首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taurine (2-aminoethanesulfonic acid) is the most abundant free amino acid in the developing mammalian cerebral cortex, however, few studies have reported its neurobiological functions during development. In this study, by means of whole-cell patch-clamp recordings, we examined the effects of taurine on chloride channel receptors in neocortical neurons from early to late postnatal stages, which cover a critical period in cortical circuit formation. We show here that taurine activates chloride channels in cortical neurons throughout the postnatal stages examined (from postnatal day 2 to day 36). The physiological effects of taurine changed from excitatory to inhibitory due to variations in the intracellular Cl- concentration during development. An antagonist blocking analysis also demonstrated a developmental shift in the receptor target of taurine, from glycine receptors to GABAA receptors. Taken together, these results may reflect genetically programmed, bidirectional functions of taurine. At the early developmental stage, taurine acting on glycine receptors would serve to promote cortical circuit formation. As cortical circuit has to be regulated in the later stages, taurine would serve as a safeguard against hyperexcitable circuit.  相似文献   

2.
During the early postnatal period, GABAB receptor activation facilitates L‐type calcium current in rat hippocampus. One developmental process that L‐type current may regulate is the change in expression of the K+Cl? co‐transporter (KCC2) and N+K+2Cl? co‐transporter (NKCC1), which are involved in the maturation of the GABAergic system. The present study investigated the connection between L‐type current, GABAB receptors, and expression of chloride transporters during development. The facilitation of L‐type current by GABAB receptors is more prominent in the second week of development, with the highest percentage of cells exhibiting facilitation in cultures isolated from 7 day old rats (37.5%). The protein levels of KCC2 and NKCC1 were investigated to determine the developmental timecourse of expression as well as expression following treatment with an L‐type channel antagonist and a GABAB receptor agonist. The time course of both chloride transporters in culture mimics that seen in hippocampal tissue isolated from various ages. KCC2 levels increased drastically in the first two postnatal weeks while NKCC1 remained relatively stable, suggesting that the ratio of the chloride transporters is important in mediating the developmental change in chloride reversal potential. Treatment of cultures with the L‐type antagonist nimodipine did not affect protein levels of NKCC1, but significantly decreased the upregulation of KCC2 during the first postnatal week. In addition, calcium current facilitation occurs slightly before the large increase in KCC2 expression. These results suggest that the expression of KCC2 is regulated by calcium influx through L‐type channels in the early postnatal period in hippocampal neurons. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

3.
The expression of functional glycine receptors (GlyRs) by embryonic rat spinal cord neurons during development in vitro was investigated using whole-cell patch-clamp recordings. Functional GlyRs were expressed by most neurons within 1 day in vitro, and by all neurons from 4 days onward. However, the extent to which responses to glycine were blocked by the antagonist strychnine differed significantly between the first few days and 8 days in culture. Responses to glycine by neurons during the first few days in culture exhibited significantly less blockade by strychnine than those in neurons after 1 week in culture. Responses to glycine at both ages reflected an increased conductance to chloride ions, ruling out involvement of N-methyl-D -aspartate type glutamate receptors, and were not due to cross activation of γ-aminobutyric acid receptors. Monoclonal antibody 4a, which recognizes multiple subtypes of rat GlyR α subunits, labeled most neurons as early as 1 day in vitro, confirming that neurons express some form of GlyR α subunits by the first day in culture. These results show that rat spinal cord neurons express GlyRs early in their differentiation in vitro, and they suggest that individual neurons express as functional, cell-surface GlyRs a strychnine-insensitive isoform of the GlyR, possibly the previously described α2* subunit. In addition, these results indicate that the expression of GlyR isoforms changes from predominantly a strychnine-insensitive isoform to other, strychnine-sensitive isoform(s) GlyR during development in vitro. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 579–592, 1997  相似文献   

4.
The cation‐chloride co‐transporters are important regulators of the cellular Cl homeostasis. Among them the Na+‐K+?2Cl? co‐transporter (NKCC1) is responsible for intracellular chloride accumulation in most immature brain structures, whereas the K+‐Cl? co‐transporter (KCC2) extrudes chloride from mature neurons, ensuring chloride‐mediated inhibitory effects of GABA/glycine. We have shown that both KCC2 and NKCC1 are expressed at early embryonic stages (E11.5) in the ventral spinal cord (SC). The mechanisms by which KCC2 is prematurely expressed are unknown. In this study, we found that chronically blocking glycine receptors (GlyR) by strychnine led to a loss of KCC2 expression, without affecting NKCC1 level. This effect was not dependent on the firing of Na+ action potentials but was mimicked by a Ca2+‐dependent PKC blocker. Blocking the vesicular release of neurotransmitters did not impinge on strychnine effect whereas blocking volume‐sensitive outwardly rectifying (VSOR) chloride channels reproduced the GlyR blockade, suggesting that KCC2 is controlled by a glycine release from progenitor radial cells in immature ventral spinal networks. Finally, we showed that the strychnine treatment prevented the maturation of rhythmic spontaneous activity. Thereby, the GlyR‐activation is a necessary developmental process for the expression of functional spinal motor networks. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 764–779, 2016  相似文献   

5.
FREE AMINO ACIDS IN DEVELOPING RAT RETINA   总被引:5,自引:4,他引:1  
—During postnatal growth the free amino acids pattern of rat retina differs at various developmental stages. The adult level for individual amino acids is reached on the 30th day of maturation. During differentiation the taurine, glutamic acid, GABA, glutamine, aspartic acid, glycine arginine, methionine and histidine levels increase while proline. alanine, ornithine and tyrosine decrease.  相似文献   

6.
Glycine serves as a neurotransmitter in spinal cord and brain stem, where it activates inhibitory glycine receptors. In addition, it serves as an essential co-agonist of excitatory N-methyl-d-aspartate receptors. In the central nervous system, extracellular glycine concentrations are regulated by two specific glycine transporters (GlyTs), GlyT1 and GlyT2. Here, we determined the relative transport activities and protein levels of GlyT1 and GlyT2 in membrane preparations from mouse brain stem and spinal cord at different developmental stages. We report that early postnatally (up to postnatal day P5) GlyT1 is the predominant transporter isoform responsible for a major fraction of the GlyT-mediated [(3)H]glycine uptake. At later stages (≥ P10), however, the transport activity and expression of GlyT2 increases, and in membrane fractions from adult mice both GlyTs contribute about equally to glycine uptake. These alterations in the activities and expression profiles of the GlyTs suggest that the contributions of GlyT1 and GlyT2 to the regulation of extracellular glycine concentrations at glycinergic synapses changes during development.  相似文献   

7.
Taurine is one of the most abundant free amino acids in the central nervous system, where it displays several functions. However, its molecular targets remain unknown. It is well known that taurine can activate GABA-A and strychnine-sensitive glycine receptors, which increases a chloride conductance. In this study, we describe that acute application of taurine induces a dose-dependent inhibition of voltage-dependent calcium channels in chromaffin cells from bovine adrenal medullae. This taurine effect was not explained by the activation of either GABA-A, GABA-B or strychnine-sensitive glycine receptors. Interestingly, glycine mimicked the modulatory action exerted by taurine on calcium channels, although the acute application of glycine did not elicit any ionic current in these cells. Additionally, the modulation of calcium channels exerted by both taurine and glycine was prevented by the intracellular dialysis of GDP-β-S. Thus, the modulation of voltage-dependent calcium channels by taurine seems to be mediated by a metabotropic-like glycinergic receptor coupled to G-protein activation in a membrane delimited pathway.  相似文献   

8.
A role for ligand-gated ion channels in rod photoreceptor development   总被引:8,自引:0,他引:8  
Young TL  Cepko CL 《Neuron》2004,41(6):867-879
Neurotransmitter receptors are central to communication at synapses. Many components of the machinery for neurotransmission are present prior to synapse formation, suggesting a developmental role. Here, evidence is presented that signaling through glycine receptor alpha2 (GlyRalpha2) and GABA(A) receptors plays a role in photoreceptor development in the vertebrate retina. The signaling is likely mediated by taurine, which is present at high levels throughout the developing central nervous system (CNS). Taurine potentiates the production of rod photoreceptors, and this induction is inhibited by strychnine, an antagonist of glycine receptors, and bicuculline, an antagonist of GABA receptors. Gain-of-function experiments showed that signaling through GlyRalpha2 induced exit from mitosis and an increase in rod photoreceptors. Furthermore, targeted knockdown of GlyRalpha2 decreased the number of photoreceptors while increasing the number of other retinal cell types. These data support a previously undescribed role for these ligand-gated ion channels during the early stages of CNS development.  相似文献   

9.
The distribution of ion channels in neurons regulates neuronal activity and proper formation of neuronal networks during neuronal development. One of the channels is the hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channel constituting the molecular substrate of hyperpolarization‐activated current (Ih). Our previous study implied a role for the fastest activating subunit HCN1 in the generation of Ih in rat neonatal cortical plate neurons. To better understand the impact of HCN1 in early neocortical development, we here performed biochemical analysis and whole‐cell recordings in neonatal cortical plate and juvenile layer 5 somatosensory neurons of HCN1?/? and control HCN1+/+ mice. Western Blot analysis revealed that HCN1 protein expression in neonatal cortical plate tissue of HCN+/+ mice amounted to only 3% of the HCN1 in young adult cortex and suggested that in HCN1?/? mice other isoforms (particularly HCN4) might be compensatory up‐regulated. At the first day after birth, functional ablation of the HCN1 subunit did not affect the proportion of Ih expressing pyramidal cortical plate neurons. Although the contribution of individual subunit proteins remains open, the lack of HCN1 markedly slowed the current activation and deactivation in individual Ih expressing neurons. However, it did not impair maximal amplitude/density, voltage dependence of activation, and cAMP sensitivity. In conclusion, our data imply that, although expression is relatively low, HCN1 contributes substantially to Ih properties in individual cortical plate neurons. These properties are significantly changed in HCN1?/?, either due to the lack of HCN1 itself or due to compensatory mechanisms. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 785–797, 2013  相似文献   

10.
Neuronal plasticity and its development were investigated at pyramidal neurons in the cortical slices of rats. The threshold and probability of firing spikes were measured by using whole‐cell recording to assess neuronal excitability. Postsynaptic high frequency activity (HFA) at the pyramidal neurons, evoked by 20 trains (250‐ms interval) of five depolarization‐pulses (1 ms) at 100 Hz, persistently lowered the threshold and increased the probability of firing spikes. After long‐term enhancement of neuronal excitability by HFA was stable, another HFA induced further enhancement. Infusing 1 mM 1,2‐bis(2‐aminophenoxy)‐ethane‐N, N,N′,N′‐tetraacetic acid or 100 μM CaMKII(281–301) into the recording neurons prevented HFA‐induced long‐term enhancement of neuronal excitability. The infusion of 40 μM calcineurin autoinhibitory peptide enhanced neuronal excitability, which occluded HFA effect. HFA‐induced long‐term enhancement of intrinsic excitability expressed at most pyramidal neurons after postnatal day (PND) 14, but not at those before PND 9. Our results show a new type of neuronal plasticity induced by physiological activity at cortical neurons, which requires calcium‐dependent protein phosphorylation and develops during postnatal period. An upregulation of intrinsic excitability at cortical neurons facilitates their activity and broadens signal codes; consequently, their computational ability is upgraded. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

11.
Whole cell patch-clamp recording of cultured chick spinal neurons, presumed to be motoneurons, revealed currents elicited in these cells by GABA, glycine and beta-alanine, corresponding to the opening of chloride channels. During maturation, sensitivity to all three transmitters were first detected on the day 6 of culture, and appeared in most neurons by day 8. However, at all stages of development, a fraction of the cells were sensitive only to GABA; this observation supports the notion that the GABA and the glycine receptors are distinct. On the other hand, separate activation by glycine and beta-alanine was never observed, in agreement with the postulate that these amino acids bind to the same receptor.  相似文献   

12.
Functional maturation of the nicotinic acetylcholine receptor is executed by its gamma-to-epsilon subunit switching. The glycine receptor also has fetal (alpha 2) and adult (alpha 1) isoforms. However, whether subunit switching is responsible for developmental changes in glycine receptor function is not known. We recorded single-channel currents from homomeric glycine receptors expressed in Xenopus oocytes with cRNAs encoding the alpha 2 or alpha 1 subunits and compared them with those recorded from native glycine receptors in rat spinal neurons at various ontogenic periods. The mean channel life times of the alpha 1 and mature glycine receptors were equally short, whereas both the alpha 2 and fetal receptors showed a significantly longer open time. Consistent with these results, the decay time of the glycinergic inhibitory postsynaptic currents (IPSCs) in spinal neurons became shorter during postnatal development. We conclude that developmental switching of alpha subunits may accelerate the kinetics of IPSCs.  相似文献   

13.
We investigated regulation by extracellular ATP of channels important for volume regulation of rat hippocampal neurons. Cultures made from fetuses at the eighteenth gestational day were predominantly neuronal after 10-20 days in vitro, as indicated by immunostaining for neuron specific enolase. Neurons recorded with whole-cell patch clamp showed inward currents when membrane voltages were driven to values greater than -50 mV. Chloride conductance increased with 10 microM-100 microM extracellular ATP in a dose-dependent fashion. Similarly, an increase in taurine conductance was observed with 50 microM ATP. These currents were inhibited by the anion channel and purinergic receptor antagonists niflumic acid and suramin, respectively. The chloride conductance response to 10 microM ATP was increased over eight-fold in hypoosmotic medium (250 mOsm); however, chloride conductance in 0 mM ATP was not altered by this osmolality. Thus anion and osmolyte conducting channels activated via purinergic receptors may mediate volume regulation of hippocampal neurons.  相似文献   

14.
Higher brain function in mammals primarily relies on complex yet sophisticated neuronal circuits in the neocortex. In early developmental stages, neocortical circuits are coarse. Mostly postnatally, the circuits are reorganized to establish mature precise connectivity, in an activity-dependent manner. These connections underlie adult brain function. The rodent somatosensory cortex (barrel cortex) contains a barrel map in layer 4 (L4) and has been considered an ideal model for the study of postnatal neuronal circuit formation since the first report of barrels in 1970. Recently, two-photon microscopy has been used for analyses of neuronal circuit formation in the mammalian brain during early postnatal development. These studies have further highlighted the mouse barrel cortex as an ideal model. In particular, the unique dendritic projection pattern of barrel cortex L4 spiny stellate neurons (barrel neurons) is key for the precise one-to-one functional relationship between whiskers and barrels and thus an important target of studies. In this article, I will review the morphological aspects of postnatal development of neocortical circuits revealed by recent two-photon in vivo imaging studies of the mouse barrel cortex and other related works. The focus of this review will be on barrel neuron dendritic refinement during neonatal development.  相似文献   

15.
GABA, a major inhibitory neurotransmitter in the adult CNS, is excitatory at early developmental stages as a result of the elevated intracellular Cl- concentration ([Cl-]i). This functional switch is primarily attributable to the K+-Cl- co-transporter KCC2, the expression of which is developmentally regulated in neurons. Previously, we reported that KCC2 interacts with brain-type creatine kinase (CKB). To elucidate the functional significance of this interaction, HEK293 cells were transfected with KCC2 and glycine receptor alpha2 subunit, and gramicidin-perforated patch-clamp recordings were performed to measure the glycine reversal potential (Egly), giving an estimate of [Cl-]i. KCC2-expressing cells displayed the expected changes in Egly following alterations in the extracellular K+ concentration ([K+]o) or administration of an inhibitor of KCCs, suggesting that the KCC2 function was being properly assessed. When added into KCC2-expressing cells, dominant-negative CKB induced a depolarizing shift in Egly and reduced the hyperpolarizing shift in Egly seen in response to a lowering of [K+]o compared with wild-type CKB. Moreover, 2,4-dinitrofluorobenzene (DNFB), an inhibitor of CKs, shifted Egly in the depolarizing direction. In primary cortical neurons expressing CKB, the GABA reversal potential was also shifted in the depolarizing direction by DNFB. Our findings suggest that, in the cellular micro-environment, CKB activates the KCC2 function.  相似文献   

16.
17.
The objective of this study was to determine whether the sensitivity to varying glucose conditions differs for the peripheral and central nervous system neurons at different developmental stages. Ventral horn neurons (VHN) and dorsal root ganglion neurons (DRG) from rats of different postnatal ages were exposed to glucose-free or glucose-rich culture conditions. Following 24 h at those conditions, the number of protein gene product 9.5 positive (PGP+) DRG neurons and choline acetyltransferase positive (ChAT+) VHN were counted and their neurite lengths and soma diameters were measured. For both DRG and VHN, the highest number of cells with and without neurite outgrowth was seen when cells from postnatal day 4 donors were cultured, while the lowest cell numbers were when neurons were from donors early after birth and grown under glucose-free conditions. The length of the neurites and the soma diameter for VHN were not affected by either glucose level or age. DRG neurons, however, exhibited the shortest neurites and smallest soma diameter when neurons were obtained and cultured early after birth. Our results indicate that survival of neurons in vitro is more influenced by the developmental stage than by glucose concentrations.  相似文献   

18.
Cortical progenitor cells give rise to neurons during embryonic development and to glia after birth. While lineage studies indicate that multipotent progenitor cells are capable of generating both neurons and glia, the role of extracellular signals in regulating the sequential differentiation of these cells is poorly understood. To investigate how factors in the developing cortex might influence cell fate, we developed a cortical slice overlay assay in which cortical progenitor cells are cultured over cortical slices from different developmental stages. We find that embryonic cortical progenitors cultured over embryonic cortical slices differentiate into neurons and those cultured over postnatal cortical slices differentiate into glia, suggesting that the fate of embryonic progenitors can be influenced by developmentally regulated signals. In contrast, postnatal progenitor cells differentiate into glial cells when cultured over either embryonic or postnatal cortical slices. Clonal analysis indicates that the postnatal cortex produces a diffusible factor that induces progenitor cells to adopt glial fates at the expense of neuronal fates. The effects of the postnatal cortical signals on glial cell differentiation are mimicked by FGF2 and CNTF, which induce glial fate specification and terminal glial differentiation respectively. These observations indicate that cell fate specification and terminal differentiation can be independently regulated and suggest that the sequential generation of neurons and glia in the cortex is regulated by a developmental increase in gliogenic signals.  相似文献   

19.
20.
The procerebrum (PC) of the terrestrial mollusk Limax is a highly developed second‐order olfactory center consisting of two electrophysiologically distinct populations of neurons: nonbursting (NB) and bursting (B). NB neurons are by far the more numerous of the two cell types. They receive direct synaptic inputs from afferent fibers from the tentacle ganglion, the primary olfactory center, and also receive periodic inhibitory postsynaptic potentials (IPSPs) from B neurons. Odor‐evoked activity in the NB neurons was examined using perforated patch recordings. Stimulation of the superior tentacle with odorants resulted in inhibitory responses in 45% of NB neurons, while 11% of NB neurons showed an excitatory response. The specific response was reproducible in each neuron to the same odorant, suggesting the possibility that activity of NB neurons may encode odor identity. Analysis of the cycle‐averaged membrane potential of NB neurons revealed a correlation between the firing rate and the membrane potential at the plateau phase between IPSPs. Also, the firing rate of NB neurons was affected by the frequency of the IPSPs. These results indicate the existence of two distinct mechanisms for the regulation of NB neuron activity. © 2003 Wiley Periodicals, Inc. J Neurobiol 58: 369–378, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号