首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Airway responsiveness to histamine aerosol and lung prostaglandin generation were investigated in normal, partially vitamin C deficient and scorbutic guinea pigs. The ascorbic acid content of the lung expressed as microgram/100 mg wet weight lung parenchyma decreased from 22.1 +/- 1.8 (mean +/- SE) in the control group to 9.0 +/- 1.4 and 1.8 +/- 0.4 in tissues from partially ascorbic acid deficient and scorbutic animals, respectively. Guinea pigs on low and ascorbic acid deficient diets developed significant airway hyperresponsiveness to histamine aerosol after 3 and 4 weeks. Indomethacin (30 mg/Kg, i.p.) further increased the airway hyperresponsiveness in scorbutic animals but was without effect in control animals. Prostaglandin generation from different parts of the lung was significantly changed by the diets. However, airway hyperresponsiveness was not directly attributable to altered prostanoid generation. Scorbutic conditions did not alter the electrophysiological characteristics of airway smooth muscle namely, resting membrane potential and electrogenic sodium pump activity. In summary, ascorbic acid deficiency causes airway hyperresponsiveness to histamine in guinea pigs. This alteration seems not to be related to an altered prostaglandin generation by the lung or to the electrophysiological properties of airway smooth muscle.  相似文献   

2.
We examined whether short-term ascorbic acid deficiency induces oxidative stress in the retinas of young guinea pigs. Four-week-old guinea pigs were given a scorbutic diet (20 g/animal/day) with and without adequate ascorbic acid (400 mg/animal/day) in drinking water for 3 weeks. The serum concentrations of the reduced form of ascorbic acid and the oxidized form of ascorbic acid in the deficient group were 14.1 and 4.1%, respectively, of those in the adequate group. The retinal contents of the reduced form of ascorbic acid and the oxidized form of ascorbic acid in the deficient group were 6.4 and 27.3%, respectively, of those in the adequate group. The retinal content of thiobarbituric acid-reactive substances, an index of lipid peroxidation, was 1.9-fold higher in the deficient group than in the adequate group. Retinal reduced glutathione and vitamin E contents in the deficient group were 70.1 and 69.4%, respectively, of those in the adequate group. This ascorbic acid deficiency did not affect serum thiobarbituric acid-reactive substances and reduced glutathione concentrations but increased serum vitamin E concentration. These results indicate that short-term ascorbic acid deficiency induces oxidative stress in the retinas of young guinea pigs without disrupting systemic antioxidant status.  相似文献   

3.
边缘性缺乏抗坏血酸之豚鼠,于三周内其肝脏及小肠粘膜3-羟-3-甲基戊二酰辅酶A还原酶(HMGR)活力均下降到原有水平的50%,但肝脏胆固醇7α-羟化酶活力尚无显著性改变。坏血病豚鼠(三周内)上述几种酶活力都下降至原有水平的50%左右。豚鼠摄取抗坏血酸不足,其血清总胆固醇浓度显著增加,而血清高密度脂蛋自胆固醇浓度显著减少,其改变程度与抗坏血酸缺乏状况一致。  相似文献   

4.
1. The effect of ascorbic acid deficiency on glycosaminoglycans of granulation tissue and cartilage of guinea pigs was investigated by determination of the changes in the glucosamine and galactosamine contents 12 days after tendonectomy. 2. In normal granulation tissue, the glucosamine and galactosamine contents rose to a peak at 5 and 10 days respectively, whereas the hydroxyproline and proline contents continued to rise throughout the 20 days after tendonectomy. 3. The galactosamine in scorbutic granulation tissue, but not in that of pair-fed controls, decreased significantly in absolute amount and relatively to glucosamine, which remained practically unchanged; the cartilage galactosamine did not decrease during the 22 days of deficiency owing to the presence of excess of preformed galactosaminoglycans, which masked the small amount of newly formed glycosaminoglycans. 4. The chemical results were confirmed by radioactivity studies in vivo of incorporation of [U-(14)C]glucose into galactosamine and glucosamine of scorbutic granulation tissue and cartilage. The incorporation of (14)C into galactosamine decreased significantly in scurvy in both tissues. 5. The results indicated in both tissues a decreased formation of galactosamine during scurvy, although an increased degradation of polymerized glycosaminoglycans could not be entirely ruled out. It is concluded that, if lack of ascorbic acid causes an impaired galactosamine formation, the most likely position for the block may be in the UDP-N-acetylglucosamine 4-epimerase reaction.  相似文献   

5.
Newly-weaned male guinea pigs were fed an ascorbic acid-deficient diet ad libitum and compared with control animals pair-fed an adequate diet for a similar duration. The ascorbic acid-deficient animals demonstrated prominent elevations in serum concentrations of tyrosine (+427%), phenylalanine (+36%) and arginine (+21 %) with concomitant depressions in levels of glycine (–57 %), histidine (–39 %), ethanolamine (–38%) and glutamic acid (–22 %). With few exceptions, the alterations in the liver amino acid profiles were in the same directions as those observed in the serum. The scorbutic brains showed 28–36 per cent of the retention of total ascorbic acid found in control animals and were characterized by marked elevation (+83%) in tyrosine content, hardly any alteration in phenylalanine (–9%), and depressed levels of histidine (–33 %), arginine (–25%), phosphoserine (–50%) and GABA (–12%). The implications of such abnormal changes in free amino acid patterns were evaluated in the light of the role of some of these amino acids as precursors for the synthesis of neuroregulatory substances. No difference was observed in the brain polysomal profiles as isolated from the two groups of animals. Incubation of polysomes from ascorbic acid-deficient brains with autologous pH 5 enzyme derived from cell sap not passed through Sephadex G-25 revealed low uptake of [14C]phenylalanine in comparison to that for a similar system from control animals. Use of pH 5 enzymes prepared from Sephadex-treated and dialysed cell saps eliminated the difference in specific activities of the two groups of ribosomes, an observation suggesting that ascorbic acid deficiency either intensified the activity of the inhibitory components or reduced the low molecular weight stimulatory substances present under normal conditions in the brain postmicrosomal fraction.  相似文献   

6.
The role of gut microflora in ascorbic acid catabolism was investigated in both conventional and germ-free guinea pigs. In vitro studies demonstrated extensive degradation of the vitamin by fresh feces, cecal, and colonic contents of conventional guinea pigs. Direct injection of [1-14C] ascorbic acid into the cecum of conventional guinea pigs in vivo yielded a 70% recovery of the label as respiratory 14CO2 within 6 hr compared with only 5% recovery following injection into the virtually sterile peritoneum in a comparable group of conventional guinea pigs. Thus, ascorbic acid not absorbed prior to reaching the lower gastrointestinal tract stands to be extensively decarboxylated by microflora in the cecum. In a companion study of germ-free guinea pigs, 10% of an administered dose of [1-14C] ascorbic acid was expired as 14CO2 within 36 hr post-injection following intraperitoneal injection compared with 16% recovery in a matched group of conventional animals injected at the same site. Results of this series of studies suggest that hepatic decarboxylation and gut microflora, in tandem, contribute to ascorbic acid decarboxylation in this species.  相似文献   

7.
Chick embryo chondrocytes cultured in sera from scorbutic and fasted guinea pigs exhibited decreases in collagen and proteoglycan production to about 30-50% of control values (I. Oyamada et al., 1988, Biochem. Biophys. Res. Commun. 152, 1490-1496). Here we show by pulse-chase labeling experiments that in the chondrocyte system, as in the cartilage of scorbutic and fasted guinea pigs, decreased incorporation of precursor into collagen was due to decreased synthesis rather than to increased degradation. There was a concomitant decrease in type II procollagen mRNA to about 32% of the control level. As in scorbutic cartilage, proteoglycan synthesis by chondrocytes in scorbutic serum was blocked at the stage of glycosaminoglycan chain initiation. Scorbutic and fasted guinea pig sera also caused a 50-60% decrease in the rates of collagen and proteoglycan synthesis in adult human skin fibroblasts, which synthesize mainly type I collagen. Decreased matrix synthesis in both cell types resulted from the presence of an inhibitor in scorbutic and fasted sera. Elevated cortisol levels in these sera were not responsible for inhibition, as determined by the addition of dexamethasone to chondrocytes cultured in normal serum. Insulin-like growth factor I (IGF-I, 300-350 ng/ml) reversed the inhibition of extracellular matrix synthesis by scorbutic and fasted guinea pig sera in both cell types and prevented the decrease in type II procollagen mRNA in chondrocytes. Therefore, in addition to its established role in proteoglycan metabolism, IGF-I also regulates the synthesis of several collagen types. An increase in the circulating inhibitor of IGF-I action thus could lead to the negative regulation of collagen and cartilage proteoglycan synthesis that occurs in ascorbate-deficient and fasted guinea pigs.  相似文献   

8.
Scorbutic guinea pigs were wounded and the influence of administering ascorbic acid 6 days later was studied with respect to cellular morphology, ribosomal distribution and protein synthesis. Electron-microscopic studies revealed that the dilated endoplasmic reticulum observed in the fibroblasts of scorbutic wound tissue had reverted to a normal configuration 24h after intraperitoneal injection of 100mg of ascorbate. Quantitative determination of the distribution of free and membrane-bound ribosomes indicated a significant increase in membrane-bound ribosomes in wound tissue from ascorbate-supplemented (recovery) animals. Sucrose-density-gradient centrifugation indicated a significant increase in the proportion of large membrane-bound polyribosomes in the range 300-350S and a concomitant decrease in 80S monoribosomes in the ribosome sedimentation profile of recovery tissue. Determination of the synthesis of non-diffusible [(3)H]hydroxyproline in scorbutic and recovery wounds showed a 3-4-fold stimulation in peptidyl-proline hydroxylation in recovery tissues. Studies carried out in which scorbutic and recovery tissues were incubated with [(14)C]leucine indicated that general protein synthesis, as measured by (14)C incorporated into non-diffusible material/mug of DNA, was unaltered by ascorbate supplementation. Similar studies of [(3)H]proline incorporation suggested that in recovery tissues there was a small but significant increase in [(3)H]proline incorporated/mug of DNA, which probably represents an increase in protocollagen synthesis. This observation correlates well with the increase seen in recovery tissues of large polyribosomes on which collagen precursor polypeptides are known to be synthesized. Preliminary characterization of the repair collagen synthesized by recovery animals showed it to be a typical Type I collagen having the chain composition (alpha(1))(2)alpha(2). The extent of glycosylation of the hydroxylysine of the newly synthesized collagen was greater than that reported for either normal guinea-pig dermal collagen or dermal scar collagen.  相似文献   

9.
The effects of ascorbic acid deficiency and acute fasting (with ascorbate supplementation) on the synthesis of collagen and proteoglycan in costal cartilages from young guinea pigs was determined by in vitro labeling of these components with radioactive proline and sulfate, respectively. Both parameters were coordinately decreased by the second week on a vitamin C-free diet, with a continued decline to 20-30% of control values by the fourth week. These effects were quite specific, since incorporation of proline into noncollagenous protein was reduced by only 30% after 4 weeks on the deficient diet. The time course of the decrease in collagen and proteoglycan synthesis paralleled the loss of body weight induced by ascorbate deficiency. Hydroxylation of proline in collagen synthesized by scorbutic costal cartilage was reduced to about 60% of normal relatively early, and remained at that level thereafter. Neither collagen nor proteoglycan synthesis was returned to normal by the addition of ascorbate (0.2 mM) to cartilage in vitro. Administration of a single dose of ascorbate to scorbutic guinea pigs increased liver ascorbate and restored proline hydroxylation to normal levels by 24 h, but failed to increase the synthesis of collagen or proteoglycan. Synthesis of both extracellular matrix components was restored to control levels after four daily doses of ascorbate. A 96-h total fast, with ascorbate supplementation, produced rates of weight loss and decreases in the synthesis of these two components similar to those produced by acute scurvy. There was a linear correlation between changes in collagen and proteoglycan synthesis and changes in body weight during acute fasting, scurvy, and its reversal. These results suggest that it is the fasting state induced by ascorbate deficiency, rather than a direct action of the vitamin in either of these two biosynthetic pathways, which is the primary regulatory factor.  相似文献   

10.
1. After the administration of l-[G-(3)H]proline to guinea pigs deprived of ascorbic acid for increasing periods of time, the specific radioactivities of proline and hydroxyproline in skin collagen and aortic elastin were determined at various time-intervals after administration of the labelled compound with a view to studying the formation and degradation of collagen and elastin both deficient in hydroxyproline. 2. As judged from the incorporation of radioactivity into elastin proline, elastin synthesis was not decreased in the ascorbic acid-deficient animals. There was however, a rapid decline in the specific radioactivity of elastin hydroxyproline. The proline/hydroxyproline specific-radioactivity ratio was approx. 1.5:1 after 6 days and 20:1 after 12 days of ascorbic acid deprivation, in contrast with the ratio of 1:1 in controls. The results suggested that the effect of ascorbic acid deficiency on elastin biosynthesis could be regarded as simply an elimination of hydroxylation of elastin proline with the formation and retention of a polymer increasingly deficient in hydroxyproline. 3. Collagen proline and hydroxyproline specific radioactivities were derived from material that was soluble in hot trichloroacetic acid, non-diffusible and collagenase-degradable. In contrast with elastin, there was a rapid decline in the specific radioactivity of proline as well as hydroxyproline in collagen from the ascorbic acid-deficient animals. However, the proline/hydroxyproline specific-radioactivity ratio in all samples from scorbutic animals was consistently slightly above 1:1. The results suggest the appearance in place of collagen, but in rapidly diminishing amounts, of a partially hydroxylated collagen in which the degree of hydroxylation may be decreased only by approx. 10%. 4. Incorporation of radioactivity into the diffusible hydroxyproline in skin remained relatively high despite the rapid decline in the incorporation of radioactivity into collagen. This observation is interpreted as indicative of an increasing degree of degradation of partially hydroxylated collagen to diffusible peptides. An alternative explanation might be that partially hydroxylated peptides are released to an increasing extent from ribosomes before they attain a length at least sufficient to render them non-diffusible. In either case it implies the accumulation in scurvy of low-molecular-weight peptides enriched in proline and deficient in hydroxyproline and could explain the failure to accumulate a high-molecular-weight collagen deficient in hydroxyproline. 5. It is thought, however, that, in addition, an inhibition of ribosomal amino acid incorporation leading to decreased synthesis of partially hydroxylated collagen may also occur, perhaps secondarily to impaired hydroxylation.  相似文献   

11.
1. After the administration of labelled proline to guinea pigs deprived of ascorbic acid for 15 days, the dorsal skin was examined 5 days later in an attempt to detect the presence of hydroxyproline-deficient collagen (protocollagen). The extent of incorporation of proline into skin collagens indicated a severe impairment of collagen synthesis. 2. A comparison of proline and hydroxyproline specific radioactivities in diffusible peptides obtained by treatment with collagenase of either purified skin collagens or direct hot-trichloroacetic acid extracts of skin failed to indicate the presence of protocollagen. Possible reasons for this are discussed. 3. The incorporation results did not indicate an inability of normal collagen, i.e. collagen hydroxylated to the normal degree, to cross-link in scurvy. 4. Incorporation of labelled proline into aortic elastin isolated from the same animals did not indicate a decrease in elastin biosynthesis in ascorbic acid deficiency, beyond that attributable to the inanition accompanying the vitamin deficiency. The proline/hydroxyproline specific-radioactivity ratio in elastin from scorbutic guinea pigs was about 6:1 in contrast with the 1:1 ratio in control groups. It is concluded that the formation of elastin hydroxyproline was ascorbate-dependent and that a hydroxyproline-deficient elastin is formed and retained in scurvy. The formation of desmosines was unimpaired in scorbutic animals. 5. Studies with chick embryos confirmed the formation of elastin hydroxyproline from free proline. Incorporation of free hydroxyproline into elastin hydroxyproline was negligible. 6. Digestion of solubilized samples with collagenase indicated that the hydroxyproline in guinea-pig aortic elastin preparations was not derived from contamination by collagen. It is suggested that most if not all of the hydroxyproline in the guinea pig elastin preparations investigated can be considered an integral part of the elastin molecule.  相似文献   

12.
The effects of ascorbic acid (AA) deficiency on microsomal and soluble (postmicrosomal supernatant) enzymes which catalyze drug metabolism were studied in the guinea pig liver, lung, and kidney, (i) Twenty-one days of AA depletion produced a 50–60% decrease in hepatic cytochrome P-450 levels, 20–30% decreases in renal levels, but no significant changes in pulmonary cytochrome P-450 content. Upon repletion of ascorbic acid, recovery to control levels occurred within 7 days. (ii) The decreases in hepatic cytochrome P-450 in scurvy were not accompanied by a corresponding increase in cytochrome P-420. (iii) Aminopyrine N-demethylation decreased by 40% in livers of deficient animals, and recovered within 3 days, but there were no corresponding changes in lungs and kidneys. (iv) There were no significant alterations of NADPH-cytochrome c reductase activity in scorbutic animals in any of the three organs. (v) Activity of “native” UDP-glucuronyl transferase was increased in liver microsomes after 21 days of deficiency, but this apparent increase was not observed when the enzyme was fully activated in vitro with UDP N-acetylglucosamine. “Native” UDP-glucuronyl transferase was increased in kidneys of deficient animals and unchanged in lungs. (vi) In the postmicrosomal supernatant, glutathione S-aryl transferase activity in deficient livers decreased tc 50% of control and did not fully recover after 14 days of ascorbic acid repletion. These changes were not seen in kidney and lung. (vii) Also in the postmicrosomal supernatant, p-aminobenzoic acid (PABA) N-acetyl transferase activity increased in the kidneys of deficient animals, but was unchanged in liver and lungs. (viii) Addition of ascorbic acid in vitro to hepatic microsomes prepared from scorbutic animals had no effect on activities of aminopyrine N-demethylase, NADPH-cytochrome c reductase, PABA N-acetyl transferase, and glutathione S-aryl transferase.  相似文献   

13.
The bioavailability of a series of novel acylated ascorbic acid derivatives, 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids (6-Acyl-AA-2G), as an ascorbic acid (AA) supplement was investigated in rats and guinea pigs. Oral administration of 6-Acyl-AA-2G to rats resulted in an increase in the plasma AA level. However, the intact form was not detectable in the plasma by high-performance liquid chromatography, indicating its hydrolysis through the process of absorption. After an intravenous injection to rats of 6-Octa-AA-2G as a representative derivative, the intact form rapidly disappeared from the plasma, being followed by a prolonged and marked elevation of the plasma AA level. Various tissue homogenates from guinea pigs were examined for their releasing activity of AA, 2-O-alpha-D-glucopyranosyl-L-ascorbic acid (AA-2G) and 6-O-acyl-AA from 6-Acyl-AA-2G. High activity was observed in the small intestine. These hydrolytic activities to AA and 6-O-acyl-AA were completely inhibited by castanospermine, an alpha-glucosidase inhibitor, and AA-2G was observed as the only resulting hydrolysate, suggesting the participation of alpha-glucosidase and esterase in the in vivo hydrolysis of 6-Acyl-AA-2G. 6-Octa-AA-2G was found to exhibit an obvious therapeutic effect in scorbutic guinea pigs from its repeated oral administration. These results indicate that 6-Acyl-AA-2G is a readily available source of AA activity in vivo, and may be useful as an effective pharmacological agent and as a promising food additive.  相似文献   

14.
A 7-month experiment was carried out on guinea pigs to elucidate the effect of height-cholesterol diet containing various fats on the levels of ascorbic acid and to tocopherol in the organism. In the guinea pigs with experimentally induced atherosclerosis the retention of ascorbic acid and tocopherol was found to be greater than that in the control animals.  相似文献   

15.
Our recent studies suggested that decreased collagen synthesis in bone and cartilage of scorbutic guinea pigs was not related to ascorbate-dependent proline hydroxylation. The decrease paralleled scurvy-induced weight loss and reduced proteoglycan synthesis. Those results led us to propose that the effects of ascorbate deficiency on extracellular matrix synthesis were caused by changes in humoral factors similar to those that occur in fasting. Here we present evidence for this proposal. Exposure of chick embryo chondrocytes to scorbutic guinea pig serum, in the presence of ascorbate, led to effects on extracellular matrix synthesis similar to those seen in scorbutic animals. The rates of collagen and proteoglycan synthesis were reduced to approximately 30-50% of the levels in cells cultured in normal guinea pig serum plus ascorbate, but proline hydroxylation and procollagen secretion were unaffected. Similar results were obtained with serum from fasted guinea pigs supplemented in vivo with ascorbate. The growth rate of the chondrocytes was not significantly affected by scorbutic guinea pig serum.  相似文献   

16.
A series of novel acylated ascorbic acid derivatives, 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids with a branched-acyl chain (6-bAcyl-AA-2G) were recently developed in our laboratory as stable and lipophilic ascorbate derivatives. In this study, the bioavailability of 6-bAcyl-AA-2G was investigated in guinea pigs. Various tissue homogenates from guinea pigs hydrolyzed 6-bAcyl-AA-2G to give ascorbic acid (AA), 2-O-alpha-D-glucopyranosyl-L-ascorbic acid (AA-2G), and 6-O-acyl AA. The releasing pattern of the three hydrolysates suggested that 6-bAcyl-AA-2G was hydrolyzed via 6-O-acyl AA to AA as a main pathway and via AA-2G to AA as a minor pathway. The former pathway seems to be of advantage, because 6-O-acyl AA, as well as AA, can have vitamin C activity. In addition, we found that a derivative with an acyl chain of C(12), 6-bDode-AA-2G, had a pronounced therapeutic effect in scorbutic guinea pigs by its repeated oral administrations. These results indicate that 6-bAcyl-AA-2G is a readily available source of AA in vivo, and may be a promising antioxidant for skin care and treatment of diseases associated with oxidative stress.  相似文献   

17.
Both oxidative stress and endotoxins mediated immunological reactions play a major role in the progression of alcoholic hepatic fibrosis. Ascorbic acid has been reported to reduce alcohol-induced toxicity and ascorbic acid levels are reduced in alcoholics. Hence, we investigated the hepatoprotective action of ascorbic acid in the reversal of alcohol-induced hepatic fibrosis in male guinea pigs (n = 36), and it was compared with the animals abstenting from alcohol treatment. In comparison with the alcohol abstention group, there was a reduction in the activities of toxicity markers and levels of lipid and protein peroxidation products, expression of α-SMA, caspase-3 activity and mRNA levels of CYP2E1, TGF-β(1), TNF-α and α(1)(I) collagen in liver of the ascorbic acid-supplemented group. The ascorbic acid content in liver was significantly reduced in the alcohol-treated guinea pigs. But it was reversed to normal level in the ascorbic acid-supplemented group. The anti-fibrotic action of ascorbic acid in the rapid regression of alcoholic liver fibrosis may be attributed to decrease in the oxidative stress, hepatic stellate cells activation, cytotoxicity and mRNA expression of fibrotic genes CYP2E1, TGF-β(1), TNF-α and α(1) (I) collagen in hepatic tissues.  相似文献   

18.
Guinea pigs were injected subcutaneously with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in maximal tolerated doses (8 mg/kg, once daily) for 10 or 15 days. No neurological effects were noted, other than sedation and hypotonia lasting a few hours after each injection, either in animals maintained on normal diet or in animals fed an ascorbate-deficient diet and rendered severely scorbutic. Subsequent chemical analyses of the striatum showed no evidence of lasting damage to nigrostriatal dopaminergic neurons in MPTP treated guinea pigs on normal diet, and minimal evidence of permanent damage to these neurons in scorbutic animals. MPTP was undetectable in the urine of MPTP-treated animals, although a metabolite, presumably 1-methyl-4-phenylpyridinium ion (MPP+) was regularly present in urine. The relative lack of neurotoxicity of MPTP in the guinea pig remains unexplained. This species clearly is not a suitable small animal for MPTP-induced parkinsonism.  相似文献   

19.
The absorption, metabolism and excretion of [14C] metanil yellow was studied in rats. Following administration of a single oral dose of 5 mg dye (7.6 microCi)/kg body weight, 80.5% of the dose was excreted in the urine and faeces within 96 hr, with the majority being accounted for in the faeces. Liver, kidney, spleen and testis retained no count whereas 13.6% of the radioactivity was retained by gastrointestinal tract. Analysis of urine and faeces detected two azo-reduction metabolites of metanil yellow which were characterized by TLC and IR, NMR and mass spectroscopic studies as metanilic acid and p-aminodiphenylamine.  相似文献   

20.
《Free radical research》2013,47(2):204-213
Both oxidative stress and endotoxins mediated immunological reactions play a major role in the progression of alcoholic hepatic fibrosis. Ascorbic acid has been reported to reduce alcohol-induced toxicity and ascorbic acid levels are reduced in alcoholics. Hence, we investigated the hepatoprotective action of ascorbic acid in the reversal of alcohol-induced hepatic fibrosis in male guinea pigs (n = 36), and it was compared with the animals abstenting from alcohol treatment. In comparison with the alcohol abstention group, there was a reduction in the activities of toxicity markers and levels of lipid and protein peroxidation products, expression of α-SMA, caspase-3 activity and mRNA levels of CYP2E1, TGF-β1, TNF-α and α1(I) collagen in liver of the ascorbic acid-supplemented group. The ascorbic acid content in liver was significantly reduced in the alcohol-treated guinea pigs. But it was reversed to normal level in the ascorbic acid-supplemented group. The anti-fibrotic action of ascorbic acid in the rapid regression of alcoholic liver fibrosis may be attributed to decrease in the oxidative stress, hepatic stellate cells activation, cytotoxicity and mRNA expression of fibrotic genes CYP2E1, TGF-β1, TNF-α and α1 (I) collagen in hepatic tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号