共查询到20条相似文献,搜索用时 15 毫秒
1.
Prior research has documented a modulating effect of taste on swallowing. We hypothesized that presentation of tastant stimuli would be a significant variable in swallowing-respiratory coordination, duration of oral bolus preparation, and submental muscle contraction. Twenty-three healthy females were presented with 1-cm(3) gelatin samples flavored with 4 tastants of increasing intensities. Visual analogue scale ratings of perceived intensity of each were used to identify relative equivalent concentrations across the 4 tastants. Data were then collected during ingestion of 5 trials of the 4 equivalent tastants using measurements of nasal airflow and submental surface electromyography (sEMG) to record biomechanical measures. Chi-square analysis failed to identify a statistically significant influence of taste on the phase location of swallowing apnea. Repeated measures analysis of variance demonstrated significant taste effects for oral preparation time, submental sEMG amplitude, and duration (P < 0.02). Sweet tastants were prepared for a shorter time when compared with bitter tastants. Swallow duration for sour, salty, and bitter tastants were longer than sweet and neutral tastants. Sour tastants resulted in the greatest amplitude of submental muscle contraction during swallowing. This study supports existing research that found that sour substances were swallowed with more effort when compared with other tastes. 相似文献
2.
Umami and sweet sensations provide animals with important dietary information for detecting and consuming nutrients, whereas bitter sensation helps animals avoid potentially toxic or harmful substances. Enormous progress has been made toward animal sweet/umami taste receptor (Tas1r) and bitter taste receptor (Tas2r). However, information about amphibians is mainly scarce. This study attempted to delineate the repertoire of Tas1r/Tas2r genes by searching for currently available genome sequences in 14 amphibian species. This study identified 16 Tas1r1, 9 Tas1r2, and 9 Tas1r3 genes to be intact and another 17 Tas1r genes to be pseudogenes or absent in the 14 amphibians. According to the functional prediction of Tas1r genes, two species have lost sweet sensation and seven species have lost both umami and sweet sensations. Anurans possessed a large number of intact Tas2rs, ranging from 39 to 178. In contrast, caecilians possessed a contractive bitter taste repertoire, ranging from 4 to 19. Phylogenetic and reconciling analysis revealed that the repertoire of amphibian Tas1rs and Tas2rs was shaped by massive gene duplications and losses. No correlation was found between feeding preferences and the evolution of Tas1rs in amphibians. However, the expansion of Tas2rs may help amphibians adapt to both aquatic and terrestrial habitats. Bitter detection may have played an important role in the evolutionary adaptation of vertebrates in the transition from water to land. 相似文献
3.
Piero A. Temussi 《Journal of peptide science》2012,18(2):73-82
The taste of peptides is seldom one of the most relevant issues when one considers the many important biological functions of this class of molecules. However, peptides generally do have a taste, covering essentially the entire range of established taste modalities: sweet, bitter, umami, sour and salty. The last two modalities cannot be attributed to peptides as such because they are due to the presence of charged terminals and/or charged side chains, thus reflecting only the zwitterionic nature of these compounds and/or the nature of some side chains but not the electronic and/or conformational features of a specific peptide. The other three tastes, that is, sweet, umami and bitter, are represented by different families of peptides. This review describes the main peptides with a sweet, umami or bitter taste and their relationship with food acceptance or rejection. Particular emphasis will be given to the sweet taste modality, owing to the practical and scientific relevance of aspartame, the well‐known sweetener, and to the theoretical importance of sweet proteins, the most potent peptide sweet molecules. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
4.
N-(1-Carboxyethyl)-6-hydroxymethyl-pyridinium-3-ol inner salt (alapyridaine), recently identified in heated sugar/amino acid mixtures as well as in beef bouillon, has been shown to exhibit general taste-enhancing activities, although tasteless on its own. Differing from other taste enhancers reported so far, racemic (R/S)-alapyridaine and, to an even greater extent (+)-(S)-alapyridaine, the physiologically active enantiomer, are able to enhance more than one basic taste quality. The threshold concentrations for the sweet taste of glucose and sucrose, for the umami taste of monosodium L-glutamate (MSG) and guanosine-5'-monophosphate (GMP), as well as the salty taste of NaCl, were significantly decreased when alapyridaine was present. In contrast, perception of the bitter tastes of caffeine and L-phenylalanine, as well as of sour-tasting citric acid, was unaffected. Furthermore, alapyridaine was shown to intensify known taste synergies such as, for example, the enhancing effect of L-arginine on the salty taste of NaCl, as well as that of GMP on the umami taste of MSG. The activity of (+)-(S)-alapyridaine could be observed not only in solutions of single taste compounds, but also in more complex tastant mixtures; for example, the umami, sweet and salty taste of a solution containing MSG, sucrose, NaCl and caffeine was significantly modulated, thus indicating that alapyridaine is a general taste enhancer. 相似文献
5.
6.
7.
Tordoff MG 《Chemical senses》2007,32(7):655-671
To examine whether age influences taste solution preferences, we measured taste preferences of C57BL/6J and 129X1/SvJ mice given a series of 48-h 2-bottle tests with a choice between water and one of the following taste solutions: 2 mM saccharin, 5 mM citric acid, 30 microM quinine hydrochloride, 75 mM sodium chloride (NaCl), 10 mM inosine monophosphate (IMP), 50 mM calcium chloride (CaCl(2)), and 10% ethanol. We tested separate groups of male mice fed Teklad 8604 chow at ages 4, 6, 9, 12, 15, 20, 25, 30, 40, and 50 weeks and retested some of these mice at 54, 75, and 100 weeks and again at 125 weeks. Female mice fed chow were tested at ages 4, 12, 25, and 50 weeks and retested at 54, 75, 100, and 125 weeks. Male mice fed AIN-93G semisynthetic diet were tested at ages 4, 12, 25, and 50 weeks and retested at 54, 75, and 100 weeks. Concentration-response functions for each taste solution were collected from male and female mice fed chow aged 8 or 125 weeks. In general, the results showed that age had little effect on taste preferences. Exceptions included 1) a small increase in quinine hydrochloride preference between 54 and 125 weeks in mice of both strains and sexes, 2) a marked increase in NaCl preference between 4 and 12 weeks in female B6 mice, 3) a gradual decrease in IMP preference between 4 and 125 weeks in male and female 129 mice, 4) a marked decrease in CaCl(2) preference between 54 and 125 weeks in male and female 129 mice, and 5) a marked reduction in ethanol preference between 4 and 12 weeks in male B6 mice fed AIN-93G diet but not chow. These results show that over a wide range and with the exceptions noted, age contributes little to the variation in taste preferences observed in C57BL/6J and 129X1/SvJ mice. 相似文献
8.
9.
10.
Tea catechins have strong bitterness and influence the taste of tea. Among the 25 human bitter-taste receptors (TAS2Rs), we found that hTAS2R14 responded to catechins, in addition to hTAS2R39, a known catechin receptor. Although hTAS2R14 responded to (?)-epicatechin gallate and (?)-epigallocatechin gallate, it did not respond to (?)-epicatechin and (?)-epigallocatechin. 相似文献
11.
Toyomi Yamazaki Miki Sagisaka Riko Ikeda Toshiyuki Nakamura Noriko Matsuda Takeshi Ishii 《Bioscience, biotechnology, and biochemistry》2013,77(10):1753-1756
We purified several hundred mgs of four major theaflavins (theaflavin, theaflavin-3-O-gallate, theaflavin-3′-O-gallate, and theaflavin-3,3′-O-digallate). Among the 25 hTAS2Rs expressed in HEK293T cells, hTAS2R39 and hTAS2R14 were activated by theaflavins. Both hTAS2R39 and hTAS2R14 responded to theaflavin-3′-O-gallate. In addition, hTAS2R39 was activated by theaflavin and theaflavin-3,3′-O-gallate, but not by theaflavin-3-O-gallate. In contrast, hTAS2R14 responded to theaflavin-3-O-gallate. 相似文献
12.
《Bioscience, biotechnology, and biochemistry》2013,77(6):1188-1190
The strong bitter peptide, Phe-Phe-Pro-Arg, activated cultured cells expressing either of the known human bitter taste receptors, hTAS2R8 and hTAS2R39. The partial structure of Pro-Arg activated hTAS2R39, but did not activate hTAS2R8. These receptors may not indiscriminately recognize bitter peptides, but have a differential function in their recognition. 相似文献
13.
The aim of this study was to determine if taste interactions occur when bitter stimuli are mixed. Eight bitter stimuli were employed: denatonium benzoate (DB), quinine-HCl (QHCl), sucrose octaacetate (SOA), urea, L-tryptophan (L-trp), L-phenylalanine (L-phe), ranitidine-HCl, and Tetralone. The first experiment constructed individual psychophysical curves for each subject (n = 19) for each compound to account for individual differences in sensitivities when presenting bitter compounds in experiment 2. Correlation analysis revealed two groupings of bitter compounds at low intensity (1, L-trp, L-phe, and ranitidine; 2, SOA and QHCl), but the correlations within each group decreased as the perceived intensity increased. In experiment 2, intensity ratings and two-alternative forced-choice discrimination tasks showed that bitter compounds generally combine additively in mixture and do not show interactions with a few specific exceptions. The methods employed detected synergy among sweeteners, but could not detect synergy among these eight bitter compounds. In general, the perceived bitterness of these binary bitter-compound mixtures was an additive function of the total bitter-inducing stimuli in the mouth. 相似文献
14.
- Download : Download high-res image (209KB)
- Download : Download full-size image
15.
Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes 总被引:5,自引:0,他引:5
Taste reception is fundamental to diet selection in many animals. The genetic basis underlying the evolution and diversity of taste reception, however, is not well understood. Recent discoveries of T1R sweet/umami receptor genes and T2R bitter receptor genes in humans and mice provided an opportunity to address this question. Here, we report the identification of 20 putatively functional T1R genes and 167 T2R genes from the genome sequences of nine vertebrates, including three fishes, one amphibian, one bird, and four mammals. Our comparative genomic analysis shows that orthologous T1R sequences are relatively conserved in evolution and that the T1R gene repertoire remains virtually constant in size across most vertebrates, except for the loss of the T1R2 sweet receptor gene in the sweet-insensitive chicken and the absence of all T1R genes in the tongueless western clawed frog. In contrast, orthologous T2R sequences are more variable, and the T2R repertoire diverges tremendously among species, from only three functional genes in the chicken to 49 in the frog. These evolutionary patterns suggest the relative constancy in the number and type of sweet and umami tastants encountered by various vertebrates or low binding specificities of T1Rs but a large variation in the number and type of bitter compounds detected by different species. Although the rate of gene duplication is much lower in T1Rs than in T2Rs, signals of positive selection are detected during the functional divergences of paralogous T1Rs, as was previously found among paralogous T2Rs. Thus, functional divergence and specialization of taste receptors generally occurred via adaptive evolution. 相似文献
16.
《Animal : an international journal of animal bioscience》2020,14(6):1223-1233
The sense of bitter taste is critical for chickens to acquire and select feeds. It is important to understand the roles and mechanisms of bitter taste transduction in chickens. Denatonium is extensively used as a bitter taste receptor agonist to activate bitter taste receptors in recent studies. The objective of this study was to investigate the physiological effects and the potential molecular mechanisms of dietary exposure to a strong bitter taste receptor agonist on the jejunal epithelial cells of yellow-feathered chickens. A total of 240 yellow-feathered chickens were divided into four treatments receiving a normal diet (Control), a low-dose denatonium treatment (Control + 5 mg/kg denatonium), a middle-dose denatonium treatment (Control + 20 mg/kg denatonium) and a high-dose denatonium treatment (Control + 100 mg/kg denatonium) for 56 days, respectively. The results showed that dietary denatonium reduced (P < 0.05) the growth performance of chickens. High-dose denatonium damaged the morphology of the jejunal epithelium and decreased (P < 0.05) the activities of Ca2+-ATPase, sucrase and maltase after 56 days of exposure. Meanwhile, high-dose denatonium increased (P < 0.05) mRNA expressions of bitter taste receptors, which resulted in enhanced apoptosis in jejunal epithelial cells after 56 days of exposure. Furthermore, middle-dose and high-dose denatonium exhibited increased (P < 0.05) mRNA level of claudin 2 and decreased (P < 0.05) mRNA level of occludin after 28 days of exposure. Only high-dose denatonium decreased (P < 0.05) mRNA level of occludin after 56 days of exposure. In conclusion, denatonium manifested deleterious effects on the jejunum of chickens in a dose–effect manner via damaging the morphology of the jejunal epithelium, and inducing apoptosis associated with bitter taste receptors. Our data suggest that bitter-tasting feed additives may have side effects on the growth and development of intestines in chickens. 相似文献
17.
Xiumei Ke Junzhi Lin Pan Li Zhenfeng Wu Runchun Xu Zhimin Ci Ming Yang Li Han Dingkun Zhang 《Journal of cellular physiology》2020,235(3):3069-3078
18.
Bitter taste perception is crucial for the survival of organismsbecause it enables them to avoid the ingestion of potentiallyharmful substances. Bitter taste receptors are encoded by agene family that in humans has been shown to contain 25 putativelyfunctional genes and 8 pseudogenes and in mouse 33 putativelyfunctional genes and 3 pseudogenes. Lineage-specific expansionsof bitter taste receptors have taken place in both mouse andhuman, but very little is known about the evolution of thesereceptors in primates. We report the analysis of the almostcomplete repertoires of bitter taste receptor genes in human,great apes, and two Old World monkeys. As a group, these genesseem to be under little selective constraint compared with olfactoryreceptors and other genes in the studied species. However, incontrast to the olfactory receptor gene repertoire, where humanshave a higher proportion of pseudogenes than apes, there isno evidence that the rate of loss of bitter taste receptor genesvaries among humans and apes. 相似文献
19.
Lyang-ja Lee Satomi Terao Tatsurokuro Tochikura 《Bioscience, biotechnology, and biochemistry》2013,77(7):1647-1648
Taste is indispensable for vertebrate to find a proper way of living by selection of foods at their discretion. It is also a mainstay in the construction of human culture and the food industry, but no systematic information is available regarding the molecular logic of taste signaling and associated chemical entities. Against this backdrop, our research had bumble beginnings in the 1990s and then traced a unique path of development revealing major signaling pathways involving G protein-coupled receptors, Gαi2, PLC-β2, IP3R3, PLA2IIa, TRPM5, KCNQ1, etc. The validity of our studies on the molecular biology of taste was verified by material science in the case of an enigmatic protein, neoculin, which converts sourness to sweetness. The study should provide new information for better understanding of taste-taste interactions which are important in food design. 相似文献
20.
《Bioscience, biotechnology, and biochemistry》2013,77(10):1637-1639
The effect of exercise on the protein metabolism in skeletal muscles (gastrocnemius and soleus), liver and small intestine was investigated in rats. Treadmill treatment for 7 d resulted in atrophy of the liver and small intestine, which was associated with a reduction in protein content. The rates of protein synthesis in the liver and small intestine were significantly suppressed in rats subjected to exercise. The change in protein synthesis in the visceral organs was mediated by the change in RNA activity (protein synthesis per unit RNA) but not by the change in RNA concentration. The tissue weight and the rate of protein synthesis in the gastrocnemius and soleus muscles were not affected by exercise. The results suggest that these changes in protein synthesis in the liver and small intestine may explain, at least partly, the atrophy of these organs which was observed after 7 d of exercise. 相似文献