首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In spite of recent efforts to elucidate the nuclear import pathway of the human immunodeficiency virus type 1 (HIV-1) integrase protein (IN), its exact route as well as the domains that mediate its import are still unknown. Here, we show that a synthetic peptide bearing the amino acid residues 161-173 of the HIV-1 IN is able to mediate active import of covalently attached bovine serum albumin molecules into nuclei of permeabilized cells and therefore was designated as nuclear localization signal-IN (NLS(IN)). A peptide bearing residues 161-173 in the reversed order showed low karyophilic properties. Active nuclear import was demonstrated by using fluorescence microscopy and a quantitative ELISA-based assay system. Nuclear import was blocked by addition of the NLS(IN) peptide, as well as by a peptide bearing the NLS of the simian virus 40 T-antigen (NLS-SV40). The NLS(IN) peptide partially inhibited nuclear import mediated by the full-length recombinant HIV-1 IN protein, indicating that the sequence of the NLS(IN) is involved in mediating nuclear import of the IN protein. The NLS(IN) as well as the full-length IN protein interacted specifically with importin alpha, binding of which was blocked by the NLS(IN) peptide itself as well as by the NLS-SV40.  相似文献   

2.
3.
4.

Background  

Classical nuclear localization signal (NLS) dependent nuclear import is carried out by a heterodimer of importin α and importin β. NLS cargo is recognized by importin α, which is bound by importin β. Importin β mediates translocation of the complex through the central channel of the nuclear pore, and upon reaching the nucleus, RanGTP binding to importin β triggers disassembly of the complex. To date, six importin α family members, encoded by separate genes, have been described in humans.  相似文献   

5.
NF‐κB/p65 is retained in the cytoplasm until it is activated in response to stress. Nuclear import of p65 is regulated by importin α in a nuclear localization signal (NLS)‐dependent manner. However, the role of importin β family members in the nuclear translocation of p65 is largely unclear. In this study, using high‐content siRNA screening, we identified three of 17 importin β family members that are involved in the nuclear import of p65. Our data showed that knockdown of KPNB1, XPO7 and IPO8 reduced the amount of nuclear p65 following tumor necrosis factor‐α (TNF‐α) stimulation, resulting in lower NF‐κB activity. KPNB1 was the major importin β receptor for p65 import, and this import was dependent on the NLS of p65. However, NLS‐mutated p65 still entered the nucleus and bound to XPO7 and IPO8. Interestingly, among the six members of the importin α family, KPNA2 was most important for p65 import. Taken together, our results show that the import of p65 mainly relies on the canonical KPNA2/KPNB1 pathway; however, p65 is also imported by an alternative pathway that is independent of its NLS. Redundant importin receptors are likely to maintain the important function of p65 according to need .   相似文献   

6.
ORF73 latency-associated nuclear antigen (LANA) of the Kaposi's sarcoma-associated herpesvirus (KSHV) is targeted to the nucleus of infected cells where it binds to chromatin and mediates viral episome persistence, interacts with cellular proteins and plays a role in latency and tumorigenesis. A structurally related LANA homolog has been identified in the retroperitoneal fibromatosis herpesvirus (RFHV), the macaque homolog of KSHV. Here, we report the evolutionary and functional conservation of a novel bi-functional nuclear localization signal (NLS) in KSHV and RFHV LANA. N-terminal peptides from both proteins were fused to EGFP or double EGFP fusions to examine their ability to induce nuclear transport of a heterologous protein. In addition, GST-pull down experiments were used to analyze the ability of LANA peptides to interact with members of the karyopherin family of nuclear transport receptors. Our studies revealed that both LANA proteins contain an N-terminal arginine/glycine (RG)-rich domain spanning a conserved chromatin-binding motif, which binds directly to importin β1 in a RanGTP-sensitive manner and serves as an NLS in the importin β1-mediated non-classical nuclear import pathway. Embedded within this domain is a conserved lysine/arginine-(KR)-rich bipartite motif that binds directly to multiple members of the importin α family of nuclear import adaptors in a RanGTP-insensitive manner and serves as an NLS in the classical importin α/β-mediated nuclear import pathway. The positioning of a classical bipartite kr-NLS embedded within a non-classical rg-NLS is a unique arrangement in these viral proteins, whose nuclear localization is critical to their functionality and to the virus life cycle. The ability to interact with multiple import receptors provides alternate pathways for nuclear localization of LANA. Since different import receptors can import cargo to distinct subnuclear compartments, a multifunctional NLS may provide LANA with an increased ability to interact with different nuclear components in its multifunctional role to maintain viral latency.  相似文献   

7.
8.
Nuclear import of many cellular and viral proteins is mediated by short nuclear localization signals (NLS) that are recognized by intracellular receptor proteins belonging to the importin/karyopherin alpha and beta families. The primary structure of NLS is not well defined, but most contain at least three basic amino acids and harbor the relative consensus sequence K(K/R)X(K/R). We have studied the nuclear import of the Borna disease virus p10 protein that lacks a canonical oligobasic NLS. It is shown that the p10 protein exhibits all characteristics of an actively transported molecule in digitonin-permeabilized cells. Import activity was found to reside in the 20 N-terminal p10 amino acids that are devoid of an NLS consensus motif. Unexpectedly, p10-dependent import was blocked by a peptide inhibitor of importin alpha-dependent nuclear translocation, and the transport activity of the p10 N-terminal domain was shown to correlate with the ability to bind to importin alpha. These findings suggest that nuclear import of the Borna disease virus p10 protein occurs through a nonconventional karyophilic signal and highlight that the cellular importin alpha NLS receptor proteins can recognize nuclear targeting signals that substantially deviate from the consensus sequence.  相似文献   

9.

Background

Non-viral vectors for gene transfer are less immunogenic than viral vectors but also less efficient. Significant effort has focused on enhancing non-viral gene transfer efficiency by increasing nuclear import of plasmid DNA, particularly by coupling nuclear localization peptidic sequences to plasmid DNA.

Results

We have coupled a 62-aminoacid peptide derived from hSRP1α importin beta binding domain, called the IBB peptide to plasmid DNA by using the heterobifunctional linker N-(4-azido-2,3,5,6 tetrafluorobenzyl)-6-maleimidyl hexanamide (TFPAM-6). When covalently coupled to plasmid DNA, IBB peptide did not increase the efficiency of cationic lipid mediated transfection. The IBB peptide was still able to interact with its nuclear import receptor, importin β, but non-specifically. However, we observed a 20-fold increase in reporter gene expression with plasmid DNA / IBB peptide complexes under conditions of inefficient transfection. In which case, IBB was associated with plasmid DNA through self assembling ionic interaction.

Conclusions

The improvement of transfection activity was not due to an improved nuclear import of DNA, but rather by the modification of physicochemical properties of IBB peptide / plasmid complexes. IBB peptide increased lipoplex size and these larger complexes were more efficient for gene transfer.
  相似文献   

10.
Replication of human immunodeficiency virus type 1 (HIV-1) in non-dividing cells critically depends on import of the viral pre-integration complex into the nucleus. Genetic evidence suggests that viral protein R (Vpr) and matrix antigen (MA) are directly involved in the import process. An in vitro assay that reconstitutes nuclear import of HIV-1 pre-integration complexes in digitonin-permeabilized cells was used to demonstrate that Vpr is the key regulator of the viral nuclear import process. Mutant HIV-1 pre-integration complexes that lack Vpr failed to be imported in vitro, whereas mutants that lack a functional MA nuclear localization sequence (NLS) were only partially defective. Strikingly, the import defect of the Vpr- mutant was rescued when recombinant Vpr was re-added. In addition, import of Vpr- virus was rescued by adding the cytosol of HeLa cells, where HIV-1 replication had been shown to be Vpr-independent. In a solution binding assay, Vpr associated with karyopherin alpha, a cellular receptor for NLSs. This association increased the affinity of karyopherin alpha for basic-type NLSs, including that of MA, thus explaining the positive effect of Vpr on nuclear import of the HIV-1 pre-integration complex and BSA-NLS conjugates. These results identify the biochemical mechanism of Vpr function in transport of the viral pre-integration complex to, and across, the nuclear membrane.  相似文献   

11.
Proteins bearing a nuclear localization signal (NLS) are targeted to the nucleus by the heterodimeric transporter importin. Importin α binds to the NLS and to importin β, which carries it through the nuclear pore complex (NPC). Importin disassembles in the nucleus, evidently by binding of RanGTP to importin β. The importin subunits are exported separately. We investigated the role of Cse1p, the Saccharomyces cerevisiae homologue of human CAS, in nuclear export of Srp1p (yeast importin α). Cse1p is located predominantly in the nucleus but also is present in the cytoplasm and at the NPC. We analyzed the in vivo localization of the importin subunits fused to the green fluorescent protein in wild-type and cse1-1 mutant cells. Srp1p but not importin β accumulated in nuclei of cse1-1 mutants, which are defective in NLS import but not defective in NLS-independent import pathways. Purified Cse1p binds with high affinity to Srp1p only in the presence of RanGTP. The complex is dissociated by the cytoplasmic RanGTP-binding protein Yrb1p. Combined with the in vivo results, this suggests that a complex containing Srp1p, Cse1p, and RanGTP is exported from the nucleus and is subsequently disassembled in the cytoplasm by Yrb1p. The formation of the trimeric Srp1p-Cse1p-RanGTP complex is inhibited by NLS peptides, indicating that only NLS-free Srp1p will be exported to the cytoplasm.  相似文献   

12.
The viral cDNA nuclear import is an important requirement for human immunodeficiency virus type 1 (HIV-1) replication in dividing and nondividing cells. Our recent study identified a specific interaction of importin α3 (Impα3) with HIV-1 integrase (IN) and its involvement in viral cDNA nuclear import. In this study, we have performed a more detailed investigation on the molecular mechanism of how HIV-1 IN interacts with Impα3. Our results revealed a reduced interaction between the two IN mutants INKK215,9AA (IN215,9) and INRK263,4AA (IN263,4) with Impα3, while an IN double mutant, IN215,9/263,4, was severely impaired for its Impα3-binding ability, even though it was still found interacting with other cofactors, IN interactor I and Transportin3. Immunostaining and fractionation analysis have shown that YFP-IN215,9/263,4 failed to localize in the nucleus of transfected cells. Also, we found that both major and minor nuclear localization signal binding grooves of Impα3 are involved in interaction with IN. All of these results suggest a cargo protein-import receptor type of interaction. Finally, the effect of IN215,9/263,4 mutations on HIV-1 replication was evaluated, and real-time quantitative PCR analysis showed that, while mutant virus (v215,9/263,4) had a slightly lowered total viral DNA, the 2-long-terminal-repeat DNA, a marker for nuclear import, was greatly reduced during v215,9/263,4 infection in both dividing and nondividing cells. Also, by cell fractionation assay, we found that a significant proportion of viral cDNA was still retained in cytoplasmic fraction of v215,9/263,4-infected cells. Overall, our study provides strong evidence that 211KELQKQITK and 262RRKAK regions of IN C-terminal domain are required for Impα3 interaction and HIV-1 cDNA nuclear import.  相似文献   

13.
14.
The regulated process of protein import into the nucleus of a eukaryotic cell is mediated by specific nuclear localization signals (NLSs) that are recognized by protein-import receptors. In this study, we present fluorescence-based methods to quantitatively address the physicochemical details of NLS recognition by the receptor protein importin α (Impα) in living cells. First, by combining fluorescence recovery after photobleaching measurements and protein-concentration calibration, we quantitatively define nuclear import saturability and afford an affinity value for NLS-Impα binding. Second, by fluorescence lifetime imaging microscopy, we directly monitor the occurrence of NLS-Impα interaction and measure its effective dissociation constant (KD) in the actual cellular environment. Our kinetic and thermodynamic analyses independently indicate that the subsaturation of Impα with the expressed NLS cargo regulates nuclear import rates in living cells, in contrast to what can be predicted on the basis of available in vitro data. Finally, our experiments also provide evidence for the regulation of nuclear import mediated by the intrasteric importin β-binding domain of Impα and yield the first estimate of its autoinhibition energy in living cells.  相似文献   

15.
Importin‐αs are essential adapter proteins that recruit cytoplasmic proteins destined for active nuclear import to the nuclear transport machinery. Cargo proteins interact with the importin‐α armadillo repeat domain via nuclear localization sequences (NLSs), short amino acids motifs enriched in Lys and Arg residues. Plant genomes typically encode several importin‐α paralogs that can have both specific and partially redundant functions. Although some cargos are preferentially imported by a distinct importin‐α it remains unknown how this specificity is generated and to what extent cargos compete for binding to nuclear transport receptors. Here we report that the effector protein HaRxL106 from the oomycete pathogen Hyaloperonospora arabidopsidis co‐opts the host cell's nuclear import machinery. We use HaRxL106 as a probe to determine redundant and specific functions of importin‐α paralogs from Arabidopsis thaliana. A crystal structure of the importin‐α3/MOS6 armadillo repeat domain suggests that five of the six Arabidopsis importin‐αs expressed in rosette leaves have an almost identical NLS‐binding site. Comparison of the importin‐α binding affinities of HaRxL106 and other cargos in vitro and in plant cells suggests that relatively small affinity differences in vitro affect the rate of transport complex formation in vivo. Our results suggest that cargo affinity for importin‐α, sequence variation at the importin‐α NLS‐binding sites and tissue‐specific expression levels of importin‐αs determine formation of cargo/importin‐α transport complexes in plant cells.  相似文献   

16.
BackgroundNuclear translocation of large proteins is mediated through specific protein carriers, collectively named karyopherins (importins, exportins and adaptor proteins). Cargo proteins are recognized by importins through specific motifs, known as nuclear localization signals (NLS). However, only the NLS recognized by importin α and transportin (M9 NLS) have been identified so farMethodsAn unsupervised in silico approach was used, followed by experimental validation.ResultsWe identified the sequence EKRKI(E/R)(K/L/R/S/T) as an NLS signal for importin 7 recognition. This sequence was validated in the breast cancer cell line T47D, which expresses importin 7. Finally, we verified that importin 7-mediated nuclear protein transport is affected by cargo protein phosphorylation.ConclusionsThe NLS sequence for importin 7 was identified and we propose this approach as an identification method of novel specific NLS sequences for β-karyopherin family members.General significanceElucidating the complex relationships of the nuclear transporters and their cargo proteins may help in laying the foundation for the development of novel therapeutics, targeting specific importins, with an immediate translational impact.  相似文献   

17.
18.
SV40 large tumor-antigen (T-ag) nuclear import is enhanced by the protein kinase CK2 (CK2) site (Ser111Ser112) flanking the nuclear localization sequence (NLS). Here we use site-directed mutagenesis to examine the influence of negative charge and conformation at the site on T-ag nuclear import and recognition by the NLS-binding importin subunits. Negative charge through aspartic acid in place of Ser111 simulated CK2 phosphorylation in enhancing nuclear accumulation to levels well above those of proteins lacking a functional CK2 site. This was shown to be through enhancement of T-ag NLS recognition by importin using an ELISA-based assay. Asp112-substituted mutants containing proline at positions 109, 110 (wild-type position) or 111 were compared to assess the role of conformation at the CK2 site. Maximal nuclear import of the protein with Pro109 was lower than that of the Pro110 derivative, with the Pro111 variant even lower, these differences also being attributable to effects on importin binding. All results indicate a correlation of the initial nuclear import rate with the importin binding affinity, demonstrating that NLS recognition by importin is a key rate-determining step in nuclear import.  相似文献   

19.
Background: Proteins generally enter or exit the nucleus as cargo of one of a small family of import and export receptors. These receptors bear distant homology to importin β, a subunit of the receptor for proteins with classical nuclear localisation sequences (NLSs). To understand the mechanism of nuclear transport, the next question involves identifying the nuclear pore proteins that interact with the different transport receptors as they dock at the pore and translocate through it.Results: Two pathways of nuclear import were found to intersect at a single nucleoporin, Nup153, localized on the intranuclear side of the nuclear pore. Nup153 contains separate binding sites for importin α/β, which mediates classical NLS import, and for transportin, which mediates import of different nuclear proteins. Strikingly, a Nup153 fragment containing the importin β binding site acted as a dominant-negative inhibitor of NLS import, with no effect on transportin-mediated import. Conversely, a Nup153 fragment containing the transportin binding site acted as a strong dominant-negative inhibitor of transportin import, with no effect on classical NLS import. The interaction of transportin with Nup153 could be disrupted by a non-hydrolyzable form of GTP or by a GTPase-deficient mutant of Ran, and was not observed if transportin carried cargo. Neither Nup153 fragment affected binding of the export receptor Crm1 at the nuclear rim.Conclusions: Two nuclear import pathways, mediated by importin β and transportin, converge on a single nucleoporin, Nup153. Dominant-negative fragments of Nup153 can now be used to distinguish different nuclear import pathways and, potentially, to dissect nuclear export.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号