首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
SARS coronavirus (SARS-CoV) encodes several unique group-specific open reading frames (ORFs) relative to other known coronaviruses. To determine the significance of the SARS-CoV group-specific ORFs in virus replication in vitro and in mice, we systematically deleted five of the eight group-specific ORFs, ORF3a, OF3b, ORF6, ORF7a, and ORF7b, and characterized recombinant virus replication and gene expression in vitro. Deletion of the group-specific ORFs of SARS-CoV, either alone or in various combinations, did not dramatically influence replication efficiency in cell culture or in the levels of viral RNA synthesis. The greatest reduction in virus growth was noted following ORF3a deletion. SARS-CoV spike (S) glycoprotein does not encode a rough endoplasmic reticulum (rER)/Golgi retention signal, and it has been suggested that ORF3a interacts with and targets S glycoprotein retention in the rER/Golgi apparatus. Deletion of ORF3a did not alter subcellular localization of the S glycoprotein from distinct punctuate localization in the rER/Golgi apparatus. These data suggest that ORF3a plays little role in the targeting of S localization in the rER/Golgi apparatus. In addition, insertion of the 29-bp deletion fusing ORF8a/b into the single ORF8, noted in early-stage SARS-CoV human and civet cat isolates, had little if any impact on in vitro growth or RNA synthesis. All recombinant viruses replicated to wild-type levels in the murine model, suggesting that either the group-specific ORFs play little role in in vivo replication efficiency or that the mouse model is not of sufficient quality for discerning the role of the group-specific ORFs in disease origin and development.  相似文献   

3.
以甜菜坏死黄脉病毒内蒙分离物(BNYVV NM)总RNA为模板,经RT-PCR扩增,分别获得RNA2、RNA3和RNA4自然缺失突变体cDNA克隆。序列分析结果表明,RNA2自然缺失突变体在75kD通读蛋白编码区C端缺失348个核苷酸(缺失位置nt1488 ̄nt1835)。RNA3在其25kD蛋白编码区内缺失360个核苷酸(缺失位置nt729 ̄nt1088)。RNA4的自然缺失区域位于31kD蛋白  相似文献   

4.
Pathological characterization of autopsied tissues from patients with SARS revealed severe damage in restricted tissues, such as lung, with no apparent cell damage in other tissues, such as intestine and brain. Here, we examined the susceptibility of neural cell lines of human (OL) and rat (C6) origins to SARS-associated coronavirus. Both of the neural cell lines showed no apparent cytopathic effects (CPE) by infection but produced virus with infectivity of 10(2-5) per ml, in sharp contrast to the production by infected Vero E6 cells of >10(9) per ml that showed a lytic infection with characteristic rounding CPE. Interestingly, the infection of intestinal cell line CaCo-2 also induced no apparent CPE, with production of the virus at a slightly lower level as that of the Vero E6 cell culture. Notably, the cellular receptor for the virus, angiotensin-converting enzyme 2 was expressed at similar levels on Vero E6 and CaCo-2 cells, but at undetectable levels on OL and C6 cells.  相似文献   

5.
A deletion mutant of severe acute respiratory syndrome coronavirus (SARS-CoV) has been engineered by deleting the structural E gene in an infectious cDNA clone that was constructed as a bacterial artificial chromosome (BAC). The recombinant virus lacking the E gene (rSARS-CoV-DeltaE) was rescued in Vero E6 cells. The recovered deletion mutant grew in Vero E6, Huh-7, and CaCo-2 cells to titers 20-, 200-, and 200-fold lower than the recombinant wild-type virus, respectively, indicating that although the E protein has an effect on growth, it is not essential for virus replication. No differences in virion stability under a wide range of pH and temperature were detected between the deletion mutant and recombinant wild-type viruses. Although both viruses showed the same morphology by electron microscopy, the process of morphogenesis seemed to be less efficient with the defective virus than with the recombinant wild-type one. The rSARS-CoV-DeltaE virus replicated to titers 100- to 1,000-fold lower than the recombinant wild-type virus in the upper and lower respiratory tract of hamsters, and the lower viral load was accompanied by less inflammation in the lungs of hamsters infected with rSARS-CoV-DeltaE virus than with the recombinant wild-type virus. Therefore, the SARS-CoV that lacks the E gene is attenuated in hamsters, might be a safer research tool, and may be a good candidate for the development of a live attenuated SARS-CoV vaccine.  相似文献   

6.
The varicella-zoster virus (VZV) open reading frame 61 (ORF61) protein is thought to be the homolog of herpes simplex virus type 1 (HSV-1) ICP0, based on gene location and limited amino acid homology. However, HSV-1 ICP0 trans activates HSV-1 genes, while VZV ORF61 protein trans represses the function of VZV trans activators on VZV promoters in transient expression assays. To investigate the functional relatedness of HSV-1 ICP0 and VZV ORF61 protein, we established Vero and MeWo cell lines which stably express VZV ORF61 under the control of a metallothionein promoter and performed complementation studies with an HSV-1 ICP0 deletion mutant (7134). Mutant 7134 is impaired for plaque formation and replication at a low multiplicity of infection in cell culture, but these defects were complemented by up to 200-fold in Vero cell lines expressing VZV ORF61. Likewise, the efficiency of plaque formation was improved by up to 100-fold in MeWo cell lines expressing VZV ORF61. A cell line expressing another VZV immediate-early gene product (ORF62) was unable to complement mutant 7134. HSV-1 mutants which are deleted for other HSV-1 immediate-early gene products (ICP4, ICP27) were unable to grow in VZV ORF61-expressing cell lines. These results indicate that, despite marked differences in their sequences and in effects on their cognate promoters in transient expression assays, VZV ORF61 protein is the functional homolog of HSV-1 ICP0.  相似文献   

7.
8.
Varicella-zoster virus (VZV) encodes at least six glycoproteins. Glycoprotein I (gI), the product of open reading frame 67, is a 58- to 62-kDa glycoprotein found in VZV-infected cells. We constructed two VZV gI deletion mutants. Immunoprecipitation of VZV gE from infected cells indicated that cells infected with VZV deleted for gI expressed a gE that was larger (100 kDa) than that expressed in cells infected with the parental virus (98 kDa). Cell-associated or cell-free VZV deleted for gI grew to lower titers in melanoma cells than did parental VZV. While VZV deleted for gI replicated in other human cells, the mutant virus replicated to very low titers in primary guinea pig and monkey cells and did not replicate in Vero cells. When compared with the parental virus, rescued viruses, in which the gI deletion was restored with a wild-type allele, showed a similarly sized gE and comparable growth patterns in melanoma and Vero cells. VZV deleted for gI entered Vero cells; however, viral DNA synthesis was impaired in these cells. The VZV gI mutant was slightly impaired for adsorption to human cells. Thus, VZV gI is required for replication of the virus in Vero cells, for efficient replication of the virus in nonhuman cells, and for normal processing of gE.  相似文献   

9.
10.
The genome-length mRNA (mRNA 1) of the coronavirus infectious bronchitis virus (IBV) contains two large open reading frames (ORFs), 1a and 1b, with the potential to encode polypeptides of 441 and 300 kDa, respectively. The downstream ORF, ORF 1b, is expressed by a ribosomal frameshifting mechanism. In an effort to detect viral polypeptides encoded by ORF 1b in virus-infected cells, immunoprecipitations were carried out with a panel of region-specific antisera. A polypeptide of approximately 100 kDa was precipitated from IBV-infected, but not mock-infected, Vero cells by one of these antisera (V58). Antiserum V58 was raised against a bacterially expressed fusion protein containing polypeptide sequences encoded by ORF 1b nucleotides 14492 to 15520; it recognizes specifically the corresponding in vitro-synthesized target protein. A polypeptide comigrating with the 100,000-molecular-weight protein (100K protein) identified in infected cells was also detected when the IBV sequence from nucleotides 8693 to 16980 was expressed in Vero cells by using a vaccinia virus-T7 expression system. Deletion analysis revealed that the sequence encoding the C terminus of the 100K polypeptide lies close to nucleotide 15120; it may therefore be generated by proteolysis at a potential QS cleavage site encoded by nucleotides 15129 to 15135. In contrast, expression of IBV sequences from nucleotides 10752 to 16980 generated two polypeptides of approximately 62 and 235 kDa, which represent the ORF 1a stop product and the 1a-1b fused product generated by a frameshifting mechanism, respectively, but no processed products were observed. Since the putative picornavirus 3C-like proteinase domain is located in ORF 1a between nucleotides 8937 and 9357, this observation suggests that deletion of the picornavirus 3C-like proteinase domain and surrounding regions abolishes processing of the 1b polyprotein. In addition, the in vitro translation and in vivo transfection studies also indicate that the ORF 1a region between nucleotides 8763 and 10720 contains elements that down-regulate the expression of ORF 1b.  相似文献   

11.
12.
13.
Of 30 cell lines and primary cells examined, productive severe acute respiratory syndrome coronavirus (Urbani strain) (SARS-CoV) infection after low-multiplicity inoculation was detected in only six: three African green monkey kidney epithelial cell lines (Vero, Vero E6, and MA104), a human colon epithelial line (CaCo-2), a porcine kidney epithelial line [PK(15)], and mink lung epithelial cells (Mv 1 Lu). SARS-CoV produced a lytic infection in Vero, Vero E6, and MA104 cells, but there was no visible cytopathic effect in Caco-2, Mv 1 Lu, or PK(15) cells. Multistep growth kinetics were identical in Vero E6 and MA104 cells, with maximum titer reached 24 h postinoculation (hpi). Virus titer was maximal 96 hpi in CaCo-2 cells, and virus was continually produced from infected CaCo-2 cells for at least 6 weeks after infection. CaCo-2 was the only human cell type of 13 tested that supported efficient SARS-CoV replication. Expression of the SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2), resulted in SARS-CoV replication in all refractory cell lines examined. Titers achieved were variable and dependent upon the method of ACE2 expression.  相似文献   

14.
The functions of bovine respiratory syncytial virus (BRSV) nonstructural proteins NS1 and NS2 were studied by generation and analysis of recombinant BRSV carrying single and double gene deletions. Whereas in MDBK cells the lack of either or both NS genes resulted in a 5,000- to 10,000-fold reduction of virus titers, in Vero cells a moderate (10-fold) reduction was observed. Interestingly, cell culture supernatants from infected MDBK cells were able to restrain the growth of NS deletion mutants in Vero cells, suggesting the involvement of NS proteins in escape from cytokine-mediated host cell responses. The responsible factors in MDBK supernatants were identified as type I interferons by neutralization of the inhibitory effect with antibodies blocking the alpha interferon (IFN-alpha) receptor. Treatment of cells with recombinant universal IFN-alpha A/D or IFN-beta revealed severe inhibition of single and double deletion mutants, whereas growth of full-length BRSV was not greatly affected. Surprisingly, all NS deletion mutants were equally repressed, indicating an obligatory cooperation of NS1 and NS2 in antagonizing IFN-mediated antiviral mechanisms. To verify this finding, we generated recombinant rabies virus (rRV) expressing either NS1 or NS2 and determined their IFN sensitivity. In cells coinfected with NS1- and NS2-expressing rRVs, virus replication was resistant to doses of IFN which caused a 1,000-fold reduction of replication in cells infected with wild-type RV or with each of the NS-expressing rRVs alone. Thus, BRSV NS proteins have the potential to cooperatively protect an unrelated virus from IFN-alpha/beta mediated antiviral responses. Interestingly, BRSV NS proteins provided a more pronounced resistance to IFN in the bovine cell line MDBK than in cell lines of other origins, suggesting adaptation to host-specific antiviral responses. The findings described have a major impact on the design of live recombinant BRSV and HRSV vaccines.  相似文献   

15.
Bao Y  Guo Y  Zhang L  Zhao Z  Li N 《Molecular biology reports》2012,39(3):2515-2522
With the ultimate aim of producing an RNA interference-mediated transgenic pig that is resistant to porcine reproductive and respiratory syndrome virus (PRRSV), we have investigated the effect of RNA interference (RNAi) on silencing the expression of viral genes in the MARC-145 cell line. Twenty small interfering RNAs (siRNAs) were designed and screened for their ability to suppress the expression of the genes ORF1b, 5, 6, and 7 from the highly virulent isolate, PRRSV-JXwn06. Of these siRNAs, the four most effective were selected and four short hairpin RNA (shRNA) expression vectors (pGenesil-1-1b-135, pGenesil-1-1b-372, pGenesil-1-6-135, and pGenesil-1-6-169) targeting ORF1b and ORF6 were constructed and delivered into MARC-145 cells. These cells were then infected with JXwn06. All four vectors inhibited the PRRSV-specific cytopathic effect (CPE). The virus titers in cells transfected with pGenesil-1-1b-135, pGenesil-1-1b-372, pGenesil-1-6-135, and pGenesil-1-6-169 were lower than that of control cells by approximately 150-, 600-, 2.3- and 1.7-fold, respectively. In addition, the expression levels of ORF1 and ORF6 were reduced compared with controls. The unglycosylated membrane protein M, encoded by ORF6, was not detectable in cells transfected with shRNA expression vectors. These results verified that RNAi can effectively inhibit PRRSV-JXwn06 replication in cultured cells in vitro. The four shRNA expression vectors are an initial step in the production of transgenic pigs with PRRSV resistance.  相似文献   

16.
17.
Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) has a tripartite negative-strand genome, causes a mosquito-borne disease that is endemic in sub-Saharan African countries and that also causes large epidemics among humans and livestock. Furthermore, it is a bioterrorist threat and poses a risk for introduction to other areas. In spite of its danger, neither veterinary nor human vaccines are available. We established a T7 RNA polymerase-driven reverse genetics system to rescue infectious clones of RVFV MP-12 strain entirely from cDNA, the first for any phlebovirus. Expression of viral structural proteins from the protein expression plasmids was not required for virus rescue, whereas NSs protein expression abolished virus rescue. Mutants of MP-12 partially or completely lacking the NSs open reading frame were viable. These NSs deletion mutants replicated efficiently in Vero and 293 cells, but not in MRC-5 cells. In the latter cell line, accumulation of beta interferon mRNA occurred after infection by these NSs deletion mutants, but not after infection by MP-12. The NSs deletion mutants formed larger plaques than MP-12 did in Vero E6 cells and failed to shut off host protein synthesis in Vero cells. An MP-12 mutant carrying a luciferase gene in place of the NSs gene replicated as efficiently as MP-12 did, produced enzymatically active luciferase during replication, and stably retained the luciferase gene after 10 virus passages, representing the first demonstration of foreign gene expression in any bunyavirus. This reverse genetics system can be used to study the molecular virology of RVFV, assess current vaccine candidates, produce new vaccines, and incorporate marker genes into animal vaccines.  相似文献   

18.
A Vero cell line (Vero 153) resistant to 8-azaguanine and unresponsive to viral induction of interferon was isolated. This primate (African green) cell line was fused with mouse myeloma (S194/5) and normal human lymphocytes from peripheral blood. All Vero 153--mouse hybrids, 8 primary and 12 secondary clones, produced virus-induced mouse but not primate interferon. This occurred even in cultures where greater than 90% of primate chromosomes were retained. Similarly 7 primary and 3 secondary Vero 153--human clones synthesized virus-induced interferon. This could be neutralized by anti-human fibroblast (beta) but not by anti-human leukocyte (alpha) interferon antisera. The unresponsive nature of Vero 153 cells to interferon induction by viruses was not changed by the presence of interferon producing genomes from other cells. However, despite the inability to produce interferon, the Vero cell was able to play a role in the determination of the type of interferon made in the hybrid cell.  相似文献   

19.
Zhu FX  Li X  Zhou F  Gao SJ  Yuan Y 《Journal of virology》2006,80(24):12187-12196
Open reading frame 45 (ORF45) of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes an immediate-early protein. This protein is also present in virions as a tegument protein. ORF45 protein interacts with interferon regulatory factor 7 (IRF-7) and inhibits virus-induced type I interferon production by blocking activation of IRF-7. To define further the function of ORF45 and the mechanism underlying its action, we constructed an ORF45-null recombinant virus genome (BAC-stop45) by using a bacterial artificial chromosome (BAC) system. Stable 293T cells carrying the BAC36 (wild type) and BAC-stop45 genomes were generated. When monolayers of 293T BAC36 and 293T BAC-stop45 cells were induced with 12-O-tetradecanoylphorbol-13-acetate and sodium butyrate, no significant difference was found between them in overall viral gene expression and lytic DNA replication, but induced 293T BAC-stop45 cells released 10-fold fewer virions to the medium than did 293T BAC36 cells. When ORF45-null virus was used to infect cells, lower infectivity was observed than for wild-type BAC36. These results suggest that KSHV ORF45 plays roles in both early and late stages of viral infection, probably in viral ingress and egress.  相似文献   

20.
Cells infected with varicella-zoster virus (VZV) express a viral ribonucleotide reductase which is distinct from that present in uninfected cells. VZV open reading frames 18 and 19 (ORF18 and ORF19) are homologous to the herpes simplex virus type 1 genes encoding the small and large subunits of ribonucleotide reductase, respectively. We generated recombinant VZV by transfecting cultured cells with four overlapping cosmid DNAs. To construct a virus lacking ribonucleotide reductase, we deleted 97% of VZV ORF19 from one of the cosmids. Transfection of this cosmid with the other parental cosmids yielded a VZV mutant with a 2.3-kbp deletion confirmed by Southern blot analysis. Virus-specific ribonucleotide reductase activity was not detected in cells infected with VZV lacking ORF19. Infection of melanoma cells with ORF19-deleted VZV resulted in plaques smaller than those produced by infection with the parental VZV. The mutant virus also exhibited a growth rate slightly slower than that of the parental virus. Chemical inhibition of the VZV ribonucleotide reductase has been shown to potentiate the anti-VZV activity of acyclovir. Similarly, the concentration of acyclovir required to inhibit plaque formation by 50% was threefold lower for the VZV ribonucleotide reductase deletion mutants than for parental virus. We conclude that the VZV ribonucleotide reductase large subunit is not essential for virus infection in vitro; however, deletion of the gene impairs the growth of VZV in cell culture and renders the virus more susceptible to inhibition by acyclovir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号