共查询到20条相似文献,搜索用时 15 毫秒
1.
Glomales SSUrRNA gene diversity 总被引:1,自引:0,他引:1
Arthur Schüßler 《The New phytologist》1999,144(2):205-207
The arbuscular mycorrhiza (AM) is one of the most important symbioses on earth, formed between about 80% of vascular plants and AM fungi (Smith & Read, 1997), which are placed in the order Glomales (Morton & Benny, 1990). A discussion has recently arisen about the rDNA-gene and general genome organization of this fungal group, which, as far as is known, does not possess sexuality (Sanders, 1999). This discussion mainly arose as a result of the assumption that one spore of an AM fungus ( Scutellospora castanea ) contains small subunit (SSU) rRNA genes that belong, phylogenetically, to different families within the Glomales, namely the Gigasporaceae and Glomaceae (Hosny et al ., 1999). Questions about genetic drift, infrequent recombination, concerted evolution and the validity of phylogenetic techniques have arisen (Hosny et al ., 1999; Sanders, 1999). However, this assumption might well be based on the sequence of an Ascomycete contaminant. 相似文献
2.
《The New phytologist》1999,144(2):203-203
New Phytologist has, throughout its history, been a forum for open debate – indeed, in his opening editorial (1902), Tansley referred to 'easy communication and discussion' as being the main ideas for the journal launch. The Internet now offers exciting new ways for sharing information, and this has challenged all information providers to reassess what they offer. It is our intention that the new Forum section in the journal should formalize our standing commitment, and encourage serious dialogue – through scientific commentary, correspondence and opinion.
As the journal approaches its hundredth year, so the need for dialogue is stronger than ever. More and more science is published, making it harder, year on year, to keep abreast of important developments. Science is also global, making discussion confined to those within one country or economic bloc to be too restrictive. And as the pressure to publish is as strong as it has ever been, so the free flow of original and unorthodox ideas can too easily become stifled.
New Phytologist , as a high-impact, high-quality journal, with its international scope and fierce independence – the Trust is not answerable to any society or commercial publisher – is a respected vehicle for such material. We invite you to participate, and to join us in helping the Forum to develop. 相似文献
As the journal approaches its hundredth year, so the need for dialogue is stronger than ever. More and more science is published, making it harder, year on year, to keep abreast of important developments. Science is also global, making discussion confined to those within one country or economic bloc to be too restrictive. And as the pressure to publish is as strong as it has ever been, so the free flow of original and unorthodox ideas can too easily become stifled.
New Phytologist , as a high-impact, high-quality journal, with its international scope and fierce independence – the Trust is not answerable to any society or commercial publisher – is a respected vehicle for such material. We invite you to participate, and to join us in helping the Forum to develop. 相似文献
3.
Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants 总被引:2,自引:1,他引:2
PARK S. NOBEL 《The New phytologist》1991,119(2):183-205
4.
The evolutionary relationship between stomatal mechanism, crassulacean acid metabolism and C4 photosynthesis 总被引:2,自引:1,他引:2
W. COCK BURN 《Plant, cell & environment》1981,4(6):417-418
Abstract. All of the features of crassulacean acid metabolism (CAM) and most characteristics of C4 photosynthesis are exhibited by stomatal guard cells. It is proposed that CAM and possibly also C4 photosynthesis result from the expression in photosynthetic cells of genetic information which is expressed only in guard cells of C3 plants. 相似文献
5.
Comparative ecophysiology of C3 and C4 plants 总被引:2,自引:3,他引:2
Abstract. In this review we relate the physiological significance of C4 photosynthesis to plant performance in nature. We begin with an examination of the physiological consequences of the C4 pathway on photosynthesis, then discuss the ecophysiological performance of C4 plants in contrasting environments. We then compare the performance of C3 and C4 plants when they occur together in similar habitats, and finally discuss the distribution of C4 photosynthesis with respect to the physical environment, phylogeny, and life form. 相似文献
6.
Stomatal acclimation over a subambient to elevated CO2 gradient in a C3 /C4 grassland 总被引:1,自引:1,他引:1
H. Maherali C. D. Reid H. W. Polley H. B. Johnson & R. B. Jackson 《Plant, cell & environment》2002,25(4):557-566
An investigation to determine whether stomatal acclimation to [CO2] occurred in C3/C4 grassland plants grown across a range of [CO2] (200–550 µmol mol?1) in the field was carried out. Acclimation was assessed by measuring the response of stomatal conductance (gs) to a range of intercellular CO2 (a gs–Ci curve) at each growth [CO2] in the third and fourth growing seasons of the treatment. The gs–Ci response curves for Solanum dimidiatum (C3 perennial forb) differed significantly across [CO2] treatments, suggesting that stomatal acclimation had occurred. Evidence of non–linear stomatal acclimation to [CO2] in this species was also found as maximum gs (gsmax; gs measured at the lowest Ci) increased with decreasing growth [CO2] only below 400 µmol mol?1. The substantial increase in gs at subambient [CO2] for S. dimidiatum was weakly correlated with the maximum velocity of carboxylation (Vcmax; r2 = 0·27) and was not associated with CO2 saturated photosynthesis (Amax). The response of gs to Ci did not vary with growth [CO2] in Bromus japonicus (C3 annual grass) or Bothriochloa ischaemum (C4 perennial grass), suggesting that stomatal acclimation had not occurred in these species. Stomatal density, which increased with rising [CO2] in both C3 species, was not correlated with gs. Larger stomatal size at subambient [CO2], however, may be associated with stomatal acclimation in S. dimidiatum. Incorporating stomatal acclimation into modelling studies could improve the ability to predict changes in ecosystem water fluxes and water availability with rising CO2 and to understand their magnitudes relative to the past. 相似文献
7.
8.
Leaves of twelve C3 species and six C4 species were examined to understand better the relationship between mesophyll cell properties and the generally high photosynthetic rates of these plants. The CO2 diffusion conductance expressed per unit mesophyll cell surface area (gCO2cell) cell was determined using measurements of the net rate of CO2 uptake, water vapor conductance, and the ratio of mesophyll cell surface area to leaf surface area (Ames/A). Ames/A averaged 31 for the C3 species and 16 for the C4 species. For the C3 species gCO2cell ranged from 0.12 to 0.32 mm s-1, and for the C4 species it ranged from 0.55 to 1.5 mm s-1, exceeding a previously predicted maximum of 0.5 mm s-1. Although the C3 species Cammissonia claviformis did not have the highest gCO2cell, the combination of the highest Ames and highest stomatal conductance resulted in this species having the greatest maximum rate of CO2 uptake in low oxygen, 93 μmol m-2 s-1 (147 mg dm-2 h-1). The high gCO2cell of the C4 species Amaranthus retroflexus (1.5 mm s-1) was in part attributable to its thin cell wall (72 nm thick). 相似文献
9.
10.
W. COCKBURN 《Plant, cell & environment》1983,6(4):275-279
Abstract. The similarities between the component reactions of the presently known variants of photosynthetic carbon metabolism (crassulacean acid metabolism, the acid metabolism of Tillandsia usneoides , aquatic acid metabolism, and C4 photosynthesis) when considered along with their widely scattered taxonomic distribution strongly suggest polyphyletic origins resulting from evolutionary modification of a common, universally distributed metabolic sequence. The synthesis and consumption of four-carbon acids in the cation-balancing reactions involved in the regulation of stomatal aperture appear to exhibit all of the characteristics likely to be displayed by such a metabolic progenitor.
The present status of the proposal that the expression of aspects of stomatal metabolism in photosynthetic mesophyll cells represents the basis for the evolution of the variant of photosynthetic carbon metabolism is discussed. The prospects of experimental approaches which may yield information relevant to the proposal are also explored. 相似文献
The present status of the proposal that the expression of aspects of stomatal metabolism in photosynthetic mesophyll cells represents the basis for the evolution of the variant of photosynthetic carbon metabolism is discussed. The prospects of experimental approaches which may yield information relevant to the proposal are also explored. 相似文献
11.
Low-temperature photosynthetic performance of a C4 grass and a co-occurring C3 grass native to high latitudes 总被引:1,自引:1,他引:0
The photosynthetic performance of C4 plants is generally inferior to that of C3 species at low temperatures, but the reasons for this are unclear. The present study investigated the hypothesis that the capacity of Rubisco, which largely reflects Rubisco content, limits C4 photosynthesis at suboptimal temperatures. Photosynthetic gas exchange, chlorophyll a fluorescence, and the in vitro activity of Rubisco between 5 and 35 °C were measured to examine the nature of the low‐temperature photosynthetic performance of the co‐occurring high latitude grasses, Muhlenbergia glomerata (C4) and Calamogrostis canadensis (C3). Plants were grown under cool (14/10 °C) and warm (26/22 °C) temperature regimes to examine whether acclimation to cool temperature alters patterns of photosynthetic limitation. Low‐temperature acclimation reduced photosynthetic rates in both species. The catalytic site concentration of Rubisco was approximately 5.0 and 20 µmol m?2 in M. glomerata and C. canadensis, respectively, regardless of growth temperature. In both species, in vivo electron transport rates below the thermal optimum exceeded what was necessary to support photosynthesis. In warm‐grown C. canadensis, the photosynthesis rate below 15 °C was unaffected by a 90% reduction in O2 content, indicating photosynthetic capacity was limited by the capacity of Pi‐regeneration. By contrast, the rate of photosynthesis in C. canadensis plants grown at the cooler temperatures was stimulated 20–30% by O2 reduction, indicating the Pi‐regeneration limitation was removed during low‐temperature acclimation. In M. glomerata, in vitro Rubisco activity and gross CO2 assimilation rate were equivalent below 25 °C, indicating that the capacity of the enzyme is a major rate limiting step during C4 photosynthesis at cool temperatures. 相似文献
12.
Immediate export in leaves of C3‐C4 intermediates were compared with their C3 and C4 relatives within the Panicum and Flaveria genera. At 35 Pa CO2, photosynthesis and export were highest in C4 species in each genera. Within the Panicum, photosynthesis and export in ‘type I’ C3‐C4 intermediates were greater than those in C3 species. However, ‘type I’ C3‐C4 intermediates exported a similar proportion of newly fixed 14C as did C4 species. Within the Flaveria, ‘type II’ C3‐C4 intermediate species had the lowest export rather than the C3 species. At ambient CO2, immediate export was strongly correlated with photosynthesis. However, at 90 Pa CO2, when photosynthesis and immediate export increased in all C3 and C3‐C4 intermediate species, proportionally less C was exported in all photosynthetic types than that at ambient CO2. All species accumulated starch and sugars at both CO2 levels. There was no correlation between immediate export and the pattern of 14C‐labelling into sugars and starch among the photosynthetic types within each genus. However, during CO2 enrichment, C4Panicum species accumulated sugars above the level of sugars and starch normally made at ambient CO2, whereas the C4Flaveria species accumulated only additional starch. 相似文献
13.
Abstract Evidence is drawn from previous studies to argue that C3—C4 intermediate plants are evolutionary intermediates, evolving from fully-expressed C3 plants towards fully-expressed C4 plants. On the basis of this conclusion, C3—C4 intermediates are examined to elucidate possible patterns that have been followed during the evolution of C4 photosynthesis. An hypothesis is proposed that the initial step in C4-evolution was the development of bundle-sheath metabolism that reduced apparent photorespiration by an efficient recycling of CO2 using RuBP carboxylase. The CO2-recycling mechanism appears to involve the differential compartmentation of glycine decarboxylase between mesophyll and bundle-sheath cells, such that most of the activity is in the bundlesheath cells. Subsequently, elevated phosphoenolpyruvate (PEP) carboxylase activities are proposed to have evolved as a means of enhancing the recycling of photorespired CO2. As the activity of PEP carboxylase increased to higher values, other enzymes in the C4-pathway are proposed to have increased in activity to facilitate the processing of the products of C4-assimilation and provide PEP substrate to PEP carboxylase with greater efficiency. Initially, such a ‘C4-cycle’ would not have been differentially compartmentalized between mesophyll and bundlesheath cells as is typical of fully-expressed C4 plants. Such metabolism would have limited benefit in terms of concentrating CO2 at RuBP carboxylase and, therefore, also be of little benefit for improving water- and nitrogen-use efficiencies. However, the development of such a limited C4-cycle would have represented a preadaptation capable of evolving into the leaf biochemistry typical of fully-expressed C4 plants. Thus, during the initial stages of C4-evolution it is proposed that improvements in photorespiratory CO2-loss and their influence on increasing the rate of net CO2 assimilation per unit leaf area represented the evolutionary ‘driving-force’. Improved resourceuse efficiency resulting from an efficient CO2-concentrating mechanism is proposed as the driving force during the later stages. 相似文献
14.
A. M. A. Mazen 《Physiologia plantarum》1996,98(1):111-116
Changes in levels of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31, orthophosphate: oxaloacetate carboxy-lyase, phosphorylating) were followed in leaves and stems of CAM-expressing and non-expressing Portulaca oleracea L. plants. CAM expression was induced by growing plants under an 8-h photoperiod and water stress conditions (SD-WS). Leaves and stems of these plants (designated CAM) expressed nocturnal acidification with an oscillation pattern and an amplitude characteristic of CAM plants. Generally, PEPC activity increased by ca 3-fold during the period of CAM induction. Over the day/night cycle. PEPC activity oscillated in a pattern typical of CAM plants. Treatment of the other plant group (designated as non-CAM) by growth under a 16-h photoperiod and well-watered conditions (LD-WW) did not induce expression of the tested criteria of CAM in plants. In these plants, nocturnal acidification as well as changes in the magnitude of PEPC, activity and fluctuation pattern were undetectable. SDS-PAGE of leaf extracts of the CAM-expressing plants and the corresponding densitometric scans show progressive increase in the amount of PEPC subunit protein (ca 95 kDa) during the period of CAM induction. These results show that induction of CAM-like characteristics in the C4 plant Portulaca oleracea is also accompanied by increased PEPC activity, which may be partly due to an increase in enzyme synthesis. 相似文献
15.
Effects of low level O3 exposure on leaf diffusive conductance and water-use efficiency in hybrid poplar 总被引:8,自引:2,他引:8
Abstract Young, amphistomatous hybrid poplar (Populus deltoides x trichocarpa) plants were exposed daily to either background (0.025 cm3 m-3) or elevated (0.125 cm3 m-3) concentrations of O3. Levels of abaxial and adaxial leaf conductance were affected interactively by pollutant treatment, leaf age, and photon fluence rate. Consequently, conductance in O3-treated leaves was sometimes higher and sometimes lower than in comparable control leaves, depending on leaf age or level of photon fluence rate. For example, at low photon fluence rate or in the dark, conductance was greater in O3-treated than in control plants, while at high photon fluence rate that relationship was reversed. Exposure to O3 also reduced the water-use efficiency and range of leaf conductance of individual leaves, and altered the relationship between the conductances of the two leaf surfaces (the ratio of abaxial to adaxial leaf conductance was increased). Furthermore, O3 treatment resulted in diminished stomatal control of water loss; excised O3-treated leaves had higher conductances and wilted sooner than excised control leaves of identical ages. Overall, the data indicate that exposure to O3 resulted in impaired stomatal function. 相似文献
16.
Abstract. The photosynthetic responses to temperature in C3, C3-C4 intermediate, and C4 species in the genus Flaveria were examined in an effort to identify whether the reduced photorespiration rates characteristic of C3-C4 intermediate photosynthesis result in adaptive advantages at warm leaf temperatures. Reduced photorespiration rates were reflected in lower CO2 compensation points at all temperatures examined in the C3-C4 intermediate, Flaveria floridana, compared to the C3 species, F. cronquistii. The C3-C4 intermediate, F. floridana, exhibited a C3-like photosynthetic temperature dependence, except for relatively higher photosynthesis rates at warm leaf temperatures compared to the C3 species, F. cronquistii. Using models of C3 and C3-C4 intermediate photosynthesis, it was predicted that by recycling photorespired CO2 in bundle-sheath cells, as occurs in many C3-C4 intermediates, photosynthesis rates at 35°C could be increased by 28%, compared to a C3 plant. Without recycling photorespired CO2, it was calculated that in order to improve photosynthesis rates at 35°C by this amount in C3 plants, (1) intercellular CO2 partial pressures would have to be increased from 25 to 31 Pa, resulting in a 57% decrease in water-use efficiency, or (2) the activity of RuBP carboxylase would have to be increased by 32%, resulting in a 22% decrease in nitrogen-use efficiency. In addition to the recycling of photorespired CO2, leaves of F. floridana appear to effectively concentrate CO2 at the active site of RuBP carboxylase, increasing the apparent carboxylation efficiency per unit of in vitro RuBP carboxylase activity. The CO2-concentrating activity also appears to reduce the temperature sensitivity of the carboxylation efficiency in F. floridana compared to F. cronquistii. The carboxylation efficiency per unit of RuBP carboxylase activity decreased by only 38% in F. floridana, compared to 50% in F. cronquistii, as leaf temperature was raised from 25 to 35°C. The C3-C4 intermediate, F. ramosissima, exhibited a photosynthetic temperature temperature response curve that was more similar to the C4 species, F. trinervia, than the C3 species, F. cronquistii. The C4-like pattern is probably related to the advanced nature of C4-like biochemical traits in F. ramosissima The results demonstrate that reductions in photorespiration rates in C3-C4 intermediate plants create photosynthetic advantages at warm leaf temperatures that in C3 plants could only be achieved through substantial costs to water-use efficiency and/or nitrogen-use efficiency. 相似文献
17.
18.
Carbon isotope discrimination in C3–C4 intermediates is determined by fractionations during diffusion and the biochemical fractionations occurring during CO2 fixation. These biochemical fractionations in turn depend on the fractionation by Rubisco in the mesophyll, the amount of CO2 fixation. These biochemical fractionations in turn depend on the fractionation by Rubisco in the mesophyll, the amount of CO2 fixation occurring in the bundle sheath, the extent of bundle-sheath leakiness and the contribution which C4-cycle activity makes to the CO2 pool there. In most instances, carbon isotope discrimination in C3–C4 intermediates is C3-like because only a small fraction of the total carbon fixed is fixed in the bundle sheath. In particular, this must be the case for Flaveria intermediates which initially fix substantial amounts of CO2 into C4-acids. In C3–C4 intermediates that refix photorespiratory CO2 alone, it is possible for carbon isotope discrimination to be greater than in C3-species, particularly at low CO2 pressures or at high leaf temperatures. Short-term measurements of carbon isotope discrimination and gas exchange of leaves can be used to study the photosynthetic pathways of C3-C4 intermediates and their hybrids as has recently been done for C3 and C4 species. 相似文献
19.
The evolution of C4 photosynthesis 总被引:8,自引:4,他引:4
Rowan F. Sage 《The New phytologist》2004,161(2):341-370
20.
Elevated pyruvate,orthophosphate dikinase (PPDK) activity alters carbon metabolism in C3 transgenic potatoes with a C4 maize PPDK gene 总被引:1,自引:0,他引:1
Ken Ishimaru Yasunobu Ohkawa Teruo Ishige Dennis J. Tobias Ryu Ohsugi 《Physiologia plantarum》1998,103(3):340-346
Changes in carbon metabolism and δ13 C value of transgenic potato plants with a maize pyruvate,orthophosphate dikinase (PPDK; EC 2.7.9.1) gene are reported. PPDK catalyzes the formation of phospho enol pyruvate (PEP), the initial acceptor of CO2 in the C4 photosynthetic pathway. PPDK activities in the leases of transgenic potatoes were up to 5.4‐fold higher than those of control potato plants (wild‐type and treated control plants). In the transgenic potato plants, PPDK activity in leaves was negatively correlated with pyruvate content (r2 = 0.81), and was positively correlated with malate content (r2 = 0.88). A significant increase in the δ13 C value was observed in the transgenic potato plants, suggesting a certain contribution of PEP carboxylase as the initial acceptor of atmospheric CO2 . These data suggest that elevated PPDK activity may alter carbon metabolism and lead to a partial operation of C4 ‐type carbon metabolism. However, since parameters associated with CO2 gas exchange were not affected, the altered carbon metabolism had only a small effect on the total photosynthetic characteristics of the transgenic plants. 相似文献