首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aspergillus fumigatus is a primary and opportunistic pathogen, as well as a major allergen, of mammals. The Ca(+2)-calcineurin pathway affects virulence, morphogenesis and antifungal drug action in A. fumigatus. Here, we investigated three components of the A. fumigatus Ca(+2)-calcineurin pathway, pmcA,-B, and -C, which encode calcium transporters. We demonstrated that CrzA can directly control the mRNA accumulation of the pmcA-C genes by binding to their promoter regions. CrzA-binding experiments suggested that the 5'-CACAGCCAC-3' and 5'-CCCTGCCCC-3' sequences upstream of pmcA and pmcC genes, respectively, are possible calcineurin-dependent response elements (CDREs)-like consensus motifs. Null mutants were constructed for pmcA and -B and a conditional mutant for pmcC demonstrating pmcC is an essential gene. The ΔpmcA and ΔpmcB mutants were more sensitive to calcium and resistant to manganese and cyclosporin was able to modulate the sensitivity or resistance of these mutants to these salts, supporting the interaction between calcineurin and the function of these transporters. The pmcA-C genes have decreased mRNA abundance into the alveoli in the ΔcalA and ΔcrzA mutant strains. However, only the A. fumigatus ΔpmcA was avirulent in the murine model of invasive pulmonary aspergillosis.  相似文献   

3.
Aspergillus fumigatus is an opportunistic pathogenic fungus which causes fatal invasive aspergillosis among immunocompromised patients. To obtain a better understanding of the key elements involved in A. fumigatus virulence and to identify possible drug targets, it is necessary to be able to generate gene-deletion strains. Unfortunately, the molecular techniques available do not include a rapid method to disrupt and identify essential genes. RNA interference, a process in which the presence of double-stranded RNA homologous to a gene of interest results in specific degradation of the corresponding message, has been successfully tested on A. fumigatus. We have shown that expression of double stranded RNA corresponding to portions of the ALB1/PKSP and FKS1 genes results in reduced mRNA levels for those genes, with phenotypic consequences similar to that of gene disruption. The two genes could also be subjected to simultaneous interference through expression of chimeric double-stranded RNA. Use of RNA interference in Aspergillus will allow easier examination of the phenotypic consequences of reducing expression of a gene of interest, especially for essential genes.  相似文献   

4.
Signature-tagged mutagenesis (STM) is a method that has been used to screen for genes required for in vivo survival of pathogenic bacteria, but has not been used to investigate a eukaryotic pathogen in an animal model of disease. We have adapted STM to identify genes required for in vivo growth of the opportunistic fungal pathogen Aspergillus fumigatus. Using a mouse model of invasive pulmonary aspergillosis, we have isolated several mutant strains with defects in their ability to replicate in vivo. One strain unable to cause lethal infection was further characterized and found to have an insertion into the promoter of a gene (pabaA) encoding para-aminobenzoic acid synthetase, an enzyme catalyzing a late step in the biosynthesis of folate. The complete inability of this strain, and other pabaA- strains constructed in this study by targeted gene deletion, to cause lethal infection in mice confirms the importance of the folate synthesis pathway for in vivo survival of this pathogen. The successful application of STM to A. fumigatus demonstrates that in vivo genetic analysis of eukaryotic pathogens is feasible and could result in the identification of potential targets, such as para-aminobenzoic acid synthetase, for novel antifungal therapies.  相似文献   

5.
The discovery of novel classes of antifungal drugs depends to a certain extent on the identification of new, unexplored targets that are essential for growth of fungal pathogens. Likewise, the broad-spectrum capacity of future antifungals requires the target gene(s) to be conserved among key fungal pathogens. Using a genome comparison (or concordance) tool, we identified 240 conserved genes as candidates for potential antifungal targets in 10 fungal genomes. To facilitate the identification of essential genes in Candida albicans, we developed a repressible C. albicans MET3 (CaMET3) promoter system capable of evaluating gene essentiality on a genome-wide scale. The CaMET3 promoter was found to be highly amenable to controlled gene expression, a prerequisite for use in target-based whole-cell screening. When the expression of the known antifungal target C. albicans ERG1 was reduced via down-regulation of the CaMET3 promoter, the CaERG1 conditional mutant strain became hypersensitive, specifically to its inhibitor, terbinafine. Furthermore, parallel screening against a small compound library using the CaERG1 conditional mutant under normal and repressed conditions uncovered several hypersensitive compound hits. This work therefore demonstrates a streamlined process for proceeding from selection and validation of candidate antifungal targets to screening for specific inhibitors.  相似文献   

6.
7.
额外拷贝ERG6基因对烟曲霉的影响   总被引:2,自引:0,他引:2  
通过构建烟曲霉ERG6基因额外拷贝株.研究该基因对烟曲霉生长速度、抗药物敏感性的影响。在烟曲霉基因组找出烟曲霉可能的ERG6基因的开放读码框(ORF),PCR扩增ERG6的ORF连同其上下游各约1 kb的DNA片段,利用DNA重组的方法将该片段克隆到载体pRG-AMA1-NotI。用重组后的质粒转化烟曲霉尿嘧啶营养缺陷株AF293.1。在MM和YAG培养基上观察转化子的生长速度。采用纸片扩散法和微量液基稀释法测定转化子对抗真菌药物敏感性。烟曲霉基因组中存在一个拷贝的ERG6基因,ORF大小为1,256 bp。其编码的蛋白与白念珠菌、酿酒酵母固醇甲基转移酶(Ers6p)的氨基酸相同率分别为57%和50%,相似率分别为70%和63%。烟曲霉中ERG6基因被成功克隆到了pRG-AMA1-Not I,产生了质粒pERG6。用pERG6和空载体pRG-AMA1-Not I转化AF293.1后,分别得到转化子AF-pERG6和AF-empty。AF-pERG6在MM和YAG培养基上的生长速度均比AF-empty慢。AF-pERG6和AF-empty对伊曲康唑、伏力康唑、特比萘芬、两性霉素B、卡泊芬净、灰黄霉素的敏感性没有差异。ERG6基因额外拷贝不影响烟曲霉对伊曲康唑、伏力康唑、特比萘芬、两性霉素B、卡泊芬净、灰黄霉素的敏感性,但是能使烟曲霉的生长速度减慢。  相似文献   

8.
Gliotoxin is a secondary metabolite produced by several fungi including the opportunistic human pathogen Aspergillus fumigatus. As gliotoxin exerts immunosuppressive effects in vitro and in vivo, a role as a virulence determinant in invasive aspergillosis has been discussed for a long time but evidence has not been provided until now. Here, by the use of different selection marker genes A. fumigatus knock-out strains were generated that are deficient for the non-ribosomal peptide synthetase GliP, the putative key enzyme of the gliotoxin biosynthesis. Deletion of the gliP gene resulted in loss of gliotoxin production, as analysed by high performance liquid chromatography and tandem mass spectrometry. No differences in morphology or growth kinetics between wild-type and gliP-deletion strains were observed. In vitro, the culture supernatant of the gliP-deficient strains showed a reduced cytotoxic effect on both macrophage-like cells and T cell lines. In a low-dose murine infection model of invasive aspergillosis, gliotoxin was detected in the lung and absent when mice were infected with the gliP deletion strain. However, gliP deletion strains showed no difference in virulence compared with the corresponding wild-type strains. Taken together, the non-ribosomal peptide synthetase GliP is essential for gliotoxin production in A. fumigatus. Gliotoxin is not required for pathogenicity of the fungus in immunocompromised mice, despite the fact that a reduced cytotoxicity of the culture supernatant of gliP deletion strains was demonstrated.  相似文献   

9.
10.
Fifty-five epidemiologically linked Aspergillus fumigatus isolates obtained from six nosocomial outbreaks of invasive aspergillosis were subtyped by sequencing the polymorphic region of the gene encoding a putative cell surface protein, Afu3g08990 (denoted as CSP). Comparative sequence analysis showed that genetic diversity was generated in the coding region of this gene by both tandem repeats and point mutations. Each unique sequence in an outbreak cluster was assigned an arbitrary number or CSP sequence type. The CSP typing method was able to identify "clonal" and genotypically distinct A. fumigatus isolates, and the results of this method were concordant with those of another discriminatory genotyping technique, the Afut1 restriction fragment length polymorphism typing method. The novel single-locus sequence typing (CSP typing) strategy appears to be a simple, rapid, discriminatory tool that can be readily shared across laboratories. In addition, we found that A. fumigatus isolates substructured into multiple clades; interestingly, one clade consisted of isolates predominantly representing invasive clinical isolates recovered from cardiac transplant patients from two different outbreak situations. We also found that the A. fumigatus isolate Af293, whose genome has been sequenced, possesses a CSP gene structure that is substantially different from those of the other A. fumigatus strains studied here, highlighting the need for further taxonomic study.  相似文献   

11.
As the frequency of antifungal drug resistance continues to increase, understanding the genetic structure of fungal populations, where resistant isolates have emerged and spread, is of major importance. Aspergillus fumigatus is an ubiquitously distributed fungus and the primary causative agent of invasive aspergillosis (IA), a potentially lethal infection in immunocompromised individuals. In the last few years, an increasing number of A. fumigatus isolates has evolved resistance to triazoles, the primary drugs for treating IA infections. In most isolates, this multiple-triazole-resistance (MTR) phenotype is caused by mutations in the cyp51A gene, which encodes the protein targeted by the triazoles. We investigated the genetic differentiation and reproductive mode of A. fumigatus in the Netherlands, the country where the MTR phenotype probably originated, to determine their role in facilitating the emergence and distribution of resistance genotypes. Using 20 genome-wide neutral markers, we genotyped 255 Dutch isolates including 25 isolates with the MTR phenotype. In contrast to previous reports, our results show that Dutch A. fumigatus genotypes are genetically differentiated into five distinct populations. Four of the five populations show significant linkage disequilibrium, indicative of an asexual reproductive mode, whereas the fifth population is in linkage equilibrium, indicative of a sexual reproductive mode. Notably, the observed genetic differentiation among Dutch isolates does not correlate with geography, although all isolates with the MTR phenotype nest within a single, predominantly asexual, population. These results suggest that both reproductive mode and genetic differentiation contribute to the structure of Dutch A. fumigatus populations and are probably shaping the evolutionary dynamics of drug resistance in this potentially deadly pathogen.  相似文献   

12.
13.
14.
Aspergillus fumigatus is the most frequent causative agent of invasive aspergillosis. Itraconazole became available in 1990 to treat invasive aspergillosis, but instances of resistance have now been described. Drug efflux was a proposed mechanism in one itraconazole resistant clinical isolate (AF72) which accumulates low levels of the drug. Drug efflux in fungi can be mediated by ATP-binding cassette transporter (ABCT) genes, such as CDR1 in Candida albicans. Using a probe derived from CDR1, a gene, atrF, was cloned from A. fumigatus. The atrF gene product (AtrF) is 1547 amino acids long and has characteristic multidrug resistance motifs. Dot blot analysis revealed that AF72 has approximately 5-fold higher levels of atrF mRNA than susceptible isolates AF10 and H06-03 in cultures with sub-minimum inhibitory concentration (sub-MIC) levels of itraconazole. atrF is the first ABCT gene cloned from A. fumigatus, whose overexpression is correlated with itraconazole resistance.  相似文献   

15.
To identify regulatory cis-elements in the proximal promoter of the yeast ERG9 squalene synthase gene, promoter deletion analysis was performed. This approach identified two regulatory elements, one an upstream repressing cis-element (URS), and the other an upstream activating cis-element (UAS). Electromobility shift assays (EMSAs) demonstrated that distinct proteins bind each element. Genetic screens were performed to identify yeast mutants that altered expression of ERG9 promoter-reporter gene fusions. Three non-ergosterol biosynthetic pathway genes were identified. A mutation in TPO1(YLL028W) led to a 5.5-fold increase in ERG9 expression while mutations in YER064C and SLK19 (YOR195W) led to a 3.1- and 5.6-fold decrease, respectively. Deletion analysis of these genes demonstrated that TPO1 and SLK19 specifically regulated ERG9 expression when tested with several different promoter-reporter gene fusions. Additionally, EMSAs demonstrated that extracts derived from the TPO1 deletion strain was unable to shift the repressing cis-element while protein extracts from the SLK19 deletion strain had a reduced shift of the activating cis-element. Furthermore, these two mutants showed quantitative differences in sterols and antifungal drug susceptibilities consistent with their role in regulating ERG9 expression.  相似文献   

16.
A specific t(21;22) chromosomal translocation creates the chimeric EWS/ERG gene in some cases of Ewing's sarcoma. In the resultant EWS/ERG fusion protein, the N-terminal part of the ETS family protein ERG is replaced by the N terminus of the RNA-binding protein EWS. We found that both the EWS/ERG and COL11A2 genes are expressed in the Ewing's sarcoma cell line, CADO-ES1. To investigate a potential role for EWS/ERG in COL11A2 gene expression, we characterized the COL11A2 promoter and tested the ability of wild-type ERG and EWS/ERG sarcoma fusion protein to transactivate COL11A2 promoter using a luciferase assay. We found that expression of EWS/ERG, but not wild-type ERG, transactivated the COL11A2 promoter and that this transactivation required not only the N-terminal region of EWS but also an intact DNA-binding domain from ERG. Electrophoretic mobility shift assay using COL11A2 promoter sequence showed involvement of EWS/ERG in the formation of DNA-protein complexes, and chromatin immunoprecipitation assay revealed direct interaction between COL11A2 promoter and EWS/ERG fusion protein in vivo. EWS/ERG, but not wild-type ERG, bound to RNA polymerase II. Treatment of cells with the histone deacetylase inhibitor trichostatin A enabled ERG to transactivate the COL11A2 promoter, therefore abolishing the differential effects of EWS/ERG and ERG. Taken together, these findings indicate that the COL11A2 gene is regulated both by potential ERG association with a histone deacetylase complex and by direct EWS/ERG recruitment of RNA polymerase II.  相似文献   

17.
Korfanty  Greg A.  Teng  Lisa  Pum  Nicole  Xu  Jianping 《Mycopathologia》2019,184(4):479-492
Mycopathologia - Aspergillus fumigatus is a globally distributed opportunistic fungal pathogen capable of causing highly lethal invasive aspergillosis in immunocompromised individuals. Recent...  相似文献   

18.
19.
Aspergillus fumigatus is an environmental fungus that causes invasive aspergillosis (IA) in immunocompromised patients. Although -CC-chemokine receptor-2 (CCR2) and Ly6C-expressing inflammatory monocytes (CCR2+Mo) and their derivatives initiate adaptive pulmonary immune responses, their role in coordinating innate immune responses in the lung remain poorly defined. Using conditional and antibody-mediated cell ablation strategies, we found that CCR2+Mo and monocyte-derived dendritic cells (Mo-DCs) are essential for innate defense against inhaled conidia. By harnessing fluorescent Aspergillus reporter (FLARE) conidia that report fungal cell association and viability in vivo, we identify two mechanisms by which CCR2+Mo and Mo-DCs exert innate antifungal activity. First, CCR2+Mo and Mo-DCs condition the lung inflammatory milieu to augment neutrophil conidiacidal activity. Second, conidial uptake by CCR2+Mo temporally coincided with their differentiation into Mo-DCs, a process that resulted in direct conidial killing. Our findings illustrate both indirect and direct functions for CCR2+Mo and their derivatives in innate antifungal immunity in the lung.  相似文献   

20.
Candida albicans is the primary fungal pathogen of humans. Despite the need for novel drugs to combat fungal infections [Sobel, J.D. (2000) Clin Infectious Dis 30: 652], antifungal drug discovery is currently limited by both the availability of suitable drug targets and assays to screen corresponding targets. A functional genomics approach based on the diploid C. albicans genome sequence, termed GRACETM (gene replacement and conditional expression), was used to assess gene essentiality through a combination of gene replacement and conditional gene expression. In a systematic application of this approach, we identify 567 essential genes in C. albicans. Interestingly, evaluating the conditional phenotype of all identifiable C. albicans homologues of the Saccharomyces cerevisiae essential gene set [Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Veronneau, S., et al. (2002) Nature 418: 387-391] by GRACE revealed only 61% to be essential in C. albicans, emphasizing the importance of performing such studies directly within the pathogen. Construction of this conditional mutant strain collection facilitates large-scale examination of terminal phenotypes of essential genes. This information enables preferred drug targets to be selected from the C. albicans essential gene set by phenotypic information derived both in vitro, such as cidal versus static terminal phenotypes, as well as in vivo through virulence studies using conditional strains in an animal model of infection. In addition, the combination of phenotypic and bioinformatic analyses further improves drug target selection from the C. albicans essential gene set, and their respective conditional mutant strains may be directly used as sensitive whole-cell assays for drug screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号