首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Little is known about the effects of aging on synapses in the mammalian nervous system. We examined the innervation of individual mouse submandibular ganglion (SMG) neurons for evidence of age-related changes in synapse efficacy and number. For approximately 85% of adult life expectancy (30 months) the efficacy of synaptic transmission, as determined by excitatory postsynaptic potential (EPSP) amplitudes, remains constant. Similarly, the number of synapses contacting individual SMG neurons is also unchanged. After 30 months of age, however, some neurons (23%) dramatically lose synaptic input exhibiting both smaller EPSP amplitude and fewer synaptic boutons. Attenuation of both the amplitude and frequency of miniature EPSPs was also observed in neurons from aged animals. Electron micrographs revealed that, although there were many vesicle-laden preganglionic axonal processes in the vicinity of the postsynaptic membrane, the number of synaptic contacts was significantly lower in old animals. These results demonstrate primary, age-associated synapse elimination with functional consequences that cannot be explained by pre- or postsynaptic cell death.  相似文献   

2.
Correct neural function depends on precisely organized connectivity, which is refined from broader projections through synaptic/collateral elimination. In the rat, olivocerebellar topography is refined by regression of multiple climbing fiber (CF) innervation of Purkinje cells (PC) during the first two postnatal weeks. The molecules that initiate this regression are not fully understood. We assessed the role of cerebellar neurotrophins by examining tropomycin receptor kinase (Trk) receptor expression in the inferior olive and cerebellum between postnatal days (P)3‐7, when CF‐PC innervation changes from synapse formation to selective synapse elimination, and in a denervation‐reinnervation model when synaptogenesis is delayed. Trks A, B, and C are expressed in olivary neurons; although TrkA was not transported to the cerebellum and TrkC was unchanged during innervation and reinnervation, suggesting that neither receptor is involved in CF‐PC synaptogenesis. In contrast, both total and truncated TrkB (TrkB.T) increased in the olive and cerebellum from P4, whereas full‐length and activated phosphorylated TrkB (phospho‐TrkB) decreased from P4‐5. This reveals less TrkB signaling at the onset of CF regression. This expression pattern was reproduced during CF‐PC reinnervation: in the denervated hemicerebellum phospho‐TrkB decreased as CF terminals degenerated, then increased in parallel with the delayed neosynaptogenesis as new CFs reinnervated the denervated hemicerebellum. In the absence of this signaling, CF reinnervation did not develop. Our data reveal that olivocerebellar TrkB activity parallels CF‐PC synaptic formation and stabilization and is required for neosynaptogenesis. Furthermore, TrkB.T expression rises to reduce TrkB signaling and permit synapse elimination. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

3.
Correct neural function depends on precisely organized connectivity, which is refined from broader projections through synaptic/collateral elimination. In the rat, olivocerebellar topography is refined by regression of multiple climbing fiber (CF) innervation of Purkinje cells (PC) during the first two postnatal weeks. The molecules that initiate this regression are not fully understood. We assessed the role of cerebellar neurotrophins by examining tropomycin receptor kinase (Trk) receptor expression in the inferior olive and cerebellum between postnatal days (P)3‐7, when CF‐PC innervation changes from synapse formation to selective synapse elimination, and in a denervation‐reinnervation model when synaptogenesis is delayed. Trks A, B, and C are expressed in olivary neurons; although TrkA was not transported to the cerebellum and TrkC was unchanged during innervation and reinnervation, suggesting that neither receptor is involved in CF‐PC synaptogenesis. In contrast, both total and truncated TrkB (TrkB.T) increased in the olive and cerebellum from P4, whereas full‐length and activated phosphorylated TrkB (phospho‐TrkB) decreased from P4‐5. This reveals less TrkB signaling at the onset of CF regression. This expression pattern was reproduced during CF‐PC reinnervation: in the denervated hemicerebellum phospho‐TrkB decreased as CF terminals degenerated, then increased in parallel with the delayed neosynaptogenesis as new CFs reinnervated the denervated hemicerebellum. In the absence of this signaling, CF reinnervation did not develop. Our data reveal that olivocerebellar TrkB activity parallels CF‐PC synaptic formation and stabilization and is required for neosynaptogenesis. Furthermore, TrkB.T expression rises to reduce TrkB signaling and permit synapse elimination. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

4.
  相似文献   

5.
In adult skeletal muscles, exogenous ciliary neurotrophic factor (CNTF) induces axons and their nerve terminals to sprout. CNTF also regulates the amount of multiple innervation in developing skeletal muscles during synapse elimination, maintaining multiple innervation of muscle fibers. While CNTF may maintain multiple innervation by regulating developmental synapse elimination, it is also possible that CNTF induces the formation of new multiple innervation through a sprouting response. In this study I examined morphologically the effects of CNTF during synapse elimination in the extensor digitorum longus (EDL) muscle. Rat pups received injections of CNTF in one leg and vehicle in the other either early [postnatal day 7 (P7)-P13] or late (P14–P20) in development. The early treatment period corresponds to that time when the pattern of innervation in the EDL is converted from predominantly multiple to single innervation. The late treatment period is at the end of synapse elimination for the EDL but corresponds to the major period of synapse elimination in the levator ani (LA), allowing a comparison of effects on these two muscles from the same animals. On the day after the final injection, EDL muscles were dissected and stained with tetranitroblue tetrazolium and the resulting pattern of innervation was assessed. The present findings indicate that only the early CNTF treatment regulates the level of multiple innervation in the EDL. Moreover, the effect of early CNTF treatment was local, affecting multiple innervation only in the EDL from the CNTF-treated leg. CNTF injected during the late treatment period had no apparent effects on the EDL but had a potent effect on the pattern of innervation in the LA, significantly increasing the level of multiple innervation in this muscle. Thus, CNTF affected multiple innervation in these two muscles only if provided during the period when single innervation normally develops. There was no evidence to indicate that CNTF induced axons or their terminals to sprout during either treatment period. In conclusion, CNTF increases the level of multiple innervation, probably by regulating synapse elimination, and skeletal muscles themselves may be an important target site for CNTF action. Presumably, the sprouting response to CNTF found in adult muscle develops sometime after P21. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
We have used a three compartment tissue culture system that involved two separate populations of cholinergic neurons in the side compartments that converged on a common target population of myotubes in the center compartment. Activation of the axons from one population of neurons produced selective down‐regulation of the synaptic inputs from the other neuronal population (when the two inputs innervated the same myotubes). The decrease in heterosynaptic inputs was mediated by protein kinase C (PKC). An activity‐dependent action of protein kinase A (PKA) was associated with the stimulated input and this served to selectively stabilize this input. These changes associated with PKA and PKC activation were mediated by alterations in the number of acetylcholine receptors at the neuromuscular junction. These results suggest that neuromuscular electrical activity produces postsynaptic activation of both PKA and PKC, with the latter producing generalized synapse weakening and the former a selective synapse stabilization. Treatment of the neuronal cell body and axon to increase PKC activity by putting phorbal ester (PMA) in the side chamber did not affect synaptic transmission (with or without stimulation). By contrast, PKA blockade in the side compartment did produce an activity‐dependent decrease in synaptic efficacy, which was due to a decrease in quantal release of neurotransmitter. Thus, when the synapse is activated, it appears that presynaptic PKA action is necessary to maintain transmitter output. Published 2002 Wiley Periodicals, Inc. J Neurobiol 52: 241–250, 2002  相似文献   

7.
Young male rats were castrated at 7 days of age, and treated with testosterone propionate daily from 7 to 34 days of age. At 13 months of age, motor axons and terminals innervating the levator ani (LA) muscle were stained with tetranitroblue tetrazolium (TNBT). The number of separate axons innervating individual muscle fibers was counted, and muscle fiber diameter was measured. Previous studies have shown that this androgen treatment increases muscle fiber diameter and delays synapse elimination, measured as (1) a greater percentage of muscle fibers innervated by multiple axons and (2) larger motor units. The present results indicate that the androgenic effect on synapse elimination is permanent, in that high levels of multiple innervation persisted for 12 months after the end of androgen treatment. In contrast, the effect on muscle fiber diameter was not maintained for this period. This dissociation of androgenic effects on the pattern of innervation from androgenic effects on muscle fiber diameter offers further evidence that the androgenic maintenance of multiple innervation is not dependent on muscle fiber size. In addition, circulating testosterone levels were measured at 50 and 60 days of age in animals similarly treated with androgen or oil from 7 to 34 days of age. By 60 days of age, testosterone levels in hormone-treated animals had dropped below detectability, comparable to levels in oil-treated controls. This provides additional evidence that androgen treatment during juvenile development can have permanent effects on the adult pattern of innervation in the LA muscle.  相似文献   

8.
Synaptic impairment rather than neuronal loss may be the leading cause of cognitive dysfunction in brain aging. Certain small Rho‐GTPases are involved in synaptic plasticity, and their dysfunction is associated with brain aging and neurodegeneration. Rho‐GTPases undergo prenylation by attachment of geranylgeranylpyrophosphate (GGPP) catalyzed by GGTase‐I. We examined age‐related changes in the abundance of Rho and Rab proteins in membrane and cytosolic fractions as well as of GGTase‐I in brain tissue of 3‐ and 23‐month‐old C57BL/6 mice. We report a shift in the cellular localization of Rho‐GTPases toward reduced levels of membrane‐associated and enhanced cytosolic levels of those proteins in aged mouse brain as compared with younger mice. The age‐related reduction in membrane‐associated Rho proteins was associated with a reduction in GGTase‐Iβ levels that regulates binding of GGPP to Rho‐GTPases. Proteins prenylated by GGTase‐II were not reduced in aged brain indicating a specific targeting of GGTase‐I in the aged brain. Inhibition of GGTase‐I in vitro modeled the effects of aging we observed in vivo. We demonstrate for the first time a decrease in membrane‐associated Rho proteins in aged brain in association with down‐regulation of GGTase‐Iβ. This down‐regulation could be one of the mechanisms causing age‐related weakening of synaptic plasticity.

  相似文献   


9.
《Cell reports》2023,42(2):112042
  1. Download : Download high-res image (153KB)
  2. Download : Download full-size image
  相似文献   

10.
Vasohibin‐1 (VASH1) is an angiogenesis‐inhibiting factor synthesized by endothelial cells (ECs) and it also functions to increase stress tolerance of ECs, which function is critical for the maintenance of vascular integrity. Here, we examined whether the expression of VASH1 would be affected by aging. We passaged human umbilical vein endothelial cells (HUVECs) and observed that VASH1 was downregulated in old HUVECs. This decrease in VASH1 expression with aging was confirmed in mice. To explore the mechanism of this downregulation, we compared the expression of microRNAs between old and young HUVECs by performing microarray analysis. Among the top 20 microRNAs that were expressed at a higher level in old HUVECs, the third highest microRNA, namely miR‐22‐3p, had its binding site on the 3′ UTR of VASH1 mRNA. Experiments with microRNA mimic and anti‐miR revealed that miR‐22‐3p was involved at least in part in the downregulation of VASH1 in ECs during replicative senescence. We then clarified the significance of this defective expression of VASH1 in the vasculature. When a cuff was placed around the femoral arteries of wild‐type mice and VASH1‐null mice, neointimal formation was augmented in the VASH1‐null mice accompanied by an increase in adventitial angiogenesis, macrophage accumulation in the adventitia, and medial/neointimal proliferating cells. These results indicate that in replicative senescence, the downregulation of VASH1 expression in ECs was caused, at least in part, by the alteration of microRNA expression. Such downregulation of VASH1 might be involved in the acceleration of age‐associated vascular diseases.  相似文献   

11.
Retinal ganglion cells (RGCs) become increasingly vulnerable to injury with advancing age. We recently showed that this vulnerability can be strongly modified in mice by exercise. However, the characteristics and underlying mechanisms of retinal protection with exercise remain unknown. Hence, the aim of this study was to investigate cellular changes associated with exercise‐induced protection of aging retinal cells and the role of local and peripheral trophic signalling in mediating these effects. We focussed on two molecules that are thought to play key roles in mediating beneficial effects of exercise: brain‐derived neurotrophic factor (BDNF) and AMP‐activated protein kinase (AMPK). In middle‐aged (12 months old) C57BL/6J mice, we found that exercise protected RGCs against dysfunction and cell loss after an acute injury induced by elevation of intra‐ocular pressure. This was associated with preservation of inner retinal synapses and reduced synaptic complement deposition. Retinal expression of BDNF was not upregulated in response to exercise alone. Rather, exercise maintained BDNF levels in the retina, which were decreased postinjury in nonexercised animals. Confirming a critical role for BDNF, we found that blocking BDNF signalling during exercise by pharmacological means or genetic knock‐down suppressed the functional protection of RGCs afforded by exercise. Protection of RGCs with exercise was independent of activation of AMPK in either retina or skeletal muscle. Our data support a previously unidentified mechanism in which exercise prevents loss of BDNF in the retina after injury and preserves neuronal function and survival by preventing complement‐mediated elimination of synapses.  相似文献   

12.
Aging leads to a proinflammatory state within the vasculature without disease, yet whether this inflammatory state occurs during atherogenesis remains unclear. Here, we examined how aging impacts atherosclerosis using Ldlr?/? mice, an established murine model of atherosclerosis. We found that aged atherosclerotic Ldlr?/? mice exhibited enhanced atherogenesis within the aorta. Aging also led to increased LDL levels, elevated blood pressure on a low‐fat diet, and insulin resistance after a high‐fat diet (HFD). On a HFD, aging increased a monocytosis in the peripheral blood and enhanced macrophage accumulation within the aorta. When we conducted bone marrow transplant experiments, we found that stromal factors contributed to age‐enhanced atherosclerosis. To delineate these stromal factors, we determined that the vasculature exhibited an age‐enhanced inflammatory response consisting of elevated production of CCL‐2, osteopontin, and IL‐6 during atherogenesis. In addition, in vitro cultures showed that aging enhanced the production of osteopontin by vascular smooth muscle cells. Functionally, aged atherosclerotic aortas displayed higher monocyte chemotaxis than young aortas. Hence, our study has revealed that aging induces metabolic dysfunction and enhances vascular inflammation to promote a peripheral monocytosis and macrophage accumulation within the atherosclerotic aorta.  相似文献   

13.
In Drosophila, the secreted signaling molecule Jelly Belly (Jeb) activates anaplastic lymphoma kinase (Alk), a receptor tyrosine kinase, in multiple developmental and adult contexts. We have shown previously that Jeb and Alk are highly enriched at Drosophila synapses within the CNS neuropil and neuromuscular junction (NMJ) and postulated a conserved intercellular signaling function. At the embryonic and larval NMJ, Jeb is localized in the motor neuron presynaptic terminal whereas Alk is concentrated in the muscle postsynaptic domain surrounding boutons, consistent with anterograde trans‐synaptic signaling. Here, we show that neurotransmission is regulated by Jeb secretion by functional inhibition of Jeb–Alk signaling. Jeb is a novel negative regulator of neuromuscular transmission. Reduction or inhibition of Alk function results in enhanced synaptic transmission. Activation of Alk conversely inhibits synaptic transmission. Restoration of wild‐type postsynaptic Alk expression in Alk partial loss‐of‐function mutants rescues NMJ transmission phenotypes and confirms that postsynaptic Alk regulates NMJ transmission. The effects of impaired Alk signaling on neurotransmission are observed in the absence of associated changes in NMJ structure. Complete removal of Jeb in motor neurons, however, disrupts both presynaptic bouton architecture and postsynaptic differentiation. Nonphysiologic activation of Alk signaling also negatively regulates NMJ growth. Activation of Jeb–Alk signaling triggers the Ras‐MAP kinase cascade in both pre‐ and postsynaptic compartments. These novel roles for Jeb–Alk signaling in the modulation of synaptic function and structure have potential implications for recently reported Alk functions in human addiction, retention of spatial memory, cognitive dysfunction in neurofibromatosis, and pathogenesis of amyotrophic lateral sclerosis. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

14.
In Xenopus laevis frogs, sex differences in adult laryngeal synapses contribute to sex differences in vocal behavior. This study explores the development of sex differences in types of neuromuscular synapses and the development and hormone regulation of sex differences in transmitter release. Synapses in the juvenile larynx have characteristics not found in adults: juvenile muscle fibers can produce subthreshold or suprathreshold potentials in response to the same strength of nerve stimulation and can also produce multiple spikes to a single nerve stimulus. Juvenile laryngeal muscle also contains the same synapse types (I, II, and III) as are found in adult laryngeal muscle. The distribution of laryngeal synapse types in juveniles is less sexually dimorphic than the distribution in adults. Analysis of quantal content indicates that laryngeal synapses characteristically release low amounts of transmitter prior to sexual differentiation. Quantal content values from male and female juveniles are similar to values for adult males and are lower than values for adult females. When juveniles are gonadectomized and treated with exogenous estrogen, quantal content values increase significantly, suggesting that this hormone may increase transmitter release at laryngeal synapses during development. Gonadectomy alone does not affect quantal content of laryngeal synapses in either sex. Androgen treatment decreases quantal content in juvenile females but not males; the effect is opposite to and smaller than that of estrogen. Thus, muscle fiber responses to nerve stimulation and transmitter release are not sexually dimorphic in juvenile larynges. Transmitter release is strengthened, or feminized, by the administration of estradiol, an ovarian steroid hormone. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
The effect of action potentials on elimination of mouse neuromuscular junctions (NMJ) was studied in a three compartment cell culture preparation. Axons from superior cervical ganglion or ventral spinal cord neurons in two lateral compartments formed multiple neuromuscular junctions with muscle cells in a central compartment. The loss of synapses over a 2–7-day period was determined by serial electrophysiological recording and a functional assay. Electrical stimulation of axons from one side compartment during this period, using 30-Hz bursts of 2-s duration, repeated at 10-s intervals, caused a significant increase in synapse elimination compared to unstimulated cultures (p< 0.001). The extent of homosynaptic and heterosynaptic elimination was comparable, i. e., of the 226 functional synapses of each type studied, 111 (49%) of the synapses that had been stimulated were eliminated, and 87 (39%) of unstimulated synapses on the same muscle cells were eliminated. Also, simultaneous bilateral stimulation caused significantly greater elimination of synapses than unilateral stimulation (p< 0.005). These observations are contrary to the Hebbian hypothesis of synaptic plasticity. A spatial effect of stimulus-induced synapse elimination was also evident following simultaneous bilateral stimulation. Prior to stimulation, most muscle cells were innervated by axons from both side compartments, but after bilateral stimulation, muscle cells were predominantly unilaterally innervated by axons from the closer compartment. These experiments suggest that synapse elimination at the NMJ is an activity-dependent process, but it does not follow Hebbian or anti-Hebbian rules of synaptic plasticity. Rather, elimination is a consequence of postsynaptic activation and a function of location of the muscle cell relative to the neuron. An interaction between spatial and activity-dependent effects on synapse elimination could help produce optimal refinement of synaptic connections during postnatal development. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
17.
18.
Growth‐associated protein 43 (GAP‐43), a novel axonal phosphoprotein, is originally identified as a growth‐cone‐specific protein of developing neurons in vitro. The expression of GAP‐43 is also shown to be up‐regulated concomitant with increased synaptic plasticity in the brains in vivo, but how GAP‐43 is concerned with synaptic plasticity is not well understood. In the present study, therefore, we aimed to elucidate subcellular localization of GAP‐43 as culture development of rat hippocampal neurons. Western blotting showed that the expression of GAP‐43 in the cerebral and hippocampal tissues was prominently high at postnatal days 14 and 21 or the active period of synaptogenesis. Double‐labelling immunohistochemistry with an axonal marker Tau revealed that the immunoreactivity of GAP‐43 was seen throughout axons of cultured hippocampal neurons but stronger at axonal puncta of developing neurons than axonal processes. Double‐labelling immunohistochemistry with presynaptic terminal markers of synapsin and synaptotagmin revealed that the immunoreactivity of GAP‐43 was observed mostly at weak synapsin‐ and synaptotagmin‐positive puncta rather than strong ones. The quantitative analysis of immunofluorescent intensity showed a clear inverse correlation between GAP‐43 and either synapsin or synaptotagmin expression. These data indicate that GAP‐43 is highly expressed at immature growing axonal terminals and its expression is decreased along with the maturation of synaptogenesis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
In the sympathetic system, neurons from several spinal segments are mapped onto targets in the periphery in a topographically ordered way by means of selective synaptic connections in the superior cervical ganglion. Experimental evidence points to a crucial role for chemoaffinity in establishing this topographic map. Furthermore, rearrangements of synapses after surgical manipulations indicate that this chemoaffinity is not based on rigid “key-and-lock” markers. Our model is used to study how such nonrigid markers may interact with other regulatory factors, including growth-regulating signals and the growth potential of individual nerons. In the model, these latter factors are limiting, so that an increasing number of synaptic contacts decreases the likelihood of further synapse formation. These factors are combined with chemoaffinity using a linear threshold model. The model is robust to parameter changes and reproduces experimental observations with reasonable detail. Simulation results are used to discuss characteristic experimental results, such as the substantial plasticity of the connections seen after partial denervation. A surprisingly small effect of transient hyperinnervation in the model may help explain why final connectivities are similar in two real situations with high and low degrees of transient hyperinnervation (development and adult reinnervation). It is shown that spatial restrictions on post-synaptic neurons (dendrites) may contribute significantly to the segmentally broad innervation of each ganglion cell. Finally, we discuss potential effects of presynaptic neuronal death in systems with a high degree of plasticity. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
The expression of the synaptic vesicle protein, synaptotagmin, in developing rat superior cervical ganglia is influenced by transsynaptic factors associated with membrane depolarization. The present study examines the role of cyclic AMP in the regulation of synaptotagmin in neonatal superior cervical ganglia maintained in explant culture. Ganglia were treated for 48 h in vitro with the Na+‐channel ionophore, veratridine, or with pharmacological agents that alter cyclic AMP levels. Levels of cyclic AMP and synaptotagmin were determined by radioimmunoassay. Veratridine treatment significantly increased cyclic AMP in cultured ganglia, with a long time course, and also increased synaptotagmin levels. Drugs that elevate cyclic AMP levels significantly increased synaptotagmin levels, with similar magnitude to that produced by veratridine treatment. These pharmacological agents did not alter neuron survival or total ganglionic protein content. No additive effects were observed after combined treatment with veratridine and pharmacological agents that increased cyclic AMP. Agents that blocked adenylyl cyclase blocked the veratridine‐induced increase in synaptotagmin levels. The results suggest that regulation of expression of synaptotagmin in neonatal sympathetic neurons is mediated partially by cyclic AMP. © 2001 John Wiley & Sons, Inc. J Neurobiol 46: 281–288, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号