首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arginine methylation is a post-translational modification found in many RNA-binding proteins. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) from HeLa cells was shown, by mass spectrometry and Edman degradation, to contain asymmetric N(G),N(G)-dimethylarginine at five positions in its amino acid sequence (Arg256, Arg258, Arg268, Arg296, and Arg299). Whereas these five residues were quantitatively modified, Arg303 was asymmetrically dimethylated in <33% of hnRNP K and Arg287 was monomethylated in <10% of the protein. All other arginine residues were unmethylated. Protein-arginine methyltransferase 1 was identified as the only enzyme methylating hnRNP K in vitro and in vivo. An hnRNP K variant in which the five quantitatively modified arginine residues had been substituted was not methylated. Methylation of arginine residues by protein-arginine methyltransferase 1 did not influence the RNA-binding activity, the translation inhibitory function, or the cellular localization of hnRNP K but reduced the interaction of hnRNP K with the tyrosine kinase c-Src. This led to an inhibition of c-Src activation and hnRNP K phosphorylation. These findings support the role of arginine methylation in the regulation of protein-protein interactions.  相似文献   

2.
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA/DNA-binding protein involved in chromatin remodeling, RNA processing and the DNA damage response. In addition, increased hnRNPK expression has been associated with tumor development and progression. A variety of post-translational modifications of hnRNPK have been identified and shown to regulate hnRNPK function, including phosphorylation, ubiquitination, sumoylation and methylation. However, the functional significance of hnRNPK arginine methylation remains unclear. In the present study, we demonstrated that the methylation of two essential arginines, Arg296 and Arg299, on hnRNPK inhibited a nearby Ser302 phosphorylation that was mediated through the pro-apoptotic kinase PKCδ. Notably, the engineered U2OS cells carrying an Arg296/Arg299 methylation-defective hnRNPK mutant exhibited increased apoptosis upon DNA damage. While such elevated apoptosis can be diminished through addition with wild-type hnRNPK, we further demonstrated that this increased apoptosis occurred through both intrinsic and extrinsic pathways and was p53 independent, at least in part. Here, we provide the first evidence that the arginine methylation of hnRNPK negatively regulates cell apoptosis through PKCδ-mediated signaling during DNA damage, which is essential for the anti-apoptotic role of hnRNPK in apoptosis and the evasion of apoptosis in cancer cells.  相似文献   

3.
Modification of protein residues by S-adenosyl-l-methionine (AdoMet)-dependent methyltransferases impacts an array of cellular processes. Here we describe a new approach to quantitatively measure the rate of methyl transfer that is compatible with using protein substrates. The method relies on the ability of reverse-phase resin packed at the end of a pipette tip to quickly separate unreacted AdoMet from radiolabeled protein products. Bound radiolabeled protein products are eluted directly into scintillation vials and counted. In addition to decreasing analysis time, the sensitivity of this protocol allows the determination of initial rate data. The utility of this protocol was shown by generating a Michaelis-Menten curve for the methylation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) protein by human protein arginine methyltransferase 1, variant 1 (hPRMT1v1), in just over 1 h. An additional advantage of this assay is the more than 3000-fold reduction in radioactive waste over existing protocols.  相似文献   

4.
The 1-aminocyclopropane-1-carboxylate (ACC) oxidase catalyzes the last step in the biosynthesis of ethylene from ACC in higher plants. The complex structure of ACC oxidase/Fe(2+)/H(2)O derived from Petunia hybrida has recently been established by X-ray crystallography and it provides a vast structural information for ACC oxidase. Our mutagenesis study shows that both Lys296 and Arg299 residues in the C-terminal helix play important roles in enzyme activity. Both K296R and R299K mutant proteins retain only 30-15% of their enzyme activities with respect to that of the wild-type, implying that the positive charges of C-terminal residues are involved in enzymatic reaction. Furthermore, the sequence alignment of ACC oxidases from 24 different species indicates an existence of the exclusively conserved motif (Lys296-Glu301) especially in the C-terminus. The structure model based on our findings suggests that the positive-charged surface in the C-terminal helix of the ACC oxidase could be a major stabilizer in the spatial arrangement of reactants and that the positive-charge network between the active site and C-terminus is critical for ACC oxidase activity.  相似文献   

5.
6.
Calpain is a cytosolic “modulator protease” that modulates cellular functions in response to Ca2+. To identify in vivo substrates of calpain, yeast two-hybrid screening was done using the 5-EF-hand (penta-EF-hand; PEF) domain of the μ-calpain large subunit (domain IV), since several possible in vivo substrates for calpain have been previously reported to bind to the 5-EF-hand domains. Other than the regulatory subunit of calpain, which binds to the domain IV, heterogeneous nuclear ribonucleoproteins (hnRNP) K and R were identified, and shown to be proteolyzed by μ-calpain in vitro. When expressed in COS7 cells, hnRNP K and μ-calpain co-localized in the cytosol, and Ca2+-ionophore stimulation of the cells resulted in proteolysis of hnRNP K, indicating that hnRNP K is an in vivo substrate for calpain. Now, hnRNP K is considered to function as a scaffold protein for its binding proteins, such as PKCδ and C/EBPβ, which were reported to be calpain substrates, suggesting that hnRNP-K is a scaffold for calpain to proteolyze these proteins.  相似文献   

7.
Summary Heterogeneous nuclear RNP protein A1, one of the major proteins in hnRNP particle (precursor for mRNA), is known to be post-translationally arginine-methylatedin vivo on residues 193, 205, 217 and 224 within the RGG box, the motif postulated to be an RNA binding domain. Possible effect of NG-arginine methyl-modification in the interaction of protein A1 to nucleic acid was investigated. The recombinant hnRNP protein A1 wasin vitro methylated by the purified nuclear protein/histone-specific protein methylase I (S-adenosylmethionine:protein-arginine N-methyltransferase) stoichiometrically and the relative binding affinity of the methylated and the unmethylated protein A1 to nucleic acid was compared: Differences in their binding properties to ssDNA-cellulose, pI values and trypsin sensitivities in the presence and absence of MS2-RNA all indicate that the binding property of hnRNP protein A1 to single-stranded nucleic acid has been significantly reduced subsequent to the methylation. These results suggest that posttranslational methyl group insertion to the arginine residue reduces protein-RNA interaction, perhaps due to interference of H-bonding between guanidino nitrogen arginine and phosphate RNA.Abbreviations hnRNP heterogeneous ribonucleoprotein particle - AdoMet S-adenosyl-L-methionine - AdoHcy S-adenosyl-L-homocysteine - MBP myelin basic protein - HMG high mobility group - ss single stranded  相似文献   

8.
A question that is central to understanding the mechanisms of aging and cellular deterioration is whether enzymes involved in recognition and metabolism of spontaneously damaged proteins are themselves damaged, either becoming substrates for their own activity; or being unable to act upon themselves, initiating cascades of cellular damage. We show here byin vitro experiments that protein (d-aspartyl/l-isoaspartyl) carboxyl methyltransferase (PCM) from bovine erythrocytes does methylate age-dependent amino acid damage in its own sequence. The subpopulation that is methylated, termed thePCM fraction, appears to be formed through age-dependent deamidation of an asparaginyl site to either anl-isoaspartyl ord-aspartyl site because (a) the stoichiometry of automethylation of purified PCM is less than 1%, a value typical of the substoichiometric methylation of many other aged protein substrates, (b)PCM is slightly more acidic than the bulk of PCM, and (c) the methyl esterified site inPCM has the characteristic base-lability of this type of methyl ester. Also, the methyl group is not incorporated into the enzyme as an active site intermediate because the incorporated methyl group is not chased onto substrate protein. The effect of enzyme dilution on the rate of the automethylation reaction is consistent with methylation occurring between protein molecules, showing that the pool of PCM is autocatalytic even though individual molecules may not be. The automethylation and possible self-repair of the PCM pool has implications for maintaining thein vivo efficiency of methylation-dependent protein repair.  相似文献   

9.
Cyanophycin synthesis is catalyzed by cyanophycin synthetase (CphA). It was believed that CphA requires l-aspartic acid (Asp), l-arginine (Arg), ATP, Mg2+, and a primer (low-molecular mass cyanophycin) for cyanophycin synthesis and catalyzes the elongation of a low-molecular mass cyanophycin. Despite extensive studies of cyanophycin, the mechanism of primer supply is still unclear, and already-known CphAs were primer-dependent enzymes. In the present study, we found that recombinant CphA from Thermosynechococcus elongatus BP-1 (Tlr2170 protein) catalyzed in vitro cyanophycin synthesis in the absence of a primer. The Tlr2170 protein showed strict substrate specificity toward Asp and Arg. The optimum pH was 9.0, and Mg2+ or Mn2+ was essential for cyanophycin synthesis. KCl enhanced the cyanophycin synthesis activity of the Tlr2170 protein; in contrast, dithiothreitol did not. The Tlr2170 protein appeared to be a 400 ± 9 kDa homo-tetramer. The Tlr2170 protein showed thermal stability and retained its 80% activity after a 60-min incubation at 50°C. In addition, we examined cyanophycin synthesis at 30°C, 40°C, 50°C, and 60°C. SDS-PAGE analysis showed that the molecular mass of cyanophycin increased with increased reaction temperature.  相似文献   

10.
Protein (d-aspartyl/l-isoaspartyl) carboxyl methyltransferase (PCM, E.C. 2.1.1.77) was previously shown to be enzymatically methyl esterified in an autocatalytic manner at altered aspartyl residues; methyl esters are observed in a subpopulation of the enzyme termed thePCM fraction [Lindquist and McFadden (1994),J. Protein Chem. 13, 23–30]. The altered aspartyl sites serving as methyl acceptors inPCM have now been localized by using proteolytic enzymes and chemical cleavage techniques in combination with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to identify fragments of the [3H]automethylated enzyme that contain a [3H]methyl ester. Methylation was positively identified at positions Asn188 and Asp217 in the enzyme sequence, a consequence of the spontaneous alteration of these sites tol-isoaspartyl ord-aspartyl sites and their methylation by active PCM molecules. The identification of more than one site of automethylation shows thatPCM is not a homogeneous population of damaged PCM molecules, but rather a complex population of molecules with a variety of age-altered damage sites.Abbreviations PCM protein (d-aspartyl/l-isoaspartyl) carboxyl methyltransferase - EDTA disodium ethylenediaminetetraacetate - PMSF phenylmethylsulfonyl fluoride - TEA trifluoroacetic acid - HPLC high-pressure liquid chromatography  相似文献   

11.
12.
13.
To evaluate the importance of conserved Arg114 and Arg337 residues of Escherichia coli γ-glutamyltranspeptidase (EcGGT), Lys, Leu, or Asp-substituted mutants were constructed by site-directed mutagenesis. The wild-type and mutant enzymes were overexpressed in the recombinant E. coli M15 and purified by nickel-chelate chromatography to near homogeneity. With the exception of R114K, all the other mutants significantly lost GGT activity, confirming the importance of these two residues in EcGGT. Kinetic analysis of R114L, R114D, R337K, and R337L revealed a significant increase in Km with a minor change in kcat, leading to more than an 8-fold decrease in kcat/Km values. Mutations of Arg337 impaired the capability of autocatalytic processing of the enzyme. In vitro maturation experiments revealed that EcGGT precursor mutants, pro-R337K and pro-R337L, could precede a time-dependent autocatalytic process to generate the small and large subunits, while no autocatalytic processing was observed in pro-R337D. Computer modeling showed that the critical bonding distance of Gln390 O-Thr391 HG1 and Gln390 C-Thr391 OG1 are significantly increased in Arg337 replacements, implying that these distance changes might be responsible for the lack of enzyme maturation.  相似文献   

14.
We previously reported that, in human heat shock protein (Hsp) 90 (hHsp90), there are 4 highly immunogenic sites, designated sites Ia, Ib, Ic, and II. This study was performed to further characterize their epitopes and to identify the epitope that is potentially common to all members of the Hsp90 family. Panning of a bacterial library carrying randomized dodecapeptides revealed that Glu251-Ser-X-Asp254 constituted site Ia and Pro295-Ile-Trp-Thr-Arg299, site Ic. Site II (Asp701-Pro717) was composed of several epitopes. When 19 anti-hHsp90 monoclonal antibodies (mAbs) were subjected to immunoblotting against recombinant forms of 7 Hsp90-family members, 2 mAbs (K41110 and K41116C) that recognized site Ic bound to yeast Hsp90 with affinity identical to that for hHsp90, and 1 mAb (K3729) that recognized Glu222-Ala23, of hHsp90beta could bind to human 94-kDa glucose-regulated protein (Grp94), an endoplasmic reticulum paralog of Hsp90. Among the 5 amino acids constituting site Ic, Trp297 and Pro295 were essential for recognition by all anti-site-Ic mAbs, and Arg299 was important for most of them. The necessity of Ile296, Thr298, and Arg299, which are replaced by Leu, Met/Leu, and Lys, respectively, in some eukaryotic Hsp90, was dependent on the mAbs, and K41110 and K41116C could react with Hsp90s carrying these substitutions. From these data taken together, we propose that the pentapeptide Pro295-Ile-Trp-Thr-Arg299 of hHsp90 functions as an immunodominant epitope common to all eukaryotic Hsp90.  相似文献   

15.
Arima J  Kono M  Kita M  Mori N 《Biotechnology letters》2012,34(6):1093-1099
l-Aspartyl l-amino acid methyl ester was synthesized using a mutant of a thermostable leucine aminopeptidase from Streptomyces cinnamoneus, D198 K SSAP, obtained in previously. A peptide of high-intensity sweetener, l-aspartyl-l-phenylalanine methyl ester, was selected as a model for demonstrating the synthesis of l-aspartyl l-amino acid methyl ester. The hydrolytic activities of D198 K SSAP toward l-aspartyl-l-phenylalanine and its methyl ester were, respectively, 74-fold and fourfold higher than those of wild type. Similarly, the initial rate of the enzyme for l-aspartyl-l-phenylalanine methyl ester synthesis was over fivefold higher than that of wild-type SSAP in 90% methanol (v/v) in a one-pot reaction. Furthermore, other l-aspartyl l-amino acid methyl esters were synthesized efficiently using D198 K SSAP. Results show that the substitution of Asp198 of SSAP with Lys is effective for synthesizing l-aspartyl l-amino acid methyl ester.  相似文献   

16.
17.
In order to create a heme environment that permits biomimicry of heme-containing peroxidases, a number of new hemin–peptide complexes—hemin-2(18)-glycyl-l-histidine methyl ester (HGH), hemin-2(18)-glycyl-glycyl-l-histidine methyl ester (HGGH), and hemin-2,18-bis(glycyl-glycyl-l-histidine methyl ester) (H2GGH)—have been prepared by condensation of glycyl-l-histidine methyl ester or glycyl-glycyl-l-histidine methyl ester with the propionic side chains of hemin. Characterization by means of UV/vis- and 1H NMR spectroscopy as well as cyclic- and differential pulse voltammetry indicates the formation of five-coordinate complexes in the case of HGH and HGGH, with histidine as an axial ligand. In the case of H2GGH, a six-coordinate complex with both imidazoles coordinated to the iron center appears to be formed. However, 1H NMR of H2GGH reveals the existence of an equilibrium between low-spin six-coordinate and high-spin five-coordinate species in solution. The catalytic activity of the hemin–peptide complexes towards several organic substrates, such as p-cresol, l-tyrosine methyl ester, and ABTS, has been investigated. It was found that not only the five-coordinate HGH and HGGH complexes, but also the six-coordinate H2GGH, catalyze the oxidation of substrates by H2O2. The longer and less strained peptide arm provides the HGGH complex with a slightly higher catalytic efficiency, as compared with HGH, due to formation of more stable intermediate complexes.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00775-004-0532-5.Abbreviations ABTS 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) - DCC dicyclohexylcarbodiimide - HGH hemin-2(18)-glycyl-l-histidine methyl ester - HGGH hemin-2(18)-glycyl-glycyl-l-histidine methyl ester - H2GGH hemin-2,18-bis(glycyl-glycyl-l-histidine methyl ester) - HOBt N-hydroxybenzotriazole  相似文献   

18.
The studies of protein methylation mainly focus on lysine and arginine residues due to their diverse roles in essential cellular processes from gene expression to signal transduction. Nevertheless, atypical protein methylation occurring on amino acid residues, such as glutamine and glutamic acid, is largely neglected until recently. In addition, the systematic analysis for the distribution of methylation on different amino acids in various species is still lacking, which hinders our understanding of its functional roles. In this study, we deeply explored the methylated sites in three species Escherichia coli, Saccharomyces cerevisiae, and HeLa cells by employing MS‐based proteomic approach coupled with heavy methyl SILAC method. We identify a total of 234 methylated sites on 187 proteins with high localization confidence, including 94 unreported methylated sites on nine different amino acid residues. KEGG and gene ontology analysis show the pathways enriched with methylated proteins are mainly involved in central metabolism for E. coli and S. cerevisiae, but related to spliceosome for HeLa cells. The analysis of methylation preference on different amino acids is conducted in three species. Protein N‐terminal methylation is dominant in E. coli while methylated lysines and arginines are widely identified in S. cerevisiae and HeLa cells, respectively. To study whether some atypical protein methylation has biological relevance in the pathological process in mammalian cells, we focus on histone methylation in diet‐induced obese (DIO) mouse. Two glutamate methylation sites showed statistical significance in DIO mice compared with chow‐fed mice, suggesting their potential roles in diabetes and obesity. Together, these findings expanded the methylome database from microbes to mammals, which will benefit our further appreciation for the protein methylation as well as its possible functions on disease.  相似文献   

19.
20.
Post-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division). Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the β-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号