首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal plasticity and its development were investigated at pyramidal neurons in the cortical slices of rats. The threshold and probability of firing spikes were measured by using whole-cell recording to assess neuronal excitability. Postsynaptic high frequency activity (HFA) at the pyramidal neurons, evoked by 20 trains (250-ms interval) of five depolarization-pulses (1 ms) at 100 Hz, persistently lowered the threshold and increased the probability of firing spikes. After long-term enhancement of neuronal excitability by HFA was stable, another HFA induced further enhancement. Infusing 1 mM 1,2-bis(2-aminophenoxy)-ethane-N, N,N',N'-tetraacetic acid or 100 microM CaMKII(281-301) into the recording neurons prevented HFA-induced long-term enhancement of neuronal excitability. The infusion of 40 microM calcineurin autoinhibitory peptide enhanced neuronal excitability, which occluded HFA effect. HFA-induced long-term enhancement of intrinsic excitability expressed at most pyramidal neurons after postnatal day (PND) 14, but not at those before PND 9. Our results show a new type of neuronal plasticity induced by physiological activity at cortical neurons, which requires calcium-dependent protein phosphorylation and develops during postnatal period. An upregulation of intrinsic excitability at cortical neurons facilitates their activity and broadens signal codes; consequently, their computational ability is upgraded.  相似文献   

2.
Ketamine is a NMDA receptor (NMDAR) antagonist used in pediatric anesthesia. Given the role of glutamatergic signaling during brain maturation, we studied the effects of a single ketamine injection (40 mg/kg s.c) in mouse neonates depending on postnatal age at injection (P2, P5, or P10) on cortical NMDAR subunits expression and association with Membrane‐Associated Guanylate Kinases PSD95 and SAP102. The effects of ketamine injection at P2, P5, or P10 on motor activity were compared in adulthood. Ketamine increased GluN2A and GluN2B mRNA levels in P2‐treated mice without change in proteins, while it decreased GluN2B protein in P10‐treated mice without change in mRNA. Ketamine reduced GluN2A mRNA and protein levels in P5‐treated mice without change in GluN2B and GluN1. Ketamine affected the GluN2A/PSD95 association regardless of the age at injection, while GluN2B/PSD95 association was enhanced only in P5‐treated mice. Microdissection of ketamine‐treated mouse cortex showed a decrease in GluN2A mRNA level in superficial layers (I–IV) and an increase in all subunit expressions in deep layers (V–VI) in P5‐ and P10‐treated mice, respectively. Our data suggest that ketamine impairs cortical NMDAR subunit developmental profile and delays the synaptic targeting of GluN2A‐enriched NMDAR. Ketamine injection at P2 or P10 resulted in hyperlocomotion in adult male mice in an open field, without change in females. Voluntary running‐wheel exercise showed age‐ and sex‐dependent alterations of the mouse activity, especially during the dark phase. Overall, a single neonatal ketamine exposure led to short‐term NMDAR cortical developmental profile impairments and long‐term motor activity alterations persisting in adulthood. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 315–333, 2015  相似文献   

3.
Actin‐based remodelling underlies spine structural changes occurring during synaptic plasticity, the process that constantly reshapes the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation. A positive correlation exists between spine shape and synaptic strength and, consistently, abnormalities in spine number and morphology have been described in a number of neurological disorders. In the present study, we demonstrate that the actin‐regulating protein, Eps8, is recruited to the spine head during chemically induced long‐term potentiation in culture and that inhibition of its actin‐capping activity impairs spine enlargement and plasticity. Accordingly, mice lacking Eps8 display immature spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Additionally, we found that reduction in the levels of Eps8 occurs in brains of patients affected by autism compared to controls. Our data reveal the key role of Eps8 actin‐capping activity in spine morphogenesis and plasticity and indicate that reductions in actin‐capping proteins may characterize forms of intellectual disabilities associated with spine defects.  相似文献   

4.
Activity-dependent refinement of synaptic connections occurs throughout the developing nervous system, including the visual system. Retinal ganglion cells (RGCs) overproduce synapses then refine them in an activity-dependent manner that segregates RGC connections into multicellular patterns, such as eye-specific regions and retinotopic maps. Ferrets additionally segregate ON and OFF retinogeniculate pathways in an activity-dependent manner. It was unknown whether differences in ON versus OFF intrinsic and spontaneous activity occur in postnatal mouse. The work reported here measured the intrinsic properties and spontaneous activity of morphologically identified postnatal mouse RGCs, and tested the hypothesis that mouse ON and OFF RGCs develop differences in spontaneous activity. We found developmental changes in resting potential, action potential threshold, depolarization to threshold, action potential width, action potential patterns, and maximal firing rates. These results are consistent with the maturation of the intrinsic properties of RGCs extending through the first three postnatal weeks. However, there were no differences among mouse ON, OFF, and multistratified RGCs in intrinsic excitability, spontaneous synaptic drive or spontaneous action potential patterns. The absence of differences between ON and OFF activity patterns is unlike the differences that arise in ferrets. In contrast to the ferret, the ON and OFF target neurons in the mouse are organized in a random pattern, not layers. This supports the hypothesis that the absence of systematic differences in activity results in the nonlayered distribution of retinogeniculate connections.  相似文献   

5.
Notch signaling is associated with prostate osteoblastic bone metastases and calcium/calmodulin‐dependent kinase II (CaMKII) is associated with osteoblastogenesis of human mesenchymal stem cells. Here we show that prostate cancer cell lines C4‐2B and PC3, both derived from bone metastases and express Notch‐1, have all four isoforms of CaMKII (α, β, γ, δ). In contrast, prostate cancer cell lines LNcaP and DU145, which are not derived from bone metastases and lack the Notch‐1 receptor, both lack the alpha isoform of CaMKII. In addition, DU145 cells also lack the β‐isoform. In C4‐2B cells, inhibition of CaMKII by KN93 or γ‐secretase by L‐685,458 inhibited the formation of the cleaved form of Notch‐1 thus inhibiting Notch signaling. KN93 inhibited down stream Notch‐1 signaling including Hes‐1 gene expression, Hes‐1 promoter activity, and c‐Myc expression. In addition, both KN93 and L‐685,458 inhibited proliferation and Matrigel invasion by C4‐2B cells. The activity of γ‐secretase was unaffected by KN93 but markedly inhibited by L‐685,458. Inhibition of the expression of α, β, or γ‐isoform by siRNA did not affect Hes‐1 gene expression, however when expression of one isoform was inhibited by siRNA, there were compensatory changes in the expression of the other isoforms. Over‐expression of CaMKII‐α increased Hes‐1 expression, consistent with Notch‐1 signaling being at least partially dependent upon CaMKII. This unique crosstalk between CaMKII and Notch‐1 pathways provides new insight into Notch signaling and potentially provides new targets for pharmacotherapeutics. J. Cell. Biochem. 106: 25–32, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala‐dependent learning involves a growing number of plasticity‐related signaling pathways also implicated in brain development, suggesting that learning‐related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala‐dependent learning of a signaling pathway that includes brain‐derived neurotrophic factor (BDNF), extracellular signaling‐related kinases (ERKs) and cyclic AMP‐response element binding protein (CREB). Using these canonical, plasticity‐related genes as an example, we discuss the intersection of learning‐related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning‐dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life.  相似文献   

7.
Cyclin‐dependent kinase 5 (Cdk5) is a Ser/Thr kinase that plays an important role in the release of neurotransmitter from pre‐synaptic terminals triggered by Ca2+ influx into the pre‐synaptic cytoplasm through voltage‐dependent Ca2+ channels (VDCCs). It is reported that Cdk5 regulates L‐, P/Q‐, or N‐type VDCC, but there is conflicting data as to the effect of Cdk5 on VDCC activity. To clarify the mechanisms involved, we examined the role of Cdk5 in regulating the Ca2+‐channel property of VDCCs, using PC12 cells expressing endogenous, functional L‐, P/Q‐, and N‐type VDCCs. The Ca2+ influx, induced by membrane depolarization with high K+, was monitored with a fluorescent Ca2+ indicator protein in both undifferentiated and nerve growth factor (NGF)‐differentiated PC12 cells. Overall, Ca2+ influx was increased by expression of Cdk5‐p35 in undifferentiated PC12 cells but suppressed in differentiated PC12 cells. Moreover, we found that different VDCCs are distinctly regulated by Cdk5‐p35 depending on the differentiation states of PC12 cells. These results indicate that Cdk5‐p35 regulates L‐, P/Q‐, or N‐type VDCCs in a cellular context‐dependent manner.

  相似文献   


8.
9.
Growing evidence indicates that both seizure (glutamate) and cocaine (dopamine) treatment modulate synaptic plasticity within the mesolimbic region of the CNS. Activation of glutamatergic neurons depends on the localized translation of neuronal mRNA products involved in modulating synaptic plasticity. In this study, we demonstrate the dendritic localization of HuR and HuD RNA‐binding proteins (RBPs) and their association with neuronal mRNAs following these two paradigms of seizure and cocaine treatment. Both the ubiquitously expressed HuR and neuronal HuD RBPs were detected in different regions as well as within dendrites of the brain and in dissociated neurons. Quantitative analysis revealed an increase in HuR, HuD and p‐glycogen synthase kinase 3β (GSK3β) protein levels as well as neuronal mRNAs encoding Homer, CaMKIIα, vascular early response gene, GAP‐43, neuritin, and neuroligin protein products following either seizure or cocaine treatment. Inhibition of the Akt/GSK3β signaling pathway by acute or chronic LiCl treatment revealed changes in HuR, HuD, pGSK3β, p‐Akt, and β‐catenin protein levels. In addition, a genetically engineered hyperdopaminergic mouse model (dopamine transporter knockout) revealed decreased expression of HuR protein levels, but no significant change was observed in HuD or fragile‐X mental retardation protein RBPs. Finally, our data suggest that HuR and HuD RBPs potentially interact directly with neuronal mRNAs important for differentiation and synaptic plasticity.  相似文献   

10.
Dispersal and the underlying movement behaviour are processes of pivotal importance for understanding and predicting metapopulation and metacommunity dynamics. Generally, dispersal decisions are condition‐dependent and rely on information in the broad sense, like the presence of conspecifics. However, studies on metacommunities that include interspecific interactions generally disregard condition‐dependence. Therefore, it remains unclear whether and how dispersal in metacommunities is condition‐dependent and whether rules derived from single‐species contexts can be scaled up to (meta)communities. Using experimental protist metacommunities, we show how dispersal and movement depend on and are adjusted by the strength of interspecific interactions. We found that the predicting movement and dispersal in metacommunities requires knowledge on behavioural responses to intra‐ and interspecific interaction strengths. Consequently, metacommunity dynamics inferred directly from single‐species metapopulations without taking interspecific interactions into account are likely flawed. Our work identifies the significance of condition‐dependence for understanding metacommunity dynamics, stability and the coexistence and distribution of species.  相似文献   

11.
A recent study revealed that corticotropin‐releasing hormone (CRH) in the cerebral cortex (CTX) plays a regulatory role in emotional behaviors in rodents. Given the functional interaction between brain‐derived neurotrophic factor (BDNF) and the CRH‐signaling pathway in the hypothalamic‐pituitary‐adrenal axis, we hypothesized that BDNF may regulate gene expression of CRH and its related molecules in the CTX. Findings of real‐time quantitative PCR (RT‐qPCR) indicated that stimulation of cultured rat cortical neurons with BDNF led to marked elevations in the mRNA levels of CRH and CRH‐binding protein (CRH‐BP). The BDNF‐induced up‐regulation of CRH‐BP mRNA was attenuated by inhibitors of tropomyosin related kinase (Trk) and MEK, but not by an inhibitor for PI3K and Phospholipase C gamma (PLCγ). The up‐regulation was partially blocked by an inhibitor of lysine‐specific demethylase (KDM) 6B. Fluorescent imaging identified the vesicular pattern of pH‐sensitive green fluorescent protein‐fused CRH‐BP (CRH‐BP‐pHluorin), which co‐localized with mCherry‐tagged BDNF in cortical neurons. In addition, live‐cell imaging detected drastic increases of pHluorin fluorescence in neurites upon membrane depolarization. Finally, we confirmed that tetrodotoxin partially attenuated the BDNF‐induced up‐regulation of CRH‐BP mRNA, but not that of the protein. These observations indicate the following: In cortical neurons, BDNF led to gene expression of CRH‐BP and CRH. TrkB, MEK, presumably ERK, and KDM6B are involved in the BDNF‐induced gene expression of CRH‐BP, and BDNF is able to induce the up‐regulation in a neuronal activity‐independent manner. It is suggested that CRH‐BP is stored into BDNF‐containing secretory granules in cortical neurons, and is secreted in response to membrane depolarization.

  相似文献   

12.
Adult mammals have experience‐dependent plasticity in visual system, but it is unclear whether adult insects also have this plasticity after the critical period of visual development. Here, we have established a modified Y‐maze apparatus for investigating experience‐dependent plasticity in Drosophila. Using this setup we demonstrate that flies after the critical period have bidirectional modifications of the phototaxis preference behavior (PPB) induced by visual deprivation and experience: Visual deprivation decreases the preference of flies for visible light, while visual experience exerts the opposite effect. We also found an age‐dependent PPB plasticity induced by visual deprivation. Molecular and cellular studies suggest that the N‐methyl‐ d ‐aspartate receptors (NMDARs) mediate ocular dominance plasticity in visual cortex in mammals, but direct behavioral evidence is lacking. Here, we used the genetic approaches to demonstrate that NMDAR1, which is NMDARs subunit in Drosophila, can mediate PPB plasticity in young and adult flies. These findings provide direct behavioral evidence that NMDAR1 mediates PPB plasticity in Drosophila. Our results suggest that mammals and insects have analogous mechanisms for experience‐dependent plasticity and its regulation by NMDAR signaling.  相似文献   

13.
Neurons are highly polarized cells that consist of three main structural and functional domains: a cell body or soma, an axon, and dendrites. These domains contain smaller compartments with essential roles for proper neuronal function, such as the axonal presynaptic boutons and the dendritic postsynaptic spines. The structure and function of these compartments have now been characterized in great detail. Intriguingly, however, in the last decade additional levels of compartmentalization within the axon and the dendrites have been identified, revealing that these structures are much more complex than previously thought. Herein we examine several types of structural and functional sub‐compartmentalization found in neurons of both vertebrates and invertebrates. For example, in mammalian neurons the axonal initial segment functions as a sub‐compartment to initiate the action potential, to select molecules passing into the axon, and to maintain neuronal polarization. Moreover, work in Drosophila melanogaster has shown that two distinct axonal guidance receptors are precisely clustered in adjacent segments of the commissural axons both in vivo and in vitro, suggesting a cell‐intrinsic mechanism underlying the compartmentalized receptor localization. In Caenorhabditis elegans, a subset of interneurons exhibits calcium dynamics that are localized to specific sections of the axon and control the gait of navigation, demonstrating a regulatory role of compartmentalized neuronal activity in behaviour. These findings have led to a number of new questions, which are important for our understanding of neuronal development and function. How are these sub‐compartments established and maintained? What molecular machinery and cellular events are involved? What is their functional significance for the neuron? Here, we reflect on these and other key questions that remain to be addressed in this expanding field of biology.  相似文献   

14.
We present the first evidence that electrophoretically and immunologically homogeneous sIgAs purified from milk of healthy human mothers by chromatography on Protein A‐Sepharose and FPLC gel filtration contain intrinsically bound metal ions (Ca > Mg ≥ Al > Fe ≈ Zn ≥ Ni ≥ Cu ≥ Mn), the removal of which by a dialysis against ethylenediamine tetraacetic acid (EDTA) leads to a significant decrease in the β‐casein‐hydrolyzing activity of these antibodies (Abs). An affinity chromatography of total sIgAs on benzamidine‐Sepharose interacting with canonical serine proteases separates a small metalloprotease sIgA fraction (6.8 ± 2.4%) from the main part of these Abs with a serine protease‐like β‐casein‐hydrolyzing activity. The relative activity of this metalloprotease sIgA fraction containing intrinsically bound metal ions increases ~1.2–1.9‐fold after addition of external metal ions (Mg2+ > Fe2+ > Cu2+ ≥ Ca2+ ≥ Mn2+) but decreases by 85 ± 7% after the removal of the intrinsically bound metals. The metalloprotease sIgA fraction free of intrinsic metal ions demonstrates a high β‐casein‐hydrolyzing activity in the presence of individual external metal ions (Fe2+ > Ca2+ > Co2+ ≥ Ni2+) and especially several combinations of metals: Co2+ + Ca2+ < Mg2+ + Ca2+ < Ca2+ + Zn2+ < Fe2+ + Zn2+ < Fe2+ + Co2+ < Fe2+ + Ca2+. The patterns of hydrolysis of a 22‐mer oligopeptide corresponding to one of sIgA‐dependent specific cleavage sites in β‐casein depend significantly on the metal used. Metal‐dependent sIgAs demonstrate an extreme diversity in their affinity for casein‐Sepharose and chelating Sepharose, and interact with Sepharoses bearing immobilized monoclonal mouse IgGs against λ‐ and κ‐type light chains of human Abs. Possible ways of the production of metalloprotease abzymes (Abz) by human immune system are discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Exposure to hyperbaric pressure (HP) exceeding 100 msw (1.1 MPa) is known to cause a constellation of motor and cognitive impairments named high‐pressure neurological syndrome (HPNS), considered to be the result of synaptic transmission alteration. Long periods of repetitive HP exposure could be an occupational risk for professional deep‐sea divers. Previous studies have indicated the modulation of presynaptic Ca2+ currents based on synaptic activity modified by HP. We have recently demonstrated that currents in genetically identified cellular voltage‐dependent Ca2+ channels (VDCCs), CaV1.2 and CaV3.2 are selectively affected by HP. This work further elucidates the HPNS mechanism by examining HP effect on Ca2+ currents in neuronal VDCCs, CaV2.2 and CaV2.1, which are prevalent in presynaptic terminals, expressed in Xenopus oocytes. HP augmented the CaV2.2 current amplitude, much less so in a channel variation containing an additional modulatory subunit, and had almost no effect on the CaV2.1 currents. HP differentially affected the channels' kinetics. It is, therefore, suggested that HPNS signs and symptoms arise, at least in part, from pressure modulation of various VDCCs.  相似文献   

16.
17.
Axon branching and synapse formation are critical processes for establishing precise circuit connectivity. These processes are tightly regulated by neural activity, but the relationship between them remains largely unclear. We use organotypic coculture preparations to examine the role of synapse formation in the activity‐dependent axon branching of thalamocortical (TC) projections. To visualize TC axons and their presynaptic sites, two plasmids encoding DsRed and EGFP‐tagged synaptophysin (SYP‐EGFP) were cotransfected into a small number of thalamic neurons. Time‐lapse imaging of individual TC axons showed that most branches emerged from SYP‐EGFP puncta, indicating that synapse formation precedes emergences of axonal branches. We also investigated the effects of neuronal activity on axon branching and synapse formation by manipulating spontaneous firing activity of thalamic cells. An inward rectifying potassium channel, Kir2.1, and a bacterial voltage‐gated sodium channel, NaChBac, were used to suppress and promote firing activity, respectively. We found suppressing neural activity reduced both axon branching and synapse formation. In contrast, increasing neural activity promoted only axonal branch formation. Time‐lapse imaging of NaChBac‐expressing cells further revealed that new branches frequently appeared from the locations other than SYP‐EGFP puncta, indicating that enhancing activity promotes axonal branch formation due to an increase of branch emergence at nonsynaptic sites. These results suggest that presynaptic locations are hotspots for branch emergence, and that frequent firing activity can shift branch emergence to a synapse‐independent process. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 323–336, 2016  相似文献   

18.
HSP70 is a member of the family of heat‐shock proteins that are known to be up‐regulated in neurons following injury and/or stress. HSP70 over‐expression has been linked to neuroprotection in multiple models, including neurodegenerative disorders. In contrast, less is known about the neuroprotective effects of HSP70 in neuronal apoptosis and with regard to modulation of programmed cell death (PCD) mechanisms in neurons. We examined the effects of HSP70 over‐expression by transfection with HSP70‐expression plasmids in primary cortical neurons and the SH‐SY5Y neuronal cell line using four independent models of apoptosis: etoposide, staurosporine, C2‐ceramide, and β‐Amyloid. In these apoptotic models, neurons transfected with the HSP70 construct showed significantly reduced induction of nuclear apoptotic markers and/or cell death. Furthermore, we demonstrated that HSP70 binds and potentially inactivates Apoptotic protease‐activating factor 1, as well as apoptosis‐inducing factor, key molecules involved in development of caspase‐dependent and caspase‐independent PCD, respectively. Markers of caspase‐dependent PCD, including active caspase‐3, caspase‐9, and cleaved PARP were attenuated in neurons over‐expressing HSP70. These data indicate that HSP70 protects against neuronal apoptosis and suggest that these effects reflect, at least in part, to inhibition of both caspase‐dependent and caspase‐independent PCD pathways.  相似文献   

19.
Lysosomes function not only as degradatory compartments but also as dynamic intracellular calcium ion stores. The transient receptor potential mucolipin 1 (TRPML1) channel mediates lysosomal Ca2+ release, thereby participating in multiple cellular functions. The pentameric Ragulator complex, which plays a critical role in the activation of mTORC1, is also involved in lysosomal trafficking and is anchored to lysosomes through its LAMTOR1 subunit. Here, we report that the Ragulator restricts lysosomal trafficking in dendrites of hippocampal neurons via LAMTOR1‐mediated tonic inhibition of TRPML1 activity, independently of mTORC1. LAMTOR1 directly interacts with TRPML1 through its N‐terminal domain. Eliminating this inhibition in hippocampal neurons by LAMTOR1 deletion or by disrupting LAMTOR1‐TRPML1 binding increases TRPML1‐mediated Ca2+ release and facilitates dendritic lysosomal trafficking powered by dynein. LAMTOR1 deletion in the hippocampal CA1 region of adult mice results in alterations in synaptic plasticity, and in impaired object‐recognition memory and contextual fear conditioning, due to TRPML1 activation. Mechanistically, changes in synaptic plasticity are associated with increased GluA1 dephosphorylation by calcineurin and lysosomal degradation. Thus, LAMTOR1‐mediated inhibition of TRPML1 is critical for regulating dendritic lysosomal motility, synaptic plasticity, and learning.  相似文献   

20.
We have used a three compartment tissue culture system that involved two separate populations of cholinergic neurons in the side compartments that converged on a common target population of myotubes in the center compartment. Activation of the axons from one population of neurons produced selective down‐regulation of the synaptic inputs from the other neuronal population (when the two inputs innervated the same myotubes). The decrease in heterosynaptic inputs was mediated by protein kinase C (PKC). An activity‐dependent action of protein kinase A (PKA) was associated with the stimulated input and this served to selectively stabilize this input. These changes associated with PKA and PKC activation were mediated by alterations in the number of acetylcholine receptors at the neuromuscular junction. These results suggest that neuromuscular electrical activity produces postsynaptic activation of both PKA and PKC, with the latter producing generalized synapse weakening and the former a selective synapse stabilization. Treatment of the neuronal cell body and axon to increase PKC activity by putting phorbal ester (PMA) in the side chamber did not affect synaptic transmission (with or without stimulation). By contrast, PKA blockade in the side compartment did produce an activity‐dependent decrease in synaptic efficacy, which was due to a decrease in quantal release of neurotransmitter. Thus, when the synapse is activated, it appears that presynaptic PKA action is necessary to maintain transmitter output. Published 2002 Wiley Periodicals, Inc. J Neurobiol 52: 241–250, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号