首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During myelination, membrane-specialized domains are generated by complex interactions between axon and glial cells. The cell adhesion molecules caspr/paranodin and F3/contactin play a crucial role in the generation of functional septate-like junctions at paranodes. We have previously demonstrated that association with the glycosylphosphatidylinositol-linked F3/contactin is required for the recruitment of caspr/paranodin into the lipid rafts and its targeting to the cell surface. When transfected alone in neuroblastoma N2a cells, caspr/paranodin is retained in the endoplasmic reticulum (ER). Using chimerical constructs, we show that the cytoplasmic region does not contain any ER retention signal, whereas the ectodomain plays a crucial role in caspr/paranodin trafficking. A series of truncations encompassing the extracellular region of caspr/paranodin was unable to abolish ER retention. We show that N-glycosylation and quality control by the lectin-chaperone calnexin are required for the cell surface delivery of caspr/paranodin. Cell surface transport of F3/contactin and caspr/paranodin is insensitive to brefeldin A and the two glycoproteins are endoglycosidase H-sensitive when associated in complex, recruited into the lipid rafts, and expressed on the cell surface. Our results indicate a Golgi-independent pathway for the paranodal cell adhesion complex that may be implicated in the segregation of axonal subdomains.  相似文献   

2.
The axoglial paranodal junctions, flanking the Ranvier nodes, are specialized adhesion sites between the axolemma and myelinating glial cells. Unraveling the molecular composition of paranodal junctions is crucial for understanding the mechanisms involved in the regulation of myelination, and positioning and segregation of the voltage-gated Na+ and K+ channels, essential for the generation and conduction of action potentials. Paranodin/Caspr was the first neuronal transmembrane glycoprotein identified at the paranodal junctions. Paranodin/Caspr is associated on the axonal membrane with contactin/F3, a glycosylphosphatidylinositol-anchored protein, essential for its correct targeting. The extra and intracellular regions of paranodin encompass multiple domains which can be involved in protein-protein interactions with other axonal proteins and glial proteins. Thus, paranodin plays a central role in the assembly of multiprotein complexes necessary for the formation and maintenance of paranodal junctions.  相似文献   

3.
Ectopic expression of various members of the human carcinoembryonic antigen (CEA) family of intercellular adhesion molecules in murine myoblasts either blocks (CEA, CEACAM6) or allows (CEACAM1) myogenic differentiation. These surface glycoproteins form a subset of the immunoglobulin (Ig) superfamily and are very closely related, but differ in the precise sequence of their external domains and in their mode of anchorage to the cell membrane. CEA and CEACAM6 are glycophosphatidyl-inositol (GPI) anchored, whereas CEACAM1 is transmembrane (TM) anchored. Overexpression of GPI-linked neural cell adhesion molecule (NCAM) p125, also an adhesion molecule of the Ig superfamily, accelerates myogenic differentiation. The molecular requirements for the myogenic differentiation block were investigated using chimeric constructs in which the COOH-terminal hydrophobic domains of CEA, CEACAM1, and NCAM p125 were exchanged. The presence of the GPI signal sequence specifically from CEA in the chimeras was sufficient to convert both CEACAM1 and NCAM into differentiation-blocking proteins. Conversely, CEA could be converted into a neutral protein by exchanging its GPI anchor for the TM anchor of CEACAM1. Since the external domains of CEA, CEACAM1, and NCAM can all undergo homophilic interactions, and mutations in the self-adhesive domains of CEA abrogate its differentiation-blocking activity, the structural requirements for differentiation-inhibition are any self-adhesive domains attached to the specific GPI anchor derived from CEA. We therefore suggest that biologically significant functional information resides in the processed extreme COOH terminus of CEA and in the GPI anchor that it determines.  相似文献   

4.
5.
Formation of nodes of Ranvier requires contact of axons with myelinating glial cells, generating specialized axo-glial subdomains. Caspr/paranodin is required for the formation of septate-like junctions at paranodes, whereas the related caspr2 is essential for the organization of juxtaparanodes. The molecular mechanisms underlying the segregation of these related glycoproteins within distinct complexes are poorly understood. Exit of paranodin from the endoplasmic reticulum (ER) is mediated by its interaction with F3/contactin. Using domain swapping with caspr2, we mapped a motif with Pro-Gly-Tyr repeats (PGY) in the ectodomain of paranodin responsible for its ER retention. Deletion of PGY allows cell surface delivery of paranodin bypassing the calnexin-calreticulin quality control. Conversely, insertion of PGY in caspr2 or NrCAM blocks these proteins in the ER. PGY is a novel type of processing signal that compels chaperoning of paranodin by contactin. Contactin associated with paranodin is expressed at the cell surface with high-mannose N-glycans. Using mutant CHO lines altered in the processing of N-linked carbohydrates, we show that the high-mannose glycoform of contactin strongly binds neurofascin-155, its glial partner at paranodes. Thus, the unconventional processing of paranodin and contactin may determine the selective association of axo-glial complexes at paranodes.  相似文献   

6.
The functional specificity conferred by glycophosphatidylinositol (GPI) anchors on certain membrane proteins may arise from their occupancy of specific membrane microdomains. We show that membrane proteins with noninteractive external domains attached to the same carcinoembryonic antigen (CEA) GPI anchor, but not to unrelated neural cell adhesion molecule GPI anchors, colocalize on the cell surface, confirming that the GPI anchor mediates association with specific membrane domains and providing a mechanism for specific signaling. This directed targeting was exploited by coexpressing an external domain-defective protein with a functional protein, both with the CEA GPI anchor. The result was a complete loss of signaling capabilities (through integrin-ECM interaction) and cellular effect (differentiation blockage) of the active protein, which involved an alteration of the size of the microdomains occupied by the active protein. This work clarifies how the GPI anchor can determine protein function, while offering a novel method for its modulation.  相似文献   

7.
A general feature of the cell adhesion molecules belonging to the immunoglobulin family (Ig-CAMs) is to display a modular structure that provides a framework for multiple binding sites for other recognition molecules. Among this family, F3/contactin is a glycan phosphatidyl-inositol (GPI)-anchored molecule expressed by neurons that displays the distinctiveness to exert heterophilic but no homophilic binding activities. The Ig domains of F3/contactin were shown to interact with the L1 family of Ig-CAMs, including L1, NrCAM, and neurofascin. Binding between F3/contactin and NrCAM is known to modulate axonal elongation of the cerebellar granule cells and to control sensory axon guidance. F3/contactin mediates neuron-glial contacts through its association with extracellular matrix components (tenascin-R, tenascin-C) and RPTPbeta/phosphacan, influencing axonal growth and fasciculation. Another major role of F3/contactin is to organize axonal subdomains at the node of Ranvier of myelinated fibers in interplay with other Ig-CAMs, through its binding with caspr/paranodin at paranodes and the voltage-gated sodium channels in the nodal region. The F3/contactin deficient mice display a severe ataxia correlated with defects in axonal and dendritic projections in the cerebellum. These mice also display defects in nerve influx conduction due to the disruption of the axo-glial contacts at paranodes. Finally, the recent identification of a Drosophila homologue of F3/contactin indicated that this family of GPI-anchored CAMs plays a conserved function in axonal insulation.  相似文献   

8.
The extracellular matrix glycoprotein tenascin-R (TN-R) is a multidomain protein implicated in neural cell adhesion. To analyze the structure-function relationship of the different domains of TN-R, several recombinant TN-R fragments were expressed in bacterial cells. Two distinct binding regions were localized on the TN-R polypeptide: a region binding the axon-associated immunoglobulin (Ig)-like F11 protein and a cell attachment site. The binding region of the glycosylphosphatidylinositol (GPI)-anchored F11 was allocated to the second and third fibronectin type III (FNIII)-like domain within TN-R. By using a mutant polypeptide of F11 containing only Ig-like domains, a direct interaction between the Ig-like domains of F11 and FNIII-like domains 2-3 of TN-R was demonstrated. The interaction of TN-R with F11 in in vitro cultures enhanced F11-mediated neurite outgrowth, suggesting that the combined action of F11 and TN-R might be of regulatory influence on axon extension. A cell attachment region was identified in the FNIII-like domain eight of TN-R by domain-specific antibodies and fusion constructs. This site is distinct from the F11 binding site within TN-R.  相似文献   

9.
Many eukaryotic proteins are anchored by glycosylphosphatidylinositol (GPI) to the cell surface membrane. The GPI anchor is linked to proteins by an amide bond formed between the carboxyl terminus and phosphoethanolamine attached to the third mannose. Here, we report the roles of two mammalian genes involved in transfer of phosphoethanolamine to the third mannose in GPI. We cloned a mouse gene termed Pig-o that encodes a 1101-amino acid PIG-O protein bearing regions conserved in various phosphodiesterases. Pig-o knockout F9 embryonal carcinoma cells expressed very little GPI-anchored proteins and accumulated the same major GPI intermediate as the mouse class F mutant cell, which is defective in transferring phosphoethanolamine to the third mannose due to mutant Pig-f gene. PIG-O and PIG-F proteins associate with each other, and the stability of PIG-O was dependent upon PIG-F. However, the class F cell is completely deficient in the surface expression of GPI-anchored proteins. A minor GPI intermediate seen in Pig-o knockout but not class F cells had more than three mannoses with phosphoethanolamines on the first and third mannoses, suggesting that this GPI may account for the low expression of GPI-anchored proteins. Therefore, mammalian cells have redundant activities in transferring phosphoethanolamine to the third mannose, both of which require PIG-F.  相似文献   

10.
Adherence and cytotoxicity of Entamoeba histolytica require the function of a heterodimeric galactose and N-acetylgalactosamine (Gal/GalNAc)-specific lectin. The lectin heavy subunit (Hgl) contains a carbohydrate recognition domain and mediates inside-out cell signaling via its cytoplasmic tail. The function of the lectin light subunit (Lgl) is unknown. The lectin has a unique mechanism of membrane association: Hgl is transmembrane but Lgl is glycosylphosphatidylinositol (GPI) anchored. The role of the GPI anchor signal sequence in heterodimer assembly was tested. Epitope-tagged Lgl with or without the GPI anchor addition signal was expressed in E. histolytica trophozoites. Tagged Lgl did not assemble with Hgl into a lectin heterodimer in the absence of the GPI addition signal. Consistent with previous results that only the Hgl subunit mediates adherence, the monomeric Lgl without the GPI anchor signal lacked Gal/GalNAc-binding activity.  相似文献   

11.
Caspr/paranodin is an essential neuronal component of paranodal axoglial junctions, associated with contactin/F3. Its short intracellular domain contains a conserved motif (GNP motif) capable of binding protein 4.1 domains [FERM domains (four point one, ezrin, radixin, moesin)]. Schwannomin/merlin is a tumour suppressor expressed in many cell types, including in neurons, the function and partners of which are still poorly characterized. We show that the FERM domain of schwannomin binds to the paranodin GNP motif in glutathione S-transferase (GST)-pull down assays and in transfected COS-7 cells. The two proteins co-immunoprecipitated in brain extracts. In addition, paranodin and schwannomin were associated with integrin beta1 in transfected cells and in brain homogenates. The presence of paranodin increased the association between integrin beta1 and schwannomin or its N-terminal domain, suggesting that the interactions between these proteins are interdependent. In jimpy mutant mice, which display a severe dysmyelination with deficient paranodal junctions, the interactions between paranodin, schwannomin and integrin beta1 were profoundly altered. Our results show that schwannomin and integrin beta1 can be associated with paranodin in the central nervous system. Since integrin beta1 and schwannomin do not appear to be enriched in paranodes they may be quantitatively minor partners of paranodin in these regions and/or be associated with paranodin at other locations.  相似文献   

12.
The rapid turnover rate of hyaluronan (HA), the major unbranched glycosaminoglycan of the extracellular matrix, is dependent on hyaluronidases. One of them, hyaluronidase-2 (Hyal2), degrades HA into smaller fragments endowed with specific biological activities such as inflammation and angiogenesis. Yet the cellular environment of Hyal2, a purported glycosylphosphatidylinositol (GPI)-anchored protein, remains uncertain. We have examined the membrane association of Hyal2 in MDA-MB231 cancer cells where it is highly expressed and in COS-7 cells transfected with native or fluorescent Hyal2 constructs. In both cell types, Hyal2 was strongly associated with cell membrane fractions from which it could be extracted using a Triton X-114 treatment (hydrophobic phase) but not an osmotic shock or an alkaline carbonate solution. Treatment of membrane preparations with phosphatidylinositol-specific phospholipase C released immunoreactive Hyal2 into the aqueous phase, confirming the protein is attached to the membrane through a functional GPI anchor. Hyal2 transfected in COS-7 cells was associated with detergent-resistant, cholesterol-rich membranes known as lipid rafts. The cellular immunofluorescent pattern of Hyal2 was conditioned by the presence of a GPI anchor. In summary, the strong membrane association of Hyal2 through its GPI anchor demonstrated in this study using biochemical methods suggests that the main activity of this enzyme is located at the level of the plasma membrane in close contact with the pericellular HA-rich glycocalyx, the extracellular matrix, or possibly endocytic vesicles.  相似文献   

13.
Conversion of PrP(C) into PrP(Sc) is the central event in the pathogenesis of transmissible prion diseases. Although the molecular basis of this event and the intracellular compartment where it occurs are not yet understood, the association of PrP with cellular membranes and in particular its presence in detergent-resistant microdomains appears to be of critical importance. In addition it appears that scrapie conversion requires membrane-bound glycosylphosphatidylinositol (GPI)-linked PrP. The GPI anchor may affect either the conformation, the intracellular localization, or the association of the prion protein with specific membrane domains. However, how this occurs is not known. To understand the relevance of the GPI anchor for the cellular behavior of PrP, we have studied the biosynthesis and localization of a PrP version which lacks the GPI anchor attachment signal (PrP Delta GPI). We found that PrP Delta GPI is tethered to cell membranes and associates to membrane detergent-resistant microdomains but does not assume a transmembrane topology. Differently to PrP(C), this protein does not localize at the cell surface but is mainly released in the culture media in a fully glycosylated soluble form. The cellular behavior of anchorless PrP explains why PrP Delta GPI Tg mice can be infected but do not show the classical signs of the disorder, thus indicating that the plasma membrane localization of PrP(C) and/or of the converted scrapie form might be necessary for the development of a symptomatic disease.  相似文献   

14.
T-cadherin (T-cad) is a Ca(2+)-dependent cell adhesion glycoprotein bound to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. T-cad expressed on vascular smooth muscle cells (SMC) binds lipoproteins on blot. To analyze the molecular basis for the interaction of T-cad with lipoproteins we expressed recombinant human T-cad in HEK293 cells. Whereas membrane-bound T-cad from SMC and T-cad transfected HEK293 cells bind lipoproteins, T-cadherin proteins cleaved from the cell surface by phosphatidylinositol-specific phospholipase C (PI-PLC) do not. The lipoprotein-binding function is also lacking both for a recombinant human T-cad expressed in HEK293 cells without the GPI signal sequence, and for a human T-cad form expressed in Escherichia coli that contains the signal sequence for GPI attachment but is not modified with a GPI. We conclude that the GPI moiety of T-cadherin is necessary and sufficient to mediate lipoprotein binding.  相似文献   

15.
Glycosyl-phosphatidylinositol (GPI)-anchored proteins are unique in that they penetrate only the outer leaflet of the plasma membrane but are still able to mediate intracellular signalling events following antibody-induced ligation. Detergent solubilisation studies suggest that microdomains exist at the cell surface within which are sequestered GPI-linked proteins. Here we report the construction and expression of a fluorescent GPI anchor on the surface of CHO, EL4, and U937 cells by fusing green fluorescent protein (GFP) to the GPI-attachment site of CD59. The resultant GFP-GPI has properties comparable to that of endogenously expressed GPI-anchored molecules as shown by Triton X-114 partitioning. However, sucrose gradient floatation showed that GFP-GPI was only partially resistant to detergent solubilisation. Furthermore confocal scanning laser microscopy revealed a homogeneous distribution of GFP-GPI at the cell surface, which only became clustered following cross-linking of the GPI anchor via an anti-GFP antibody. Surprisingly, GFP-GPI signalled Ca2+ change upon cross-linking demonstrating its signalling competence. Our results suggest that the GPI-anchor itself does not confer a clustered distribution to molecules but that clustering occurs following ligation with antibody, which allows the protein to become Ca2+ signalling competent.  相似文献   

16.
In eukaryotic cells many cell surface proteins are attached to the membrane via the glycosylphosphatidylinositol (GPI) moiety. In yeast, GPI also plays important roles in the production of mannoprotein in the cell wall. We previously isolated gwt1 mutants and found that GWT1 is required for inositol acylation in the GPI biosynthetic pathway. In this study we isolated a new gwt1 mutant allele, gwt1-10, that shows not only high temperature sensitivity but also low temperature sensitivity. The gwt1-10 cells show impaired acyltransferase activity and attachment of GPI to proteins even at the permissive temperature. We identified TAT2, which encodes a high affinity tryptophan permease, as a multicopy suppressor of cold sensitivity in gwt1-10 cells. The gwt1-10 cells were also defective in the import of tryptophan, and a lack of tryptophan caused low temperature sensitivity. Microscopic observation revealed that Tat2p is not transported to the plasma membrane but is retained in the endoplasmic reticulum in gwt1-10 cells grown under tryptophan-poor conditions. We found that Tat2p was not associated with detergent-resistant membranes (DRMs), which are required for the recruitment of Tat2p to the plasma membrane. A similar result was obtained for Fur4p, a uracil permease localized in the DRMs of the plasma membrane. These results indicate that GPI-anchored proteins are required for the recruitment of membrane proteins Tat2p and Fur4p to the plasma membrane via DRMs, suggesting that some membrane proteins are redistributed in the cell in response to environmental and nutritional conditions due to an association with DRMs that is dependent on GPI-anchored proteins.  相似文献   

17.
Several cell surface eukaryotic proteins have a glycosylphosphatidylinositol (GPI) modification at the C-terminal end that serves as an anchor to the plasma membrane and could be responsible for the presence of GPI proteins in rafts, a type of functionally important membrane microdomain enriched in sphingolipids and cholesterol. In order to understand better how GPI proteins partition into rafts, the insertion of the GPI-anchored alkaline phosphatase (AP) was studied in real-time using atomic force microscopy. Supported phospholipid bilayers made of a mixture of sphingomyelin–dioleoylphosphatidylcholine containing cholesterol (Chl+) or not (Chl–) were used to mimic the fluid-ordered lipid phase separation in biological membranes. Spontaneous insertion of AP through its GPI anchor was observed inside both Chl+ and Chl– lipid ordered domains, but AP insertion was markedly increased by the presence of cholesterol.  相似文献   

18.
BST-2/CD317/HM1.24/tetherin is a host factor that inhibits the release of HIV-1 and other enveloped viruses. Structurally, tetherin consists of an N-terminal transmembrane (TM) region, a central coiled coil motif, and a putative C-terminal glycosylphosphatidylinositol (GPI) anchor motif. A current working model proposes that BST-2 inhibits virus release by physically tethering viral particles to the cell surface via its TM motif and GPI anchor. Here we analyzed the functional importance of the C-terminal GPI anchor motif in BST-2. We replaced the GPI anchor motif in BST-2 with the TM regions of several surface markers and found that the TM motifs of CD40 and transferrin receptor, but not that of CD45, could functionally substitute for a GPI anchor in BST-2. Conversely, replacing the TM region of CD4 by the putative GPI anchor signal of human BST-2 resulted in proper membrane targeting and surface expression of the chimeric protein, indicating that the BST-2 GPI anchor signal can function as a bona fide TM region. In fact, attempts to demonstrate GPI anchor modification of human BST-2 by biochemical methods failed. Our results demonstrate that the putative C-terminal GPI anchor motif in human BST-2 fulfills the requirements of a bona fide TM motif, leading us to propose that human BST-2 may in fact contain a second TM segment rather than a GPI anchor.  相似文献   

19.
NIH3T3 cells transformed by mouse FGF3-cDNA (DMI cells) selected for their ability to grow as anchorage-independent colonies in soft agar and in defined medium lacking growth factors exhibit a highly transformed phenotype. We have used dominant negative (DN) fibroblast growth factor (FGF) receptor 2 (FGFR2) isoforms to block the FGF response in DMI cells. When the DN-FGFR was expressed in DMI cells, their transformed phenotype can be reverted. The truncated FGFR2(IIIb), the high affinity FGFR for FGF3, is significantly more efficient at reverting the transformed phenotype as the IIIc isoform, reaffirming the notion that the affinity of the ligand to the DN-FGFR2 isoform determines the effect. Heparin or heparan sulfate displaces FGF3 from binding sites on the cell surface inhibiting the growth of DMI cells and reverts the transformed phenotype (). However, the presence of heparin is necessary to induce a mitogenic response in NIH3T3 cells when stimulated with soluble purified mouse FGF3. We have investigated the importance of cell surface binding of FGF3 for its ability to transform NIH3T3 cells by creating an FGF3 mutant anchored to the membrane via glycosylphosphatidylinositol (GPI). The GPI anchor renders the cell surface association of FGF3 independent from binding to heparan sulfate-proteoglycan of the cell surface membrane. Attachment of a GPI anchor to FGF3 also confers a much higher transforming potential to the growth factor. Even more, the purified GPI-attached FGF3 is as much transforming as the secreted protein acting in an autocrine mode. Because NIH3T3 cells do not express the high affinity tyrosine kinase FGF receptors for FGF3, these findings suggest that FGF3 attached to GPI-linked heparan sulfate-proteoglycan may have a broader biological activity as when bound to transmembrane or soluble heparan sulfate-proteoglycan.  相似文献   

20.
Thy-1 protein, a member of the Ig superfamily, is bound to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor. We demonstrate that following anchor cleavage by phospholipase C, the reactivity of the solubilized Thy-1 with several mAbs is lost, and its reactivity with polyclonal anti-Thy-1 Abs is markedly decreased. Hence, solubilized Thy-1 cannot be detected by a range of mAbs. In contrast, enzymatic cleavage of biotinylated Thy-1 yields an intact solubilized protein that can be detected by streptavidin. These results exclude a possible proteolytic degradation of solubilized Thy-1 and suggest that the marked decrease in Thy-1 immunoreactivity following delipidation is due to conformational changes in the Thy-1 protein. We further demonstrate that addition of phospholipase C to preformed Ab-Ag complexes causes dissociation and removal of Thy-1 from the complex, indicating that delipidation of Thy-1 induces a conformational change in Thy-1 that is sufficient to dissociate bound Ab. The possibility should therefore be considered that the GPI anchor affects the conformation of a protein to which it is linked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号