首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Free radical research》2013,47(4-6):321-326
The reactions of singlet oxygen (1O2) with cis and trans butenes-1,1,1-d3, at—80°C in Freon-11, show a product isotope effect (kH/kD) of 1.38 and 1.25 respectively. Isomerization of the starting materials or formation of dioxetanes were not observed during the course of the photooxygenation. Together with the isotope effects on the reactions of tetramethylethylene-d6 isomers with singlet oxygen, these results require the reversible formation of a perepoxide or charge transfer intermediate.  相似文献   

2.
《Free radical research》2013,47(4-6):313-320
In the introduction a review is given of the various methods available for probing the mechanism of photooxygenation reactions. To illustrate the methodology, some new results on the the photooxygenation of α-ketocarboxylic acids and esters is given in which it is shown that these compounds sensitise singlet oxygen formation but are relatively unreactive to this oxidising species. Alternative mechanistic schemes are proposed.  相似文献   

3.
The low efficiency of the electrocatalytic oxidation of water to O2 (oxygen evolution reaction‐OER) is considered as one of the major roadblocks for the storage of electricity from renewable sources in form of molecular fuels like H2 or hydrocarbons. Especially in acidic environments, compatible with the powerful proton exchange membrane (PEM), an earth‐abundant OER catalyst that combines high activity and high stability is still unknown. Current PEM‐compatible OER catalysts still rely mostly on Ir and/or Ru as active components, which are both very scarce elements of the platinum group. Hence, the Ir and/or Ru amount in OER catalysts has to be strictly minimized. Unfortunately, the OER mechanism, which is the most powerful tool for OER catalyst optimization, still remains unclear. In this review, we first summarize the current state of our understanding of the OER mechanism on PEM‐compatible heterogeneous electrocatalysts, before we compare and contrast that to the OER mechanism on homogenous catalysts. Thereafter, an overview over monometallic OER catalysts is provided to obtain insights into structure‐function relations followed by a review of current material optimization concepts and support materials. Moreover, missing links required to complete the mechanistic picture as well as the most promising material optimization concepts are pointed out.  相似文献   

4.
A number of reactions of superoxide ion in aprotic solvents have been reported to produce singlet oxygen. There is strong evidence for singlet oxygen generation from the reactions of superoxide ion with chlorine-containing halocarbons, bromine-containing halocarbons, hexafluorobenzene, diacylperoxides, lead tetraacetate. iodobenzene diacetate, cerium (IV) cation and tetranitromethane. Earlier studies reporting singlet oxygen generation from the reactions of superoxide ion with iodine. ferricenium ion, thianthrene cation radical, tris (N,N'-dioxobipyridyl) manganese (III) cation and di-μ-oxo-bis(phenanthrolinato manganese (IV)] cation need to be repeated because of the methods used to detect singlet oxygen had low specificity.

The results of studies of superoxide ion chemistry in aprotic solvents should not be uncritically extrapolated to hydrophobic biological microenvironments. such as the cell membrane.  相似文献   

5.
The combined effects of osmotic stress and light on the generation of singlet oxygen (102) and its relation to the breakdown of photosynthetic pigments in leaves of hybrid rice (Oryza sativa L. subsp, indica cv. Shanyou 63) seedlings were studied under the condition of incubating the leaves with –0.8 MPa polyethylene glycol (PEG) solution. Under osmotic stress and increasing light intensity, the production of ¹O2 monitored as p-nitrosodimethylaniline (NDA) bleaching were increased in chloroplasts, degradation of chloro- phyll (Chl) and carotenoid (Car) were accelerated and Car loss preceded Chl causing a significant increase of Chl/Car ratio. A close correlation was observed between ¹O2 production and the contents of Chl, Car and malondialdehyde (MDA). Pretreatment with scavengers for ¹O2. such as β-carotene (β-Car) and histidine (His) reduced MDA content and retarded the degradation of photosynthetic pigments in rice leaves exposed to osmotic stress of -0.8 MPa and light intensity of 250 μmol · m- 2 · s-1, in contrast to that with photosensitizer riboflavin (RF). These results indicate that ¹O2 which generated in chloroplast from photosensitized reactions involving triplet Chl may play a significant role in the breakdown of photo- synthetic pigments and the preferential destruction of Car in the leaves under combined osmotic stress with light.  相似文献   

6.
7.
利用RNO脱色反应检测类囊体中的单线态氧   总被引:2,自引:0,他引:2  
光敏剂RB在光照射下与O2反应产生 1O2, 1O2与组氨酸或咪唑反应的中间产物使RNO发生氧化,导致RNO在440 nm处吸光度减小,此即为RNO脱色反应.RNO脱色反应随着光照时间的增加而增大,表明RB受光照射后使 1O2增加;随着组氨酸或咪唑浓度的增加,RNO脱色反应增大;咪唑在RNO脱色反应中的作用更明显. 1O2淬灭剂NaN3或DABCO存在时,RNO脱色反应降低.利用RNO脱色反应检测到莴苣类囊体在强光照射下产生的 1O2,随着光强和照射时间增加,类囊体中 1O2的产生增加.  相似文献   

8.
Photosensitizers newly developed for photodynamic therapy of cancer need to be assessed using accurate methods of measuring reactive oxygen species (ROS). Little is known about the characteristics of the reaction of singlet oxygen (1O2) with spin traps, although this knowledge is necessary in electron spin resonance (ESR)/spin trapping. In the present study, we examined the effect of various reductants usually present in biological samples on the reaction of 1O2 with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signal of the hydroxyl radical (?OH) adduct of DMPO (DMPO-OH) resulting from 1O2-dependent generation of ?OH strengthened remarkably in the presence of reduced glutathione (GSH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), ascorbic acid, NADPH, etc. A similar increase was observed in the photosensitization of uroporphyrin (UP), rose bengal (RB) or methylene blue (MB). Use of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap significantly lessened the production of its ?OH adduct (DEPMPO-OH) in the presence of the reductants. The addition of DMPO to the DEPMPO-spin trapping system remarkably increased the signal intensity of DEPMPO-OH. DMPO-mediated generation of ?OH was also confirmed utilizing the hydroxylation of salicylic acid (SA). These results suggest that biological reductants enhance the ESR signal of DMPO-OH produced by DMPO-mediated generation of ?OH from 1O2, and that spin trap-mediated ?OH generation hardly occurs with DEPMPO.  相似文献   

9.
Nishide N  Miyoshi N 《Life sciences》2002,72(3):321-328
Recently, 4.4'-bis(1-p-carboxyphenyl-3-methyl-5-dydroxyl)-pyrazol (DRD156) has been developed as a new sensitive reagent that reacts specifically with singlet oxygen. The specificity of DRD156 for singlet oxygen in a biomimetic solution (micellar solution) and the effects of its coexistence with other reagent were examined with electron spin resonance (ESR). Singlet oxygen was generated using photosensitization reaction. The ESR spectrum of the radical derived from DRD156 after the reaction with singlet oxygen in phosphate buffered salines (PBS) was comprised of twenty-nine lines, whereas that in cetyltrimethylammonium bromide (CTAB) micelles was comprised of nine lines. Both 2,2,6,6-tetramethyl-4-piperidine (TMPD) and 1,3-diphenyl-isobenzofuran (DPBF) reduced the singlet oxygen-DRD156 signal intensity, and TMPD-mediated decrease in PBS (to 62%) was almost the same as that in CTAB micelle (to 65%). In contrast, DPBF reduced the DRD156 signal intensity more effectively in CTAB micelle (to 12%) than PBS (to 38%). These results indicate that the specificity of DRD156 for singlet oxygen is dependent on microenvironment.  相似文献   

10.
Treatment of guinea pig lymphocytes with Clostridium perfringens phospholipase C but not with Naja naja snake venom phospholipase A2 increased ornithine decarboxylase activity. The increase in ornithine decarboxylase activity was suppressed by actinomycin D or cycloheximide, suggesting that de novo syntheses of RNA and protein are necessary for the increase in the enzyme activity. These results suggest that the activation of phospholipase C rather than that of phospholipase A2 is responsible for induction of ornithine decarboxylase during lymphocyte transformation.  相似文献   

11.
Fuel cells are highly attractive for direct chemical‐to‐electrical energy conversion and represent the ultimate mobile power supply solution. However, presently, fuel cells are limited by the sluggish kinetics of the cathodic oxygen reduction reaction (ORR), which requires the use of Pt as a catalyst, thus significantly increasing the overall cost of the cells. Recently, nonprecious metal single‐atom catalysts (SACs) with high ORR activity under both acidic and alkaline conditions have been recognized as promising cost‐effective alternatives to replace Pt in fuel cells. Considerable efforts have been devoted to further improving the ORR activity of SACs, including tailoring the coordination structure of the metal centers, enriching the concentration of the metal centers, and engineering the electronic structure and porosity of the substrate. Herein, a brief introduction to fuel cells and fundamentals of the ORR parameters of SACs and the origin of their high activity is provided, followed by a detailed review of the recently developed strategies used to optimize the ORR activity of SACs in both rotating disk electrode and membrane electrode assembly tests. Remarks and perspectives on the remaining challenges and future directions of SACs for the development of commercial fuel cells are also presented.  相似文献   

12.
13.
Hydrogen is a promising alternative fuel for efficient energy production and storage, with water splitting considered one of the most clean, environmentally friendly, and sustainable approaches to generate hydrogen. However, to meet industrial demands with electrolysis‐generated hydrogen, the development of a low‐cost and efficient catalyst for the oxygen evolution reaction (OER) is critical, while conventional catalysts are mostly based on precious metals. Many studies have thus focused on exploring new efficient nonprecious‐metal catalytic systems and improving the understandings on the OER mechanism, resulting in the design of catalysts with superior activity compared with that of conventional catalysts. In particular, the use of multimetal rather than single‐metal catalysts is demonstrated to yield remarkable performance improvement, as the metal composition in these catalysts can be tailored to modify the intrinsic properties affecting the OER. Herein, recent progress and accomplishments of multimetal catalytic systems, including several important groups of catalysts: layered hydroxide, spinel, and amorphous metal oxides along with the theoretical principles of activity enhancement in multimetal systems are reviewed. Finally, this is concluded by discussing remaining challenges to achieve further improvements of OER catalyst activities.  相似文献   

14.
Glutathione (GSH) was examined with respect to its ability to protect DNA against 1O2 damage. We have found that GSH protected, at least partly, the DNA against inactivation by 1O2. Up to 10 mM the protection increased as a function of GSH concentration. Above 10 mM the protection remained constant and less than expected on the basis of scavenging/quenching of 1O2, in contrast to the protection offered by sodium-azide. Especially at the higher concentrations of GSH the protection against the biological inactivation is accompanied by an increase in single-strand breaks and also probably lethal base damage. However, all together the data suggest that at least in the physiologically important range (0.1-10 mM) GSH is able to protect efficiently against 1O2-induced inactivating DNA damage.  相似文献   

15.
16.
17.
Nonprecious metals are promising catalysts to avoid the sluggish oxygen reduction reaction (ORR) in next‐generation regenerative fuel cells or metal–air batteries. Therefore, development of nonprecious metal catalysts for ORR is highly desirable. Herein, precise tuning of the atomic ratio of Fe and Co encapsulated in melamine‐derived nitrogen‐rich graphitic tube (NGT) is reported. The Co1.08Fe3.34 hybrid with metal? nitrogen bonds ( 1 : Co1.08Fe3.34@NGT) shows remarkable ORR catalytic activities (80 mV higher in onset potential and 50 mV higher in half‐wave potential than those of state‐of‐the‐art commercial Pt/C catalysts), high current density, and stability. In acidic solution, 1 also shows compatible performance to commercial Pt/C in terms of ORR activity, current density, stability, and methanol tolerance. The high ORR activity is ascribed to the co‐existence of Fe? N, Co? N, and sufficient metallic FeCo alloys which favor faster electron movement and better adsorption of oxygen molecules on the catalyst surface. In the alkaline anion exchange membrane fuel cell setup, this cell delivers the power density of 117 mW cm?2, demonstrating its potential use for energy conversion and storage applications.  相似文献   

18.
Black phosphorus (BP) is a new rediscovered layered material, which has attracted enormous interests in the field of electrocatalysis. Recent investigations reveal that bulk BP is a promising electrocatalyst for oxygen evolution reactions (OER), whereas its bulk crystal structure restricts sufficient active sites for achieving highly efficient OER catalytic performances. Toward this end, few‐layer BP nanosheets prepared by facile liquid exfoliation are applied as electrocatalysts and exhibit preferable electrocatalytic OER activity in association with structural robustness; subsequently, the dependence of current density and applied bias potential on the concentration of OH? has also been uncovered. Most importantly, we are aware that reduction in the thickness of BP nanosheets would generate extra active sites from the ultrathin planar structure and complimenting to the electrocatalytic activities. It is further anticipated that the current work might provide further implementation about the OER performance of BP nanosheets, thereby, offering extendable availabilities for BP‐based electrocatalysts in constructing high‐performance OER devices.  相似文献   

19.
In this work, molecular dynamics (MD) simulations of the permeation of proteins by small gases of biological significance have been extended from gas carrier, sensor, and enzymatic proteins to genetically encoded tags and killer proteins. To this end, miniSOG was taken as an example of current high interest, using a biased form of MD, called random‐acceleration MD. Various egress gates and binding pockets for dioxygen, as an indistinguishable mimic of singlet dioxygen, were found on both above and below the isoalloxazine plane of the flavin mononucleotide cofactor in miniSOG. Of such gates and binding pockets, those lying within two opposite cones, coaxial with a line normal to the isoalloxazine plane, and with the vertex at the center of such a plane are those most visited by the escaping gas molecule. Out of residues most capable of quenching 1O2, Y30, lying near the base of one such a cone, and H85, near the base of the opposite cone, are held to be most responsible for the reduced quantum yield of 1O2 with folded miniSOG with respect to free flavin mononucleotide in solution.  相似文献   

20.
Designing an electrocatalyst with low Pt content is an immediate need for essential reactions in low temperature fuel cell systems. In the present work, La0.9925Ba0.0075Al0.995Pt0.005O3 is aimed at using with low (only 0.5%) Pt doping as an electrocatalyst for oxygen reduction reaction (ORR). The low doping level renders exsolution of 1–2 nm nanoparticles with uniform dispersion upon reduction in H2/N2 at low temperatures. Pt exsolved perovskite oxides deliver significantly enhanced catalytic activity for ORR and improved stability in alkaline media. This study demonstrates that LaAlO3 with low noble metal content holds immense potential as an electrocatalyst in real fuel cell systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号