-synthase (EC 4.1.3.7). 2. In the heart a most marked increase in alanine aminotransferase activity was found throughout development. During this period the activities of citrate (si)-synthase, lactate dehydrogenase and pyruvate carboxylase also increased. There were no substantial changes in the activities of aspartate aminotransferase, malate dehydrogenase or pyruvate kinase. Pyruvate kinase activities were five times greater in the heart compared with those found in the liver. No significant activity of phosphoenolpyruvate carboxykinase (GTP) was detected in heart muscle. 3. In the liver the activities of both alanine aminotransferase and aspartate aminotransferase increased immediately following birth although the activity of alanine aminotransferase was lower in livers of pregnant ewes than in any of the lambs. As with alanine aminotransferase the highest activities of lactate dehydrogenase were found during the period of postnatal growth. No marked changes were observed in malate dehydrogenase or citrate (si)-synthase activities during development. A small decline in pyruvate kinase activity occurred whilst the activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (GTP) tended to rise during development.  相似文献   

19.
Chronic metabolic alkalosis was induced in rats drinking 0.3 M NaHCO3 and receiving 1 mg furosemide/100 g body weight per day intraperitoneally. Another group of animals received a potassium supplement in the form of 0.3 M KHCO3. In this group, hypokalemia did not develop and muscle potassium fell by only 18% versus 50% in those not receiving potassium. In vitro renal production of ammonia and uptake of glutamine fell by 40% with a decrease in the activity of glutaminase I and glutamate dehydrogenase. Activity of phosphofructokinase, a major enzyme of glycolysis, rose only in the kidney of animals receiving a potassium supplement. Fructose-1,6-diphosphatase fell as well as phosphoenolpyruvate carboxykinase. Malate dehydrogenase also fell. The activity of phosphofructokinase also rose in the liver, heart, and leg muscle. The major biochemical changes in the renal cortex were the following: glutamate, alpha-ketoglutarate, malate, lactate, pyruvate, alanine, aspartate, and citrate rose as well as calculated oxaloacetate. The concentration of intermediates like 2-phosphoglycerate, 3-phosphoglycerate, and glucose-6-phosphate fell. The cytosolic redox potential (NAD+/NADH) decreased. In addition to the fall in ammoniagenesis, it could be demonstrated in vitro that the renal tubules incubated with glutamine showed decreased glucose production and increased production of lactate and pyruvate. The concentration of lactate was elevated in all tissues examined including liver, heart, and leg muscle. This study confirms in the rat that decreased renal ammoniagenesis takes place following decreased uptake of glutamine in metabolic alkalosis. All other changes are accounted for by the process of increased glycolysis, which appears to take place in all tissues in metabolic alkalosis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A method to study the export of citric acid cycle intermediates from rat liver mitochondria supplied with various individual substrates or combinations of substrates was designed to focus on the role of mitochondria in anaplerosis and cataplerosis. Under most conditions malate, citrate, and aspartate were exported in far higher amounts than isocitrate and alpha-ketoglutarate. In the presence of pyruvate alone or pyruvate in combination with most other substrates, citrate export equaled or was only slightly less than malate export. This contrasts with pancreatic islet mitochondria where citrate export is unaffected by many substrates. Malate and succinate potentiated pyruvate-induced citrate export and succinate caused massive malate export from liver mitochondria. Heart mitochondria, which possess very little or no pyruvate carboxylase, unlike liver and pancreatic islet mitochondria, did not produce malate from pyruvate. Heart mitochondria produced malate, but not citrate, from succinate. The results indicate that liver mitochondria export a larger number of metabolites from a wider range of substrates than do islet or heart mitochondria. This may reflect the multiple roles of the liver in body metabolism versus the specialized roles of the islet cell and heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号