首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During embryonic development, olfactory sensory neurons extend axons that form synapses with the dendrites of projection neurons in glomeruli of the olfactory bulb (OB). The glycosyltransferase beta3GnT1 regulates the expression of 1B2-reactive lactosamine glycans that are mosaically distributed among glomeruli. In newborn beta3GnT1-/- mice, lactosamine expression is lost, and many glomeruli fail to form. To determine the role of lactosamine in OB targeting, we analyzed the trajectories of specific OR axon populations and their reactivity with 1B2 in beta3GnT1-/- mice. mI7 axons and P2 axons, both of which are weakly 1B2+ in wild-type mice, fail to grow to their normal positions in the glomerular layer during early postnatal development and never recover in adult mutant mice. In contrast, many M72 axons, which are always lactosamine negative in wild-type mice, survive but are misguided to the extreme anterior OB in neonatal mutant mice and persist as heterotypic glomeruli, even in adult null mice. These results show that the loss of lactosamine differentially affects each OR population. Those that lose their normal expression of lactosamine fail to form stable connections with mitral and tufted cells in the OB, disappear during early postnatal development, and do not recover in adults. Neurons that are normally lactosamine negative, survive early postnatal degeneration in beta3GnT1-/- mice but extend axons that converge on inappropriate targets in the mutant OB.  相似文献   

2.
The Src-family tyrosine kinases p59fyn and pp60c-src are localized on axons of the mouse olfactory nerve during the initial stages of axonal growth, but their functional roles remain to be defined. To study the role of these kinases, we analyzed the trajectory of the olfactory nerve in E11.5 homozygous null mutant mice lacking single src or fyn genes and double mutants lacking both genes. Primary olfactory axons of single and double mutants exited the olfactory epithelium and projected toward the telencephalon, but displayed differences in fasciculation. The fyn-minus olfactory nerve had significantly more fascicles than the src-minus nerve. Most strikingly, the primary olfactory nerve of src/fyn double mutants showed the greatest degree of defasciculation. These defects, identified by NCAM labeling, were not due to apparent changes in the size of the olfactory epithelium. With the exception of the src-minus mice, which had fewer fascicles than the wild type, no obvious differences were observed in coalescence of vomeronasal axons from mutant mice. The mesenchyme of the double and single mutants exhibited only subtle changes in laminin and fibronectin staining, indicating that the adhesive environment of the mesenchyme may contribute in part to defects in fasciculation. The results suggest that signaling pathways mediated by p59fyn and pp60c-src contribute to the appropriate fasciculation of axons in the nascent olfactory system, and comprise partially compensatory mechanisms for axonal adhesion and guidance. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 53–63, 1998  相似文献   

3.
In the present study, we describe the structural and cytological changes observed in staggerer mutant olfactory bulbs, as compared to normal mice. On the basis of photonic and ultrastructural observations we tried to define the alterations induced by the mutation: i.e. a reduction of bulb size, a reduction in the volume of three out of the six architectonic layers (glomerular, external and internal plexiform), a reduction of glomeruli size, a loss of half the mitral cells and a slight decrease in juxtaglomerular interneuron number. In staggerer, an hypertrophy of glial ensheathing cell processes was especially evident at the level of each glomerulus, whereas the density of the astrocyte network was weaker in the granular layer and the nerve layer not apparently impaired. An immunofluorescent labelling study combined with confocal scanning microscopy was performed in order to identify the cellular type and the differentiation degree of the various elements. Antibodies anti-GFAP, a protein present in both ensheathing cells and astrocytes, and anti-OMP, the specific maturation protein of the nerve layer, were used for that purpose. Data confirmed the reality of the gliosis and the persistence of the sensory component in the mutant. All the structural alterations described in staggerer olfactory bulb were in close agreement with the functional troubles previously recorded. Our results are discussed in connection with the present knowledge on embryonal origin, fetal development and adult cellular renewal of the olfactory bulb.  相似文献   

4.
In mammals, odorants induce various behavioral responses that are critical to the survival of the individual and species. Binding signals of odorants to odorant receptors (ORs) expressed in the olfactory epithelia are converted to an odor map, a pattern of activated glomeruli, in the olfactory bulb (OB). This topographic map is used to identify odorants for memory-based learned decisions. In the embryo, a coarse olfactory map is generated in the OB by a combination of dorsal-ventral and anterior-posterior targeting of olfactory sensory neurons (OSNs), using specific sets of axon-guidance molecules. During the process of OSN projection, odor signals are sorted into distinct odor qualities in separate functional domains in the OB. Odor information is then conveyed by the projection neurons, mitral/tufted cells, to various regions in the olfactory cortex, particularly to the amygdala for innate olfactory decisions. Although the basic architecture of hard-wired circuits is generated by a genetic program, innate olfactory responses are modified by neonatal odor experience in an activity-dependent manner. Stimulus-driven OR activity promotes post-synaptic events and dendrite selection in the responding glomeruli making them larger. As a result, enhanced odor inputs in neonates establish imprinted olfactory memory that induces attractive responses in adults, even when the odor quality is innately aversive. In this paper, I will provide an overview of the recent progress made in the olfactory circuit formation in mice.  相似文献   

5.
Summary In order to begin to understand how primary olfactory and vomeronasal organ (VNO) axons target specific regions of the olfactory bulb, we examined the sorting behaviour of these axons following neonatal unilateral olfactory bulbectomy. Bulbectomy induced widespread ipsilateral death of the primary olfactory and VNO neurons. After 4 weeks, many new sensory axons had re-grown into the cranial cavity and established a prominent plexus with evidence of dense tufts that were similar in gross appearance to glomeruli. Axons expressing the cell adhesion molecule OCAM, which normally innervate the ventrolateral and rostral halves of the main and accessory olfactory bulbs, respectively, sorted out and segregated from those axons not expressing this molecule within the plexus. In addition, VNO axons formed large discrete bundles that segregated from main olfactory axons within the plexus. Thus, VNO and primary olfactory axons as well as discrete subpopulations of both are able to sort out and remain segregated in the absence of the olfactory bulb. Sorting and convergence of axons therefore occur independently of the olfactory bulb and are probably attributable either to inherent properties of the axons themselves or to interactions between the axons and accompanying glial ensheathing cells.  相似文献   

6.
In mice, mitral cells are the major efferent neurons of the main olfactory bulb and elongate axons into a very narrow part of the telencephalon to form a fiber bundle referred to as the lateral olfactory tract (LOT). To clarify the mechanisms responsible for guidance of mitral cell axons along this particular pathway, we co-cultured mouse embryo main olfactory bulbs with the telencephalons, and analyzed the pathways taken by mitral cell axons. Ingrowth of mitral cell axons into the telencephalon was observed in those co-cultures in which the olfactory bulbs had been exactly combined to their normal pathway (the LOT position) of the telencephalon. The axons grew preferentially along the LOT position, and formed a LOT-like fiber bundle. When the olfactory bulbs were grafted at positions apart from their normal pathway, however, no mitral cell axons grew into the telencephalon. Neocortical fragments combined with the telencephalon projected fibers into the telencephalon in random directions. These results suggest that the LOT position of the telencephalon offers a guiding pathway for mitral cell axons and that guiding cues for mitral cell axons are extremely localized. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Vagal sensory axons navigate to specific sites in the bowel during fetal life. Netrin/deleted in colorectal cancer (DCC) were found to mediate the attraction of vagal sensory axons to the fetal mouse gut. We tested the hypothesis that laminin-111 can reverse the chemoattractive effects of netrin and act as a stop signal for vagal sensory axons. Laminin-111-expressing cells were located in the E12 and E16 mouse bowel by in situ hybridization. At E12, these cells extended centrifugally from the endoderm; by E16, laminin-111 expressing cells were found in the mucosa and outer gut mesenchyme. A similar pattern was seen in preparations of E13 and E15 mouse gut labeled with antibodies to laminin. Application of DiI to nodose ganglia identified vagal sensory axons growing into the fetal bowel. These terminals were found to avoid concentrations of laminin or to terminate at laminin-delimited boundaries. Soluble laminin inhibited the preferential growth of nodose neurites toward netrin-secreting cells (p < 0.01). This effect was mimicked by a peptide, YIGSR, a sequence within the beta1 chain of laminin-111 (p < 0.004) and antagonized by a peptide, IKVAV, a sequence within the alpha1 chain of laminin-111. Antibodies to beta1-integrins were also able to reverse the inhibitive effects of laminin and restore the attraction of nodose neurites towards netrin-1-secreting cells. Soluble laminin inhibited the preferential growth of nodose neurites toward a cocultured explant of foregut. These findings suggest that laminin terminates the attraction of vagal sensory axons towards sources of netrin in the developing bowel.  相似文献   

8.
Olfactory sensory neurons (OSNs) project their axons to second-order neurons in the olfactory bulb (OB) to form a precise glomerular map and these stereotypic connections are crucial for accurate odorant information processing by animals. To form these connections, olfactory sensory neuron (OSN) axons respond to axon guidance molecules that direct their growth and coalescence. We have previously implicated the axon guidance receptor Robo-2 in the accurate coalescence of OSN axons within the dorsal region of the OB (Cho et al., 2011). Herein, we have examined whether Robo-2 and its ligands, the Slits, contribute to the formation of an accurate glomerular map within more ventral regions of the OB. We have ablated expression of Robo-2 in OSNs and assessed the targeting accuracy of axons expressing either the P2 or MOR28 olfactory receptors, which innervate two different regions of the ventral OB. We show that P2-positive axons, which express Robo-2, coalesce into glomeruli more ventrally and form additional glomeruli in the OB of robo-2lox/lox;OMP-Cre mice. We also demonstrate that Robo-2-mediated targeting of P2 axons along the dorsoventral axis of the OB is controlled by Slit-1 and Slit-3 expression. Interestingly, although MOR28-positive OSNs only express low levels of Robo-2, a reduced number of MOR28-positive glomeruli is observed in the OB of robo-2lox/lox;OMP-Cre mice. Taken together, our results demonstrate that Slits and Robo-2 are required for the formation of an accurate glomerular map in the ventral region of the OB.  相似文献   

9.
Although N-CAM has previously been implicated in the growth and fasciculation of axons, the development of axon tracts in transgenic mice with a targeted deletion of the 180-kD isoform of the neural cell adhesion molecule (N-CAM-180) appears grossly normal in comparison to wild-type mice. We examined the organization of the olfactory nerve projection from the olfactory neuroepithelium to glomeruli in the olfactory bulb of postnatal N-CAM-180 null mutant mice. Immunostaining for olfactory marker protein revealed the normal presence of fully mature primary olfactory neurons within the olfactory neuroepithelium of mutant mice. The axons of these neurons form an olfactory nerve, enter the nerve fiber layer of the olfactory bulb, and terminate in olfactory glomeruli as in wild-type control animals. The olfactory bulb is smaller and the nerve fiber layer is relatively thicker in mutants than in wild-type mice. Previous studies have revealed that the plant lectin Dolichos biflorus agglutinin (DBA) clearly stains the perikarya and axons of a subpopulation of primary olfactory neurons. Thus, DBA staining enabled the morphology of the olfactory nerve pathway to be examined at higher resolution in both control and mutant animals. Despite a normal spatial pattern of DBA-stained neurons within the nasal cavity, there was a distorted axonal projection of these neurons onto the surface of the olfactory bulb in N-CAM-180 null mutants. In particular, DBA-stained axons formed fewer and smaller glomeruli in the olfactory bulbs of mutants in comparison to wild-type mice. Many primary olfactory axons failed to exit the nerve fiber layer and contribute to glomerular formation. These results indicate that N-CAM-180 plays an important role in the growth and fasciculation of primary olfactory axons and is essential for normal development of olfactory glomeruli. © 1997 John Wiley & Sons, Inc. J Neurobiol 32 : 643–658, 1997  相似文献   

10.
Olfactory sensory neurons (OSNs) in the nose form precise connections with neurons in the brain. However, mechanisms that account for the formation of such precise neuronal connections are incompletely understood. Recent studies implicate the function of Wnt growth factors in the formation of neuronal connections. To assess the role of Wnt signaling in the olfactory system, we examined the expression of beta-galactosidase (beta-gal) in the TOPGAL mouse, a transgenic strain in which beta-gal expression reports the activation of the canonical Wnt signaling pathway. In the olfactory epithelium, no beta-gal expression was observed at any developmental stages. In the olfactory bulb (OB), beta-gal expression was observed in a population of cells located at the interface of the olfactory nerve layer and the glomerular layer. The beta-gal expression was developmentally regulated with the peak expression occurring at late embryonic and early postnatal stages and a greatly reduced expression in adulthood. Further, forced OSN regeneration and subsequent reinnervation of the OB led to a reactivation of beta-gal expression in mature animals. The temporal coincidence between the peak of beta-gal expression and formation of OSN connections, together with the spatial localization of these cells, suggests a potential role of these cells and canonical Wnt signaling in the formation of OSN connections in the OB during development and regeneration.  相似文献   

11.
An immunoglobulin superfamily neuronal adhesion molecule, Contactin, has been implicated in axon guidance of spinal sensory neurons in Xenopus embryos. To identify the guidance signaling molecules that Contactin recognizes in tailbud embryos, an in situ binding assay was performed using recombinant Contactin-alkaline phosphatase fusion protein (Contactin-AP) as a probe. In the assay of whole-mount or sectioned embryos, Contactin-AP specifically bound to the notochord and its proximal regions. This binding was completely blocked by either digestion of embryo sections with chondroitinase ABC or pretreatment of Contactin-AP with chondroitin sulfate A. When the spinal cord and the notochord explants were co-cultured in collagen gel, growing Contactin-positive spinal axons were repelled by notochord-derived repulsive activity. This repulsive activity was abolished by the addition of either a monoclonal anti-Contactin antibody, chondroitin sulfate A or chondroitinase ABC to the culture medium. An antibody that recognizes chondroitin sulfate A and C labeled immunohistochemically the notochord in embryo sections and the collagen gel matrix around the cultured notochord explant. Addition of chondroitinase ABC into the culture eliminated the immunoreactivity in the gel matrix. These results suggest that the notochord-derived chondroitin sulfate proteoglycan acts as a repulsive signaling molecule that is recognized by Contactin on spinal sensory axons.  相似文献   

12.
13.
In the developing chick hindlimb, sensory axons, which grow together in bundles as they extend distally, and the motoneuron axons they encounter express the cell adhesion molecule L1. Following injection of function-blocking anti-L1 antibodies into the limb at stage 25, some sensory axons choose inappropriate peripheral nerves even though motoneuron pathfinding is unaffected. Here, to further elucidate L1's role, we assessed the effects of this perturbation using pathway tracing, immune labeling, confocal microscopy, and electron microscopy. After L1 blockade, sensory axons were still bundled and closely apposed. However, clear signs of decreased adhesion were detectable ultrastructurally. Further, sensory axons grew into the limb more slowly than normal, wandering more widely, branching more frequently, and sometimes extending along inappropriate peripheral nerves. Sensory axons that ultimately projected along different cutaneous nerves showed increased intermixing in the spinal nerves, due to errors in pathfinding and also to a decreased ability to segregate into nerve-specific fascicles. These results suggest that, in the highly complex in vivo environment, as in tissue culture, L1 stimulates axon growth and enhances fasciculation, and that these processes contribute to the orderly, timely, and specific growth of sensory axons into the limb.  相似文献   

14.
Mitochondria are widely distributed via regulated transport in neurons, but their sites of biogenesis remain uncertain. Most mitochondrial proteins are encoded in the nuclear genome, and evidence has suggested that mitochondrial DNA (mtDNA) replication occurs mainly or entirely in the cell body. However, it has also become clear that nuclear-encoded mitochondrial proteins can be translated in the axon and that components of the mitochondrial replication machinery reside there as well. We assessed directly whether mtDNA replication can occur in the axons of chick peripheral neurons labeled with 5-bromo-2'-deoxyuridine (BrdU). In axons that were physically separated from the cell body or had disrupted organelle transport between the cell bodies and axons, a significant fraction of mtDNA synthesis continued. We also detected the mitochondrial fission protein Drp1 in neurons by immunofluorescence or expression of GFP-Drp1. Its presence and distribution on the majority of axonal mitochondria indicated that a substantial number had undergone recent division in the axon. Because the morphology of mitochondria is maintained by the balance of fission and fusion events, we either inhibited Drp1 expression by RNAi or overexpressed the fusion protein Mfn1. Both methods resulted in significantly longer mitochondria in axons, including many at a great distance from the cell body. These data indicate that mitochondria can replicate their DNA, divide, and fuse locally within the axon; thus, the biogenesis of mitochondria is not limited to the cell body.  相似文献   

15.
Gene manipulation and molecular biological techniques for the study of olfaction are well developed in mice, while electrophysiological properties of mouse olfactory sensory neurons have been less extensively investigated. We used the whole-cell voltage-clamp technique in mouse isolated olfactory sensory neurons to investigate both voltage-gated and transduction currents. Voltage-gated currents were composed of transient inward currents followed by outward currents with transient and sustained components. Of the tested olfactory sensory neurons, 12% responded to the odorant cineole with an inward current. Caged compounds were introduced into the cytoplasm through the patch pipette and flash photolysis of caged cyclic nucleotides activated an inward current in 94% of the cells. When the flash was localized at the cilia, the response latency, rising time and duration were shorter than when the flash illuminated the soma. The amplitude of the photolysis response was dependent on light intensity and the relation was fitted by the Hill equation, with a Hill coefficient of 3.2. These results demonstrate that it is possible to obtain recordings in the whole-cell configuration from olfactory sensory neurons isolated from the mouse and that voltage-gated currents and transduction properties are largely similar to those of amphibians.  相似文献   

16.
In adult Xenopus, the nasal cavity is divided into separate middle (MC) and principal (PC) cavities; the former is used to smell water-borne odorants, the latter air-borne odorants. Recent work has shown that olfactory neurons of each cavity express a distinct subclass of odorant receptors. Moreover, MC and PC axons project to distinct regions of the olfactory bulb. To examine the developmental basis for this specificity in the olfactory projection, we extirpated the developing MC from early metamorphic (stage 54–57) tadpoles and raised the animals through metamorphosis. In most lesioned animals, the MC partly regenerated. Compared with the unlesioned side, reduction of the region of the glomerular layer of the olfactory bulb receiving MC afferents ranged from 70% to 95%. PC afferents did not occupy regions of the olfactory bulb deprived of MC afferents. These results support a model in which intrinsic cues in the olfactory bulb control the projection pattern attained by ingrowing olfactory axons. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 213–222, 1997.  相似文献   

17.
Skin development is tightly temporally coordinated with its sensory innervation, which consists of the peripheral branches of the dorsal root ganglion (DRG) axons. Various studies suggest that the skin produces a long-range attractant for the sensory axons. However, the exact identity of the guidance cue(s) remains unclear. To reveal the detailed molecular mechanism that controls DRG axon guidance and targeting, manipulation of specific skin layers at specific time points are required. To test a variety of attractants that can be expressed in specific skin layers at specific timepoints, we combined in utero electroporation with the Tol2 transposon system to induce long-term transgene expression in the developing mouse skin, including in the highly proliferative epidermal stem cells (basal layer) and their descendants (spinous and granular layer cells). The plasmid solution was injected as close to the hindpaw plantar surface as possible. Immediately, electric pulses were passed through the embryo to transduce the plasmid DNA into hindpaw skin cells. Balancing outcome measurements including: embryo survival, transfection efficiency, and the efficiency of transgene integration into host cells, we found that IUE was best performed on E13.5, and using an electroporation voltage of 34V. After immunostaining embryonic and early postnatal skin tissue sections for keratinocyte and sensory axon markers, we observe the growth of axons into skin epidermal layers including areas expressing EGFP. Therefore, this method is useful for studying the interaction between axon growth and epidermal cell division/differentiation.  相似文献   

18.
Summary Intracellular calcium was measured in single olfactory neurons from the channel catfish (Icatalurus punctatus) using the fluorescent Ca2+ indicator fura 2. In 5% of the cells, olfactory stimuli (amino acids) elicited an influx of calcium through the plasma membrane which led to a rapid transient increase in intracellular calcium concentration. Amino acids did not induce release of calcium from internal stores in these cells. Some cells responded specifically to one stimulus (l-alanine,l-arginine,l-norleucine andl-glutamate) while one cell responded to all stimuli. An increase in intracellular calcium could also be elicited in 50% of the cells by direct G-protein stimulation using aluminum fluoride. Because the fraction of cells which respond to direct G-protein stimulation is substantially larger than the fraction of cells responding to amino acids, we tested for possible damage of receptor proteins due to exposure of the olfactory neurons to papain during cell isolation. We find that pretreatment with papain does not alter specific binding ofl-alanine andl-arginine to olfactory receptor sites in isolated olfactory cilia. The results are discussed in terms of their relevance to olfactory transduction.  相似文献   

19.
Primary olfactory neurons arise from placodal neuroepithelium that is separate from the neuroepithelial plate that forms the neural tube and crest. The axons of these neurons course along a stereotypical pathway and invade the rostral telencephalic vesicle where they induce the formation of the olfactory bulb. In the present study we examined the expression of several extracellular matrix constituents during formation of the olfactory nerve pathway in order to identify putative developmentally significant molecules. Double-label immunofluorescence was used to simultaneously map the trajectory of growing primary olfactory axons by expression of growth associated protein 43 (GAP-43) and the distribution of either laminin, heparan sulfate proteoglycans (HSPG), or chondroitin sulfate proteoglycans (CSPG). At embryonic day 12.5 (E12.5) primary olfactory axons have exited the olfactory neuroepithelium of the nasal pit and formed a rudimentary olfactory nerve. These axons together with migrating neural cells form a large mass outside the rostral surface of the telencephalon. This nerve pathway is clearly defined by a punctate distribution of laminin and HSPG. CSPG is selectively present in the mesenchyme between the olfactory nerve pathway and the nasal pit and in the marginal zone of the telencephalon. At E14.5 primary olfactory axons pierce the telencephalon through gaps that have emerged in the basement membrane. At this age both laminin and HSPG are colocalized with the primary olfactory axons that have entered the marginal zone of the telencephalon. CSPG expression becomes downregulated in this same region while it remains highly expressed in the marginal zone adjacent to the presumptive olfactory bulb. By E16.5 most of the basement membrane separating the olfactory nerve from the telencephalon has degraded, and there is direct continuity between the olfactory nerve pathway and the central nervous system. This strict spatiotemporal regulation of extracellular matrix constituents in the olfactory nerve pathway supports an important role of these molecules in axon guidance. We propose that laminin and HSPG are expressed by migrating olfactory Schwann cells in the developing olfactory nerve pathway and that these molecules provide a conducive substrate for axon growth between the olfactory neuroepithelium and the brain. CSPG in the surrounding mesenchyme may act to restrict axon growth to within this pathway. The regional degradation of the basement membrane of the telencephalon and the downregulation of CSPG within the marginal zone probably facilitates the passage of primary olfactory axons into the brain to form the presumptive nerve fiber layer of the olfactory bulb. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Primary sensory neurons in the vertebrate olfactory systems are characterised by the differential expression of distinct cell surface carbohydrates. We show here that the histo-blood group H carbohydrate is expressed by primary sensory neurons in both the main and accessory olfactory systems while the blood group A carbohydrate is expressed by a subset of vomeronasal neurons in the developing accessory olfactory system. We have used both loss-of-function and gain-of-function approaches to manipulate expression of these carbohydrates in the olfactory system. In null mutant mice lacking the alpha(1,2)fucosyltransferase FUT1, the absence of blood group H carbohydrate resulted in the delayed maturation of the glomerular layer of the main olfactory bulb. In addition, ubiquitous expression of blood group A on olfactory axons in gain-of-function transgenic mice caused mis-routing of axons in the glomerular layer of the main olfactory bulb and led to exuberant growth of vomeronasal axons in the accessory olfactory bulb. These results provide in vivo evidence for a role of specific cell surface carbohydrates during development of the olfactory nerve pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号