首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a large pan-European dataset, we compared least disturbed sites to sites impacted by human pressures across broad river types to assess which aspects of bio-ecological traits of the fish assemblage are most sensitive to alterations of the river ecosystem. To control for variation across river types and large-scale environmental gradients, we began by clustering the least disturbed sites (n = 716) into four homogenous fish assemblage types (FATs) differing by four fish metrics, i.e., lithophilic, rheophilic, omnivorous, and potamodromous fish. We predicted these FATs (headwater streams, medium gradient rivers, lowland rivers, and Mediterranean streams) using environmental variables, i.e., altitude, river slope, temperature, precipitation, latitude, and longitude for impacted sites in our dataset (n = 2,389). Using tests of sensitivity and intensity, 17 fish metrics showed a clear reaction to human pressures. However, 12 metrics responded exclusively within only one of the four FATs. Hence we observed a divergent reaction of fish metrics to human pressures in, e.g., headwater versus lowland rivers. Type-specific reactions are useful in customizing impact assessment for particular river types. It is of primary importance to understand the comparative sensitivity and efficiency of fish-based indicators of water quality for detecting human-induced degradation of river ecosystems.  相似文献   

2.
Triest  Ludwig  Lung’ayia  Henri  Ndiritu  George  Beyene  Abebe 《Hydrobiologia》2012,695(1):343-360
We investigated epilithic diatoms in rivers draining to the Nyanza Bay in Lake Victoria (Kenya) with the aim of determining environmental gradients in the assemblages and testing the usefulness of diatom metrics from temperate regions. Spatial and temporal variations of assemblages were studied in 12 sites of three rivers. Kibos, Nyando, and Kisat rivers contained 224 diatom taxa collected on seven sampling occasions over 4 years. Species richness showed a marginal decrease downstream and was the lowest at sites with high conductivity and ammonia–nitrogen levels. Two-Way Indicator Species Analysis and Canonical Correspondence Analysis revealed two major groups of river sites. Conductivity, alkalinity, turbidity, dissolved oxygen, and silicate were the most important variables influencing species distribution. Ecological diatom metrics of temperate regions and the Specific Pollution sensitivity Index showed good relationships with environmental variables. Both diatom assemblages and averaged indicator values were strong in predicting sites of ecological deterioration and in differentiating an upstream site of better quality (drinking water supply of Kisumu), thereby confirming epilithic diatoms as suitable water quality indicators in equatorial rivers. The use of metrics initially designed for temperate rivers, however, appears less valuable in good quality tropical rivers because potential indicators are not considered.  相似文献   

3.
1. This study investigated the relation of benthic macroinvertebrates to environmental gradients in Central European lowland rivers. Taxonomic structure (taxa) and functional composition (metrics) were related to gradients at four different spatial scales (ecoregion, catchment, reach and site). The environmental variables at the catchment‐, reach‐ and site scales reflected the intensity of human impact: catchment and floodplain land use, riparian and floodplain degradation, flow regulation and river bank and bed modification. 2. Field surveys and GIS yielded 130 parameters characterising the hydromorphology and land use of 75 river sections in Sweden, the Netherlands, Germany and Poland. Two hundred and forty‐four macroinvertebrate taxa and 84 derived community metrics and biotic indices such as functional guilds, diversity and composition measures were included in the analysis. 3. Canonical Correspondence Analysis (CCA) and Redundancy Analysis (RDA) showed that hydromorphological and land use variables explained 11.4%, 22.1% and 15.8% of the taxa variance at the catchment (‘macro’), reach (‘meso’) and site (‘micro’) scales, respectively, compared with 14.9%, 33.2% and 21.5% of the variance associated with the derived metrics. Ecoregion and season accounted for 10.9% and 20.5% of the variance of the taxonomic structure and functional composition, respectively. 4. Partial CCA (pCCA) and RDA (pRDA) showed that the unique variance explained was slightly higher for taxa than for metrics. By contrast, the joint variance explained for metrics was much higher at all spatial scales and largest at the reach scale. Environmental variables explained 46.8% of metric variance and 32.4% of taxonomic structure. 5. Canonical Correspondence Analysis and RDA identified clear environmental gradients along the two main ordination axes, namely, land use and hydromorphological degradation. The impact of catchment land use on benthic macroinvertebrates was mainly revealed by the proportion of urban areas. At the reach scale, riparian and floodplain attributes (bank fixation, riparian wooded vegetation, shading) and the proportion of large woody debris were strong predictors of the taxonomic structure and functional composition of benthic macroinvertebrates. At the site scale, artificial substrata indicated human impact, particularly the proportion of macro‐ and mesolithal used for bank enforcement (rip–rap). 6. Our study revealed the importance of benthic macroinvertebrate functional measures (functional guilds, composition and abundance measures, sensitivity and tolerance measures, diversity measures) for detecting the impact of hydromorphological stress at different spatial scales.  相似文献   

4.
1. Periphytic diatoms, macrophytes, benthic macroinvertebrates and fish were sampled with standard methods in 185 streams in nine European countries to compare their response to degradation. Streams were classified into two main stream type groups (i.e. lowland, mountain streams); in addition, the lowland streams were grouped into four more specific stream types. 2. Principal components analysis with altogether 43 environmental parameters was used to construct complex stressor gradients for physical–chemical, hydromorphological and land use data. About 30 metrics were calculated for each sample and organism group. Metric responses to different stress types were analysed by Spearman Rank Correlation. 3. All four organism groups showed significant response to eutrophication/organic pollution gradients. Generally, diatom metrics were most strongly correlated to eutrophication gradients (85% and 89% of the diatom metrics tested correlated significantly in mountain and lowland streams, respectively), followed by invertebrate metrics (91% and 59%). 4. Responses of the four organism groups to other gradients were less strong; all organism groups responded to varying degrees to land use changes, hydromorphological degradation on the microhabitat scale and general degradation gradients, while the response to hydromorphological gradients on the reach scale was mainly limited to benthic macroinvertebrates (50% and 44% of the metrics tested correlated significantly in mountain and lowland streams, respectively) and fish (29% and 47%). 5. Fish and macrophyte metrics generally showed a poor response to degradation gradients in mountain streams and a strong response in lowland streams. 6. General recommendations on European bioassessment of streams were derived from the results.  相似文献   

5.
The majority of studies comparing the response of biotic metrics to environmental stress in rivers are based on relatively small, homogeneous datasets resulting from research projects. Here, we used a large dataset from Austrian and German national river monitoring programmes (2,302 sites) to analyse the response of fish, diatom and macroinvertebrate metrics to four stressors acting at different scales (hydromorphology, physico-chemistry, riparian and catchment land use). Nutrient enrichment and catchment land use were the main discriminating stressors for all organism groups, over-ruling the effects of hydromorphological stress on the site scale. The response of fish metrics to stress was generally low, while macroinvertebrate metrics performed best. The Trophic Diatom Index (TDI) responded most strongly to all stressors in the mountain streams, while different metrics were responsive in the lowlands. Our results suggest that many rivers are still considerably affected by nutrient enrichment (eutrophication), which might directly point at implications of catchment land use. We conclude that monitoring datasets are well-suited to detect major broad-scale trends of degradation and their impact on riverine assemblages, while the more subtle effects of local-scale stressors require stream type-specific approaches.  相似文献   

6.
Bioassessments are used to measure system health and assess disturbance. While fish-based freshwater bioassessments are cost-effective and perform well in speciose systems, such bioassessments remain difficult to implement in species-poor Mediterranean regions. Population size structure metrics may provide meaningful biological information where depauperate communities preclude the richness and composition measures generally used. We focus our assessments of population size structure responses to anthropogenic perturbation on one of the most widespread native stream fish (Squalius laietanus). We explore a number of population size statistics as metrics for a Mediterranean region, where current bioassessments perform poorly. Our sampling encompassed 311 sites across Catalonia (NE Spain) where we characterized anthropogenic perturbation using a summary of impacts, including local data on stream condition and landscape indicators of degradation, via a principal component analysis. Anthropogenic perturbation in streams was collinear with altitudinal gradients and highlights the importance of appropriate statistical techniques. Of the population size structure metrics explored, average length was the most sensitive to anthropogenic perturbation and generally increased along the disturbance gradient. Although we expected to find consistent changes in variance, kurtosis, and skewness, the observed relationships were weak. River basin mediated responses suggest the importance of environmental landscape factors. The unexpected increases of mean S. laietanus body size with anthropogenic perturbation, strong effects of river basin, collinearity with spatial gradients and the species-specific nature of responses preclude the direct application of size structure in freshwater bioassessments. Although its application in fish-based freshwater bioassessments appears difficult, population size structure can provide insights in species-specific applications and management.  相似文献   

7.
Defining and measuring river health   总被引:57,自引:0,他引:57  
1. Society benefits immeasurably from rivers. Yet over the past century, humans have changed rivers dramatically, threatening river health. As a result, societal well-being is also threatened because goods and services critical to human society are being depleted. 2. ‘Health’— shorthand for good condition (e.g. healthy economy, healthy communities) — is grounded in science yet speaks to citizens. 3. Applying the concept of health to rivers is a logical outgrowth of scientific principles, legal mandates, and changing societal values. 4. Success in protecting the condition, or health, of rivers depends on realistic models of the interactions of landscapes, rivers, and human actions. 5. Biological monitoring and biological endpoints provide the most integrative view of river condition, or river health. Multimetric biological indices are an important and relatively new approach to measuring river condition. 6. Effective multimetric indices depend on an appropriate classification system, the selection of metrics that give reliable signals of river condition, systematic sampling protocols that measure those biological signals, and analytical procedures that extract relevant biological patterns. 7. Communicating results of biological monitoring to citizens and political leaders is critical if biological monitoring is to influence environmental policies. 8. Biological monitoring is essential to identify biological responses to human actions. By using the results to describe the condition, or health, of rivers and their adjacent landscapes and to diagnose causes of degradation, we can develop restoration plans, estimate the ecological risks associated with land use plans in a watershed, or select among alternative development options to minimize river degradation.  相似文献   

8.
1. Aquatic macrophyte composition and abundance is required by the European Union's Water Framework Directive for determining ecological status. Five metrics were produced that can be combined to determine the deviation of aquatic macrophytes from reference conditions in Northern Ireland's rivers. 2. Species optima and niche breadths along silt, nitrate, pH, conductivity and dissolved oxygen gradients were generated from aquatic macrophyte and water quality surveys conducted at 273 sites throughout Northern Ireland using Canonical Correspondence Analysis (CCA). Five metric scores based on these environmental gradients were determined at new monitoring sites using the mean optima of the species occurring at the site, weighted by percentage cover and niche breadth of each species. 3. A preliminary reference network of 32 sites of high physico‐chemical and hydromorphological quality, and representative of the range of river types in Northern Ireland, enabled reference metric scores to be produced for each river type. Five unimpacted and twenty impacted sites were used for testing the performance of the metrics. By subtracting reference metric scores from metric scores at a monitoring site measures of ecological impact could be determined along five different impact gradients. Metrics were also combined to give a measure of total ecological change. 4. The metrics system distinguished unimpacted from impacted sites and correctly identified 77% of the known impacts. The metrics distinguished different types of impact, e.g. silt and nitrate. 5. Aquatic macrophyte occurrence and abundance has high natural variability at a site, both temporally and spatially. This method was designed to be sensitive to ecological change whilst reducing noise caused by natural variation.  相似文献   

9.
We describe a simple empirical modeling approach for determining least-disturbed conditions for the great rivers of the Upper Mississippi River basin: Missouri, Upper Mississippi, and Ohio Rivers. We used multivariate analysis to identify reference strata (reaches for which a single reference expectation was appropriate) on each river. Strata included the Upper Missouri, Lower Missouri, impounded Upper Mississippi, unimpounded Upper Mississippi, and the Ohio River. We created a multimetric stressor gradient for each stratum using a suite of site- and landscape-scale metrics. Site-scale metrics included water chemistry, aquatic and riparian habitat, and human disturbance metrics. Landscape-scale metrics included land use, land cover, and proximity to human disturbance. The gradient was scaled from 0 (least stressed) to 1 (most stressed). Multimetric indices of condition based on fish assemblages for the Lower Missouri and Upper Mississippi River were responsive to stressor gradients based on 18–24 abiotic stressor metrics. Ohio River fish assemblages were responsive to a hand-picked three-metric gradient. We used the y-intercept of quantile regression to predict the fish index value for a stressor gradient value of 0 (the fish index value at a site with the lowest mean stressor gradient score in the reference stratum) which we designated as least-disturbed condition for the fish index for that stratum. We trisected the difference between predicted least-disturbed condition (ceiling value) and a floor value set at the 5th percentile of the sample to create thresholds for three condition classes: least-disturbed, intermediate, and most-disturbed. Based on the derived condition class thresholds for the fish index, 10% (by length) of the Lower Missouri was in least-disturbed condition, compared to 14% of the Ohio River and 19% of the impounded Upper Mississippi River. The index of condition exhibited longitudinal variation that was associated with the location of major urban areas along each river. We conclude that empirical modeling based on an abiotic stressor gradient can provide an alternative approach for deriving internal reference expectations for great rivers with few, if any, minimally disturbed sites.  相似文献   

10.
We assessed the relative performance of diatoms and macroinvertebrates to measure municipal and industrial impacts on the ecological integrity of the three major rivers flowing through Addis Ababa. Both community metric and multivariate statistical techniques were used to analyze the environmental variables and species data along the pollution gradient. This study in the Addis Ababa urban area revealed that three biologically highly stressed rivers are being impacted primarily by physical habitat degradation and both point and nonpoint pollution. The macroinvertebrate composition was liable to severe physical habitat and chemical water quality degradation. Consequently, macroinvertebrates were less diverse and not found at all at the most polluted sites with very low dissolved oxygen levels. Based on community metrics and multivariate analysis results, diatoms more reliably indicated a gradient of pollution than macroinvertebrates. However, both organism groups equally discriminated the two relatively unimpacted upstream sites from all other impacted sites. As diatoms are immobile and ubiquitous (i.e., at least a few can be found under almost any condition), they are good indicators of pollution levels among heavily impacted sites where macroinvertebrates are completely absent or less diverse. Therefore, diatoms are the powerful bioindicators for monitoring urban-impacted and seriously stressed rivers and to examine pollution gradients and impacts of specific pollution sources.  相似文献   

11.
12.
Many hypotheses have been proposed to explain the origin and maintenance of the Amazonian diversity with special place for the theory of isolation by rivers and a set of hypothesis related to contemporary environmental dissimilarity. We explore those hypotheses here using the biogeographic distributional patterns of dragonflies in interfluve areas of the Amazonian biome and also evaluate how differences among in dispersal capabilities between the Anisoptera and Zygoptera suborders may contribute to those patterns. We used distributional information of 392 odonate species in the Amazonian forest in a cladistic analysis of distributions and endemism and the estimated faunistic similarity among interfluves with the Sorensen index. The environmental similarity among interfluves was analysed by discriminant analysis based on eight environmental metrics. Different metrics for geographic distance (connectivity) among interfluves were evaluated and their relation to the other variables tested by the Mantel test. The number of endemic species was linearly correlated to the area of the interfluves. General endemism patterns showed consistent resemblance to those reported for vertebrates, especially the similarity among the Rond?nia and Inambari interfluves. Geographical distance has no predictive value for dragonflies distribution, but the environmental similarity is a good predictor of proportion of shared species. The low dispersal group (Zygoptera) presented more clear patterns of distribution and a lower proportion of shared species among different interfluves. The environmental similarity can be considered the determinant factor of the distribution of dragonflies, possibly due to environmental specificity evolved during a long history of some clades in this system. The low dispersal group (Zygoptera) retained more biogeographical information about possible historical factors that determine current distribution. Also, the transport of larvae by macrophyte banks, the lateral change of river courses, the reversal of the drainage basin, together with the capacity to disperse across rivers for some species may be explanations for the lack of effect of isolation by rivers, especially for Anisoptera.  相似文献   

13.
The assessment of the ecological conditions of rivers is crucial for their appropriate management and restoration. Bioindicators commonly used to evaluate the river status (i.e. diatoms, aquatic macrophytes, benthic macroinvertebrates and fish) detect alterations of water quality, but are not particularly sensitive to hydromorphological degradation, which is another relevant pressure in river systems. Furthermore, those bioindicators are usually applied only to flowing channels. We developed a new multimetric index, the Odonate River Index (ORI), to assess the conditions of the whole corridor in alluvial rivers. The ORI is a development of an evaluation system proposed in Austria, and based on the Odonate Habitat Index (OHI). Odonates were chosen as bioindicators for the ecological integrity of the river corridor, since this taxon provides information on the conditions of their aquatic breeding sites, as well as on the surrounding terrestrial areas, due to its amphibiotic life cycle. We used a case study of 18 reaches from six Italian Alpine rivers, characterized by different morphological conditions and level of human impact. Within each study reach, we selected four sites, both lotic and lentic sites. Dragonfly surveys consisted in field observation of adults, and collection of larvae and exuviae. To define the best sampling strategy, we compared the results of the ORI metrics obtained varying the input data by combining different sampling methods: the best compromise between effort and exhaustiveness was obtained coupling the observation of adults with the collection of exuviae. We found the ORI to be a robust and reliable tool to assess the status of the river corridor in a wide range of environmental conditions and river morphology, being particularly suitable to detect hydromorphological degradation and alterations of the structure of aquatic and riparian vegetation. We identified two limiting factors for the applicability of this index: low water temperatures of the main channel (i.e. mean annual value below 10 °C) and river reaches with no or scarce aquatic and riparian vegetation. In addition to the assessment of river conditions, the ORI could also be applied for monitoring the effects of river restoration actions.  相似文献   

14.
Early responses to incursions of non‐indigenous species (NIS) into new areas include modelling and surveillance to define the organisms’ potential and actual distributions. For well‐studied invasive species, predictive models can be developed based on quantitative data describing environmental tolerances. In late 2004, an invasive freshwater diatom Didymosphenia geminata, an NIS for which we had no such quantitative data, was detected in a New Zealand river. We describe a procedure used to rapidly develop a classification of suitability for all New Zealand's rivers, based on two sources of information. First, from a review of the limited available literature and unpublished data, we determined that temperature, hydrological and substrate stability, light availability, and water pH were the most important environmental gradients determining D. geminata's broad‐scale distribution and capacity for establishing and forming blooms in rivers. The second information source was a GIS‐based river network developed for a national classification of New Zealand's rivers, with associated data describing environmental characteristics of each section of the network. We used six variables that were available for every section of the network as surrogates for the environmental gradients that determine suitability. We then determined the environmental distance of all the river sections in the network from our assessment of the optimal conditions conducive to D. geminata blooms. The analysis suggested that > 70% of New Zealand's river sections (stream order > 3) fell into the two highest suitability categories (on a five‐point scale). At the time of writing, D. geminata had spread to 12 catchments, all of which were within these two categories. The technique is applicable in initial responses to incursions of NIS where quantitative information is limited, and makes optimal use of available qualitative information. Our assessment contributed to evaluations of the potential ecological, social, and economic impacts of D. geminata and is currently being used to stratify site selection for ongoing surveillance.  相似文献   

15.
The ecological drivers of macrophyte development in a lowland agricultural area were tested based on a 2008 survey on the Wkra River catchment. Our survey was carried out in the rivers of an agricultural area with relatively high concentrations of both nitrates and phosphates in the water. By using the Polish macrophyte method, we were able to calculate several botanical metrics. Canonical ordination analyses used to relate biological data to environmental variables such as physical and chemical parameters of water, surface water velocity or river width, were carried out using CANOCO for Windows. Redundancy analysis (RDA) showed that pH and alkalinity were the parameters best correlated with the distribution of macrophytes and values of macrophyte indices. The recorded values of the Macrophyte Index for River in the Wkra River and its tributaries reflected their good and moderate ecological status (the Water Framework Directive scale). Despite the fact that nutrient concentrations in the water were relatively high and that most of the sites represented eutrophic conditions, the results of this survey showed that non-nutrient parameters may play an important role in explaining aquatic plant occurrence in rivers that have been subjected to eutrophication.  相似文献   

16.
Large rivers are amongst the most degraded ecosystems. We studied a relationship between hydromorphological degradation and benthic invertebrates in large rivers in Slovenia. Five indices of the Slovenian hydromorphological assessment methodology were used to develop a HM stressor gradient. Natural type-specific habitat diversity was considered in the hydromorphological stressor gradient building and thus two hydromorphological types of large rivers were defined. CCA ordination with five HM indices and 315 benthic invertebrate taxa revealed variations in taxa response along the HM stressor gradient. First CCA axis species values were used to develop a taxon-specific river fauna value (Rfi), whereas tolerance values (biplot scaling) were used to determine a hydromorphological indicative weight (HWi). Rfi, HWi, and log5 abundance classes were combined using weighted average approach to construct a River fauna index for large rivers (RFIVR). Several additional benthic invertebrate-based metrics were also tested against the HQM. A Slovenian multimetric index for assessing the hydromorphological impact on benthic invertebrates in large rivers (SMEIHVR) was constructed from the RFIVR and a functional metric %akal + lithal + psammal taxa (scored taxa = 100%). The strong relationship between hydromorphological stressor gradient and SMEIHVR index provides us with an effective assessment system and river management tool.  相似文献   

17.
The objective of this study was to evaluate differences in correlations among Biological Elements and environmental parameters for different river types, analysed at two different spatial scales. A total of 82 sites, with at least good ecological status, were sampled across Europe, representing three core river types: Mountain rivers (26 sites); Lowland rivers (29 sites) and Mediterranean rivers (17 sites). At each site samples of macrophytes, macroinvertebrates and fishes were taken during spring, following the methodological procedures established by the European STAR project. Environmental parameters were also recorded, based on a site protocol developed by the European projects AQEM and STAR. Environmental parameters were divided into three categories: aquatic habitats (mesohabitat scale), global features (reach scale) and obligatory typology parameters of Water Framework Directive (WFD) (geographical scale). Data were analysed to evaluate at the two scales, first, relationships among biological elements, and second, relationships between biological elements and environmental parameters. Within each river type, correlation matrices (Bray–Curtis distance) were calculated separately for each biological element and for each category of environmental parameters. All biological elements were correlated (p<0.01) to the larger spatial scale: macrophytes and macroinvertebrates are more correlated in lowland and mountain rivers, while in Mediterranean rivers, fish and macrophytes presented higher correlations. These links tend to be consistent for different spatial scales, except if they are weak on a larger regional scale, obligatory parameters of WFD were, in most cases, significantly correlated with the three biological communities (p<0.05). Results at different spatial scales supported the hierarchical theory of river formation. Reach and mesohabitat environmental parameters tend to explain aquatic communities at a lower spatial scale, while geographical parameters tend to explain the communities at a major spatial scale.  相似文献   

18.
Ecological water quality problems are frequently connected to increment of phytoplankton productivity and overdominance of some phytoplankton species. Metrics that show monotonously increasing or decreasing tendencies along stressor gradients is recommended for ecological state assessment. Diversity metrics are influenced by various physical disturbances and show high within-year variability; thus, there is no agreement on the usefulness of these metrics as state indicators.To test the usefulness of phytoplankton diversity in ecological state assessment we investigated the productivity–diversity relationships for lakes and rivers in the Carpathian Basin (Hungary). We demonstrated that the shape of productivity–diversity relationship depends on the investigated water body type. Regarding lakes, hump-shaped relationship was found for all computed metrics. Parallel with the increase in phytoplankton productivity values, diversity metrics showed monotonously increasing tendencies in rhithral and decreasing tendencies in large potamal rivers. We found no systematic relationship in the case of small lowland rivers.Changes of diversity metrics calculated for species and functional groups showed similar tendencies within the types, only the slopes of regression lines differ each other.The use of diversity metrics as ecological state indicators should be restricted to water body types where diversity decreases or increases monotonously with phytoplankton biomass. Regarding the lakes the use of diversity metrics is not recommended for ecological state assessment. In rhithral and large potamal river assessment, application of diversity metrics should be strongly considered. We demonstrated that diversity metrics can be useful components of multimetric indices proposed to use by the Water Framework Directive.  相似文献   

19.
Fuelled by the generalized degradation of freshwater ecosystems, the development of tools to assess their ecological status has been the focus of intensive research in the last decades. Although fish are one of the key biological quality elements used to describe the ecological status of rivers, fish metrics that accurately respond to disturbances in Mediterranean trout type streams are still lacking. In these systems, multimetric indices are not optimal indicators because of their low species richness and abundances, thus alternative approaches are needed. Since carrying capacity defines the potential maximum abundance of fish that can be sustained by a river, its relationship with actual density (D/K ratio) could be an accurate indicator of population conservation status and consequently of the ecological status of the river. Based on this rationale, we modeled carrying capacity dynamics for 37 brown trout populations during a 12-year study period. We analyzed the response of the D/K ratio to a gradient of increasing environmental harshness and degradation in order to assess its suitability to accurately measure brown trout conservation status. Our results showed that the D/K ratio was highly sensitive to temporal and spatial variations in environmental conditions and the levels of human-induced environmental degradation. Variations in the environmental and human degradation factors included in the best explaining regression models developed for the whole population and by age classes accounted for between 58 and 81% of the variation in the D/K ratio. Likewise, the D/K ratio was sensitive to both general and life stage specific disturbance factors. Further analyses helped identify the factors limiting population abundance. Therefore, the D/K ratio could be an interesting indicator to consider when defining objective management plans and corrective actions in degraded rivers and streams subject to Mediterranean climatic conditions.  相似文献   

20.
1. Vegetated islands within river corridors are pivotal landscape features and are among the first to disappear as a consequence of flow regulation and channelisation. However, how vegetated islands vary along human‐impacted rivers is poorly understood. 2. We carried out a detailed analysis of the contemporary distribution, diversity and environmental state of vegetated islands within 12 human‐impacted European rivers, using 75 Landsat 7 ETM+ satellite images (1999–2002), historical maps, DEM data and landscape metrics. We tested whether channel fragmentation, catchment land use and the environmental state of fringing floodplains determine the spatial patterns of the islands. We also analysed the historical change of islands within selected sections of the Upper Danube, Upper Rhine and Olt rivers. 3. We identified 2771 islands in the contemporary landscape, varying from 0.06 to 9828 ha. Islands covered up to 21% of the active channel area and contributed up to 32% of the total riparian ecotone length. Island density ranged from 0.06 islands per river‐km (River Sava) to 1.6 islands per river‐km (River Tagliamento). River regulation has led to a marked loss of island density: 94% in the Upper Danube, 93% in the Upper Rhine, and 69% in the Olt. The environmental state of the islands was significantly less altered by human activity than of their fringing floodplains; 93.4% of the vegetated islands exhibited a near‐natural state, while 86% of the fringing floodplains were expansively converted to agricultural and urban land uses. 4. Our results highlight the ubiquitous presence of vegetated islands, their sensitivity to river regulation and their pivotal role for the future restoration and management of river corridors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号