首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leu(m)-Pro-Glu-Ala-Leu(n) (m = 0-4, n = 0-3). Neither Pro-Glu-Ala-Leu (m = 0) nor Leu-Pro-Glu-Ala (n = 0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leu(m)-Pro-Glu-Ala-Leu increased with the increase of m = 1 to 2 and 3, but was however, essentially same with the increase of m = 3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leu(n) increased with the increase of n = 0 to 1 and 2, but was essentially same with the increase of n = 2 to 3. Then, it was concluded that cucumisin has a S5-S3' subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1' position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1' positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

2.
The substrate specificity of a plant serine protease, cucumisin (EC 3.4.21.25), was studied by the use of synthetic oligopeptides and peptidyl-pNA substrates. Since P1'-Ser, Ala, and Gly substrates were hydrolyzed rapidly, cucumisin appears to prefer a small side chain at the P1' position of the oligopeptide substrate. The k(cat)/Km for the hydrolysis of P1-Leu, Ala, Phe, and Glu substrates demonstrated that they were preferentially cleaved over P1-Lys, diaminopropionic acid (Dap), Gly, Val, and Pro substrates. From the digestion of peptidyl-pNAs, the specificity of the protease was determined to be broad, but the preferential cleavage sites were hydrophobic amino acid residues at the P1 position.  相似文献   

3.
Substrate specificity of the Escherichia coli outer membrane protease OmpT   总被引:1,自引:0,他引:1  
OmpT is a surface protease of gram-negative bacteria that has been shown to cleave antimicrobial peptides, activate human plasminogen, and degrade some recombinant heterologous proteins. We have analyzed the substrate specificity of OmpT by two complementary substrate filamentous phage display methods: (i) in situ cleavage of phage that display protease-susceptible peptides by Escherichia coli expressing OmpT and (ii) in vitro cleavage of phage-displayed peptides using purified enzyme. Consistent with previous reports, OmpT was found to exhibit a virtual requirement for Arg in the P1 position and a slightly less stringent preference for this residue in the P1' position (P1 and P1' are the residues immediately prior to and following the scissile bond). Lys, Gly, and Val were also found in the P1' position. The most common residues in the P2' position were Val or Ala, and the P3 and P4 positions exhibited a preference for Trp or Arg. Synthetic peptides based upon sequences selected by bacteriophage display were cleaved very efficiently, with kcat/Km values up to 7.3 x 10(6) M(-1) s(-1). In contrast, a peptide corresponding to the cleavage site of human plasminogen was hydrolyzed with a kcat/Km almost 10(6)-fold lower. Overall, the results presented in this work indicate that in addition to the P1 and P1' positions, additional amino acids within a six-residue window (between P4 and P2') contribute to the binding of substrate polypeptides to the OmpT binding site.  相似文献   

4.
The sequence specificity of human skin fibroblast collagenase has been investigated by measuring the rate of hydrolysis of 16 synthetic octapeptides covering the P4 through P4' subsites of the substrate. The choice of peptides was patterned after potential collagenase cleavage sites (those containing either the Gly-Leu-Ala or Gly-Ile-Ala sequences) found in types I, II, and III collagens. The initial rate of hydrolysis of the P1-P1' bond of each peptide has been measured by quantitating the concentration of amino groups produced upon cleavage after reaction with fluorescamine. The reactions have been carried out under first-order conditions ([S] much less than KM) and kcat/KM values have been calculated from the initial rates. The amino acids in subsites P3 (Pro, Ala, Leu, or Asn), P2 (Gln, Leu, Hyp, Arg, Asp, or Val), P1' (Ile or Leu), and P4' (Gln, Thr, His, Ala, or Pro) all influence the hydrolysis rates. However, the differences in the relative rates observed for these octapeptides cannot in themselves explain why fibroblast collagenase hydrolyzes only the Gly-Leu and Gly-Ile bonds found at the cleavage site of native collagens. This supports the notion that the local structure of collagen is important in determining the location of the mammalian collagenase cleavage site.  相似文献   

5.
The residues P3, P2, P1, and P1' of a peptide corresponding to the matrix/capsid protein junction in the HIV-1 gag protein (Ser-Gln-Asn-Tyr-Pro-Ile-Val) were systematically replaced and the effect of these single amino acid substitutions on the hydrolysis of each peptide by HIV-1 proteinase was studied. Subsites S1 and S1' of the enzyme showed explicit preference for hydrophobic moieties, but beta-branched amino acids and proline are not tolerated in S1. The S2 subsite shows a preference for small polar and apolar amino acids; it may be occupied by Asn, Asp, Glu, Cys, Ala, or Val, other substitutions, especially by Gln and Ser, prevent hydrolysis of the peptides. In subsite S3 all amino acids except proline can be accommodated.  相似文献   

6.
Hepatitis A virus (HAV) 3C proteinase is responsible for processing the viral precursor polyprotein into mature proteins. The substrate specificity of recombinant hepatitis A 3C proteinase was investigated using a series of synthetic peptides representing putative polyprotein junction sequences. Two peptides, corresponding to the viral polyprotein 2B/2C and 2C/3A junctions, were determined to be cleaved most efficiently by the viral 3C proteinase. The kcat/Km values determined for the hydrolysis of a further series of 2B/2C peptides, in which C-terminal and N-terminal amino acids were systematically removed, revealed that P4 through P2' amino acids were necessary for efficient substrate cleavage. The substitution of Ala for amino acids in P1 and P4 positions decreased the rate of peptide hydrolysis by 100- and 10-fold, respectively, indicating that the side chains of Gln in P1 and Leu in P4 are important determinants of substrate specificity. Rates of hydrolysis measured for other P1- and P4-substituted peptides indicate that S1 is very specific for the Gln side chain whereas S4 requires only that the amino acid in P4 be hydrophobic. A continuous fluorescence quench assay was developed, allowing the determination of kcat/Km dependence on pH. The pH rate profile suggests that catalyzed peptide hydrolysis is dependent on deprotonation of a reactive group having a pKa of 6.2 (+/- 0.2). The results of tests with several proteinase inhibitors indicate that this cysteine proteinase, like other picornaviral 3C proteinases, is not a member of the papain family.  相似文献   

7.
To probe the specificity of the metalloendoproteinase stromelysin toward peptide substrates, we determined kc/Km values for the stromelysin-catalyzed hydrolyses of peptides whose design was based loosely on the structure of a known SLN substrate, substance P (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-MetNH2, hydrolysis at Gln-Phe, kc/Km = 1700 M-1 s-1). Several noteworthy points emerge from this study: (i) Catalytic efficiency is dependent on peptide chain length with N-terminal truncation of substance P resulting in more pronounced rate-constant reductions than C-terminal truncation. These results suggest the existence of an extended active site for stromelysin. (ii) Preferences at positions P3, P2, P1, P1', and P2' are for the hydrophobic amino acids Pro, Leu, Ala, Nva, and Trp, respectively. (iii) Investigation of specificity at P3' supports our earlier hypothesis that SLN has a requirement for a hydrogen-bond donor at this position in its substrates. Based on these observations, we designed and had synthesized the fluorogenic substrate N-(2,4-dinitrophenyl)Arg-Pro-Lys-Pro-Leu-Ala-Nva-TrpNH2, whose stromelysin-catalyzed hydrolysis can be monitored continuously (kc/Km = 45,000 M-1 s-1).  相似文献   

8.
Substrate specificity of beta-collagenase from Clostridium histolyticum   总被引:2,自引:0,他引:2  
The substrate specificity of beta-collagenase from Clostridium histolyticum has been investigated by measuring the rate of hydrolysis of more than 50 tri-, tetra-, penta-, and hexapeptides covering the P3 to P3' subsites of the substrate. The choice of peptides was patterned after sequences found in the alpha 1 and alpha 2 chains of type I collagen. Each peptide contained either a 2-furanacryloyl (FA) or cinnamoyl (CN) group in subsite P2 or the 4-nitrophenylalanine (Nph) residue in subsite P1. Hydrolysis of the P1-P1' bond produces an absorbance change in these chromophoric peptides that has been used to quantitate the rates of their hydrolysis under first order conditions ([S] much less than KM) from kcat/KM values have been obtained. The identity of the amino acids in all six subsites (P3-P3') markedly influences the hydrolysis rates. In general, the best substrates have Gly in subsites P3 and P1', Pro or Ala in subsite P2', and Hyp, Arg, or Ala in subsite P3'. This corresponds well with the frequency of occurrence of these residues in the Gly-X-Y triplets of collagen. In contrast, the most rapidly hydrolyzed substrates do not have residues from collagen-like sequences in subsites P2 and P1. For example, CN-Nph-Gly-Pro-Ala is the best known substrate for beta-collagenase with a kcat/KM value of 4.4 X 10(7) M-1 min-1, in spite of the fact that there is neither Pro nor Ala in P2 or Hyp nor Ala in P1. These results indicate that the previously established rules for the substrate specificity of the enzyme require modification.  相似文献   

9.
The substrate specificities of three class I (beta, gamma, and eta) and three class II (sigma, epsilon, and zeta) collagenases from Clostridium histolyticum have been investigated by quantitating the kcat/KM values for the hydrolysis of 53 synthetic peptides with collagen-like sequences covering the P3 through P3 subsites of the substrate. For both classes of collagenases, there is a strong preference for Gly in subsites P1' and P3. All six enzymes also prefer substrates that contain Pro and Ala in subsites P2 and P2' and Hyp, Ala, or Arg in subsite P3'. This agrees well with the occupancies of these sites by these residues in type I collagen. However, peptides with Glu in subsites P2 or P2' are not good substrates, even though Glu occurs frequently in these positions in collagen. Conversely, all six enzymes prefer aromatic amino acids in subsite P1, even though such residues do not occur in this position in type I collagen. In general, the class II enzymes have a broader specificity than the class I enzymes. However, they are much less active toward sequences containing Hyp in subsites P1 and P3'. Thus, the two classes of collagenases have similar but complementary sequence specificities. This accounts for the ability of the two classes of enzymes to synergistically digest collagen.  相似文献   

10.
Wounding of tomato leaves results in the accumulation of an exoprotease called leucine aminopeptidase (LAP-A) that preferentially hydrolyzes amino acid-p-nitroanilide and -beta-naphthylamide substrates with N-terminal Leu, Met and Arg residues. To determine the substrate specificity of LAP-A on more natural substrates, the rates of hydrolysis of 60 dipeptide and seven tripeptide substrates were determined. For comparison, the specificities of the porcine and Escherichia coli LAPs were evaluated in parallel. Several marked differences in substrate specificities for the animal, plant and prokaryotic LAP enzymes were observed. Substrates with variable N-terminal (P1) residues (Xaa) were evaluated; these substrates had Leu or Gly in the penultimate (P1') position. The plant, animal, and prokaryotic LAPs hydrolyzed dipeptides with N-terminal nonpolar aliphatic (Leu, Val, Ile, and Ala), basic (Arg), and sulfur-containing (Met) residues rapidly, while P1 Asp or Gly were cleaved inefficiently from peptides. Significant differences in the cleavage of dipeptides with P1 aromatic residues (Phe, Tyr, and Trp) were noted. To systematically evaluate the impact of the P1' residue on cleavage of dipeptides, three series of dipeptides (Leu-Xaa, Gly-Xaa, and Arg-Xaa) were evaluated. The P1' residue strongly influenced hydrolysis of dipeptides and the magnitude of its effect was dependent on the P1 residue. P1' Pro, Asp, Lys and Gly slowed the hydrolysis rates of the tomato LAP-A, porcine LAP, and E. coli PepA markedly. Analysis six Arg-Gly-Xaa tripeptides showed that more diversity was tolerated in the P2' position. P2' Arg inhibited tripeptide cleavage by all three enzymes, while P2' Asp enhanced hydrolysis rates for the porcine and prokaryotic LAPs.  相似文献   

11.
Chymases are mast cell serine proteases with chymotrypsin-like primary substrate specificity. Amino acid sequence comparisons of alpha-chymases from different species indicated that certain rodent alpha-chymases have a restricted S1 pocket that could only accommodate small amino acids, i.e. they may, despite being classified as chymases, in fact display elastase-like substrate specificity. To explore this possibility, the alpha-chymase, rat mast cell protease 5 (rMCP-5), was produced as a proenzyme with a His6 purification tag and an enterokinase-susceptible peptide replacing the natural propeptide. After removal of the purification tag/enterokinase site by enterokinase digestion, rMCP-5 bound the serine-protease-specific inhibitor diisopropyl fluorophosphate, showing that rMCP-5 was catalytically active. The primary specificity was investigated with chromogenic substrates of the general sequence succinyl-Ala-Ala-Pro-X-p-nitroanilide, where the X was Ile, Val, Ala, Phe or Leu. The activity was highest toward substrates with Val or Ala in the P1 position, whereas low activity toward the peptide with a P1 Phe was observed, indicating that the substrate specificity of rMCP-5 indeed is elastase-like. The extended substrate specificity was examined utilizing a phage-displayed random nonapeptide library. The preferred cleavage sequence was resolved as P4-(Gly/Pro/Val), P3-(Leu/Val/Glu), P2-(Leu/Val/Thr), P1-(Val/Ala/Ile), P1'-(Xaa), and P2'-(Glu/Leu/Asp). Hence, the extended substrate specificity is similar to human chymase in most positions except for the P1 position. We conclude that the rat alpha-chymase has converted to elastase-like substrate specificity, perhaps associated with an adoption of new biological targets, separate from those of human alpha-chymase.  相似文献   

12.
Kinetic analysis and modeling studies of HIV-1 and HIV-2 proteinases were carried out using the oligopeptide substrate [formula: see text] and its analogs containing single amino acid substitutions in P3-P3' positions. The two proteinases acted similarly on the substrates except those having certain hydrophobic amino acids at P2, P1, P2', and P3' positions (Ala, Leu, Met, Phe). Various amino acids seemed to be acceptable at P3 and P3' positions, while the P2 and P2' positions seemed to be more restrictive. Polar uncharged residues resulted in relatively good binding at P3 and P2 positions, while at P2' and P3' positions they gave very high Km values, indicating substantial differences in the respective S and S' subsites of the enzyme. Lys prevented substrate hydrolysis at any of the P2-P2' positions. The large differences for subsite preference at P2 and P2' positions seem to be at least partially due to the different internal interactions of P2 residue with P1', and P2' residue with P1. As expected on the basis of amino acid frequency in the naturally occurring cleavage sites, hydrophobic residues at P1 position resulted in cleavable peptides, while polar and beta-branched amino acids prevented hydrolysis. On the other hand, changing the P1' Pro to other amino acids prevented substrate hydrolysis, even if the substituted amino acid had produced a good substrate in other oligopeptides representing naturally occurring cleavage sites. The results suggest that the subsite specificity of the HIV proteinases may strongly depend on the sequence context of the substrate.  相似文献   

13.
Kumamolysin, a carboxyl proteinase from Bacillus novosp. MN-32, is characterized by its thermostability and insensitivity to aspartic proteinase inhibitors such as pepstatin, diazoacetyl-DL-norleucine methylester, and 1,2-epoxy-3-(p-nitro-phenoxy)propane. Here, its substrate specificity was elucidated using two series of synthetic chromogenic substrates: P(5)-P(4)-P(3)-P(2)-Phe*Nph (p-nitrophenylalanine: *cleavage site)-P(2)'-P(3)', in which the amino acid residues at the P(5)-P(2), P(2)' and P(3)' positions were systematically substituted. Among 74 substrates, kumamolysin was shown to hydrolyze Lys-Pro-Ile-Pro-Phe-Nph-Arg-Leu most effectively. The kinetic parameters of this peptide were K(m) = 41+/-5 microM, k(cat) = 176+/- 10 s(-1), and k(cat)/K(m) = 4.3+/-0.6 mM(-1) x s(-1). These systematic analyses revealed the following features: (i) Kumamolysin had a unique preference for the P(2) position. Kumamolysin preferentially hydrolyzed peptides having an Ala or Pro residue at the P(2) position; this was also observed for the pepstatin-insensitive carboxyl proteinase from Bacillus coagulans J-4 [J-4; Shibata et al. (1998) J. Biochem. 124, 642-647]. Other carboxyl proteinases, including Pseudomonas sp. 101 pepstatin-insensitive carboxyl proteinase (PCP) and Xanthomonas sp. T-22 pepstatin-insensitive carboxyl proteinase (XCP), preferred peptides having hydrophobic and bulky amino acid residue such as Leu at the P(2) position. (ii) Kumamolysin preferred such charged amino acid residues as Glu or Arg at the P(2)' position, suggesting that the S(2)' subsite of kumamolysin is occupied by hydrophilic residues, similar to that of PCP, XCP, and J-4. In general, the S(2)' subsite of pepstatin-sensitive carboxyl proteinases (aspartic proteinases) is hydrophobic in nature. Thus, the hydrophilic nature of the S(2)' subsite was confirmed to be a distinguishing feature of pepstatin-insensitive carboxyl proteinases from prokaryotes.  相似文献   

14.
We developed sensitive substrates for cysteine proteases and specific substrates for serine proteases based on short internally quenched fluorescent peptides, Abz-F-R-X-EDDnp, where Abz (ortho-aminobenzoic acid) is the fluorescent donor, EDDnp [N-(ethylenediamine)-2,4-dinitrophenyl amide] is the fluorescent quencher, and X are natural amino acids. This series of peptides is compared to the commercially available Z-F-R-MCA, where Abz and X replace carbobenzoxy (Z) and methyl-7-aminocoumarin amide (MCA), respectively; and EDDnp can be considered a P(2)' residue. Whereas MCA is the fluorescent probe and cannot be modified, in the series Abz-F-R-X-EDDnp the amino acids X give the choice of matching the specificity of the S(1)' enzyme subsite, increasing the substrate specificity for a particular protease. All Abz-F-R-X-EDDnp synthesized peptides (for X = Phe, Leu, Ile, Ala, Pro, Gln, Ser, Lys, and Arg) were assayed with papain, human cathepsin L and B, trypsin, human plasma, and tissue kallikrein. Abz-F-R-L-EDDnp was the best substrate for papain and Abz-F-R-R-EDDnp or Abz-F-R-A-EDDnp was the more susceptible to cathepsin L. Abz-F-R-L-EDDnp was able to detect papain in the range of 1 to 15 pM. Human plasma kallikrein hydrolyzed Abz-F-R-R-EDDnp with significant efficiency (k(cat)/K(m) = 1833 mM(-1) s(-1)) and tissue kallikrein was very selective, hydrolyzing only the peptides Abz-F-R-A-EDDnp (k(cat)/K(m) = 2852 mM(-1) s(-1)) and Abz-F-R-S-EDDnp (k(cat)/K(m) = 4643 mM(-1) s(-1)). All Abz-F-R-X-EDDnp peptides were resistant to hydrolysis by thrombin and activated factor X.  相似文献   

15.
Kallistatin, a serpin that specifically inhibits human tissue kallikrein, was demonstrated to be cleaved at the Phe-Phe bond in its reactive site loop (RSL) by cathepsin D. Internally quenched fluorescent peptides containing the amino acid sequence of kallistatin RSL were highly susceptible to hydrolysis by cathepsin D. Surprisingly, these peptides were efficiently hydrolyzed at Phe-Phe bond, despite having Lys and Ser at P2 and P2' positions, respectively, which was reported to be very unfavorable for substrates for cathepsin D. Due to the importance of cathepsin D in several physiological and pathological processes, we took the peptide containing kallistatin RSL sequence, Abz-Ala-Ile-Lys-Phe-Phe-Ser-Arg-Gln-EDDnp, as a reference substrate for a systematic specificity study of S3 to S3' protease subsites (EDDnp=N-[2,4-dinitrophenyl]-ethylenediamine and Abz=ortho-amino benzoic acid). We present in this paper some internally quenched fluorescent peptides that were efficient substrates for cathepsin D. They essentially differ from other previously described substrates by their higher kcat/Km values due, mainly, to low Km values, such as the substrate Abz-Ala-Ile-Ala-Phe-Phe-Ser-Arg-Gln-EDDnp (Km=0.27 microM, kcat=16.25 s(-1), kcat/Km=60185 microM(-1) x s(-1)).  相似文献   

16.
Zou J  Zhang R  Zhu F  Liu J  Madison V  Umland SP 《Biochemistry》2005,44(11):4247-4256
ADAM33 is an asthma susceptibility gene recently identified through a genetic study of asthmatic families [van Eerdewegh, et al. (2002) Nature 418, 426-430]. To understand the function of the gene product, the recombinant metalloproteinase domain of human ADAM33 was purified and tested for its substrate cleavage specificity using peptides derived from beta-amyloid precursor protein (APP). A single Ala substitution at the P2 position of a 10-residue APP peptide, YEVHHQKLVF, yielded a 20-fold more efficient substrate. Terminal truncation studies identified a minimal nine-residue core (P5-P4') important for ADAM33 recognition and cleavage. Full positional scanning of the 10-mer peptide using the 19 naturally occurring l-amino acids (excluding Cys) revealed a substrate specificity profile. A strong preference for Val or Ile at P3, Ala at P2, and Gln at P1' was observed. The substrate binding model based on the X-ray structure of the ADAM33-inhibitor complex supported the observed substrate specificity profile. On the basis of this, an improved substrate was designed and a fluorescence resonance energy transfer (FRET) assay was developed using a fluorogenic derivative of this substrate. Kinetic studies confirmed that the best substrate, FRET-P2 [K(Dabcyl)YRVAFQKLAE(Edans)K], was approximately 100-fold more efficient than the wild-type APP peptide substrate, with a k(cat)/K(m) value of (3.6 +/- 0.1) x 10(4) s(-)(1) M(-)(1). Using this substrate and the FRET assay, ADAM33 enzyme activity and thermal stability were characterized. ADAM33 dependence on buffer conditions, detergents, and temperature was examined, and optimal conditions were defined. Accurate K(i) values for tissue inhibitors of metalloproteinase and small molecule compounds were obtained.  相似文献   

17.
Escherichia coli OmpP is an F episome-encoded outer membrane protease that exhibits 71% amino acid sequence identity with OmpT. These two enzymes cleave substrate polypeptides primarily between pairs of basic amino acids. We found that, like OmpT, purified OmpP is active only in the presence of lipopolysaccharide. With optimal peptide substrates, OmpP exhibits high catalytic efficiency (k(cat)/K(m) = 3.0 x 10(6) M(-1)s(-1)). Analysis of the extended amino acid specificity of OmpP by substrate phage revealed that both Arg and Lys are strongly preferred at the P1 and P1' sites of the enzyme. In addition, Thr, Arg, or Ala is preferred at P2; Leu, Ala, or Glu is preferred at P4; and Arg is preferred at P3'. Notable differences in OmpP and OmpT specificities include the greater ability of OmpP to accept Lys at the P1 or P1', site as well as the prominence of Ser at P3 in OmpP substrates. Likewise, the OmpP P1 site could better accommodate Ser; as a result, OmpP was able to cleave a peptide substrate between Ser-Arg about 120 times more efficiently than was OmpT. Interestingly, OmpP and OmpT cleave peptides with three consecutive Arg residues at different sites, a difference in specificity that might be important in the inactivation of cationic antimicrobial peptides. Accordingly, we show that the presence of an F' episome results in increased resistance to the antimicrobial peptide protamine both in ompT mutants and in wild-type E. coli cells.  相似文献   

18.
W St?cker  M Ng  D S Auld 《Biochemistry》1990,29(45):10418-10425
The design of fluorescent N-dansylated oligopeptides based on the tubulin cleavage pattern by Astacus protease yields substrates that are turned over up to 10(5) times faster than those presently available. On the basis of this study, an optimal substrate for Astacus protease contains seven or more amino acids and minimally requires at least five amino acids. Direct examination of the formation and breakdown of the ES complex shows its formation occurs within milliseconds at 25 degrees C. The best heptapeptide substrate, Dns-Pro-Lys-Arg-Ala-Pro-Trp-Val, is cleaved only between the Arg-Ala (P1-P1') bond with kinetic parameters kcat = 380 s-1 and Km = 3.7 x 10(-4) M. The presence of Lys or Arg in the P1 and P2 positions yields high-turnover substrates. In the P3 position, the enzyme prefers Pro greater than Val greater than Leu greater than Ala greater than Gly, following the same order of preference seen in the tubulin cleavage pattern. Substitution of Leu for Ala in P1' and of Ser for Pro in P2' decreases activity by 10(5)- and 10(2)-fold, respectively. In position P3', substitution of Trp for Leu leaves the activity unaltered. However, introduction of the Trp fluorophore greatly enhances the sensitivity of the assay due to a 10-fold increase in indole fluorescence for cleavage of any peptide bond between the tryptophan and the dansyl group. Such an energy-transfer-based assay should have widespread use for detection of neutral proteases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Previous analysis of a naturally occurring C1 inhibitor P2 mutant (Ala(443)-->Val) indicated a role for P2 in specificity determination. To define this role and that of other reactive center loop residues, a number of different amino acids were introduced at P2, as well as at P6 (Ala(439)) and P8'/9' (Gln(452)Gln(453)). Ala(439)-->Val is a naturally occurring mutant observed in a patient with hereditary angioedema. Previous data suggested that Gln(452)Gln(453) might be a contact site for C1s. Reactivity of the inhibitors toward target (C1s, C1r, kallikrein, beta factor XIIa, and plasmin) and nontarget proteases (alpha-thrombin and trypsin) were studied. Substitution of P2 with bulky or charged residues resulted in decreased reactivity with all target proteases. Substitution with residues with hydrophobic or polar side chains resulted in decreased reactivity with some proteases, but in unaltered or increased reactivity with others. Second order rate constants for the reaction with C1s were determined for the mutants with activities most similar to the wild-type protein. The three P2 mutants showed reductions in rate from 3.35 x 10(5) M(-1)s(-1) for the wild type to 1.61, 1.29, and 0.63 x 10(5) for the Ser, Thr, and Val mutants, respectively. In contrast, the Ala(439)-->Val and the Gln(452)Gln(453)-->Ala mutants showed little difference in association rates with C1s, in comparison with the wild-type inhibitor. The data confirm the importance of P2 in specificity determination. However, the P6 position appears to be of little, if any, importance. Furthermore, it appears unlikely that Gln(452)Gln(453) comprise a portion of a protease contact site within the inhibitor.  相似文献   

20.
Endopeptidase-24.11 (EC 3.4.24.11), purified to homogeneity from pig kidney, was shown to hydrolyse a wide range of neuropeptides, including enkephalins, tachykinins, bradykinin, neurotensin, luliberin and cholecystokinin. The sites of hydrolysis of peptides were identified, indicating that the primary specificity is consistent with hydrolysis occurring at bonds involving the amino group of hydrophobic amino acid residues. Of the substrates tested, the amidated peptide substance P is hydrolysed the most efficiently (Km = 31.9 microM; kcat. = 5062 min-1). A free alpha-carboxy group at the C-terminus of a peptide substrate is therefore not essential for efficient hydrolysis by the endopeptidase. A large variation in kcat./Km values was observed among the peptide substrates studied, a finding that reflects a significant influence of amino acid residues, remote from the scissile bond, on the efficiency of hydrolysis. These subsite interactions between peptide substrate and enzyme thus confer some degree of functional specificity on the endopeptidase. The inhibition of endopeptidase-24.11 by several compounds was compared with that of pig kidney peptidyldipeptidase A (EC 3.4.15.1). Of the inhibitors examined, only N-[1(R,S)-carboxy-2-phenylethyl]-Phe-p-aminobenzoate inhibited endopeptidase-24.11 but not peptidyldipeptidase. Captopril (D-3-mercapto-2-methylpropanoyl-L-proline), Teprotide (pGlu-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro) and MK422 [N-[(S)-1-carboxy-3-phenylpropyl]-L-Ala-L-Pro] were highly selective as inhibitors of peptidyldipeptidase. Although not wholly specific, phosphoramidon was a more potent inhibitor of endopeptidase-24.11 than were any of the synthetic compounds tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号