首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 518 毫秒
1.
Effects of Humidity on Photosynthesis   总被引:2,自引:0,他引:2  
It was found for two species that net carbon dioxide uptakerates were reduced at constant intercellular carbon dioxidepartial pressure when single attached leaves were exposed tolarge leaf to air water vapour pressure differences. Leaf temperature,irradiance, and ambient carbon dioxide and oxygen partial pressureswere kept constant. Net carbon dioxide uptake rates decreasedlinearly with increasing vapour pressure difference, even incases where transpiration rates were highest at intermediatevalues of vapour pressure difference. Decreases in net carbondioxide uptake rates were quickly reversible. Different windspeeds across the measured leaf, different vapour pressure deficitsaround the rest of the shoot, and transient responses of netcarbon dioxide uptake rate to abrupt changes in vapour pressuredifference all gave the same response of net carbon dioxideuptake rate to vapour pressure difference. The data show thatthe inhibition of net carbon dioxide uptake rate at a givenvapour pressure difference was not simply related to whole leaftranspiration rate or stomatal conductance. Key words: Vapour pressure difference, CO2 uptake rate, Leaf temperature  相似文献   

2.
The ternary effects of transpiration rate on the rate of assimilation of carbon dioxide through stomata, and on the calculation of the intercellular concentration of carbon dioxide, are now included in standard gas exchange studies. However, the equations for carbon isotope discrimination and for the exchange of oxygen isotopologues of carbon dioxide ignore ternary effects. Here we introduce equations to take them into account. The ternary effect is greatest when the leaf-to-air vapour mole fraction difference is greatest, and its impact is greatest on parameters derived by difference, such as the mesophyll resistance to CO(2) assimilation, r(m) . We show that the mesophyll resistance to CO(2) assimilation has been underestimated in the past. The impact is also large when there is a large difference in isotopic composition between the CO(2) inside the leaf and that in the air. We show that this partially reconciles estimates of the oxygen isotopic composition of CO(2) in the chloroplast and mitochondria in the light and in the dark, with values close to equilibrium with the estimated oxygen isotopic composition of water at the sites of evaporation within the leaf.  相似文献   

3.
The rate of carbon dioxide exchange in both light and darkness by detached tobacco leaves placed at various oxygen concentrations was measured by an Infra-Red CO2 Analyzer and a Clark oxygen electrode. It was observed that during illumination oxygen had two different effects. One was to stimulate carbon dioxide evolution and the other to inhibit carbon dioxide absorption. Concentration of carbon dioxide at compensation point was found to be a linear function of oxygen concentration and this has been explained as due mainly to an increased evolution of carbon dioxide. Such an evolution during illumination has been called photorespiration. Increased concentrations of oxygen also had a stimulating effect on the magnitude of the initial post-illumination burst of carbon dioxide in darkness, but no effect on the subsequent steady rates. These data have been explained as due to the suspension of regular respiration in darkness and its replacement by a different process, tentatively called photorespiration. A second effect of oxygen was to reduce the efficiency (called “carboxylation efficiency”) with which a leaf was able to remove carbon dioxide from the atmosphere.  相似文献   

4.
Seven C3 crop and three C3 weed species were grown from seed at 360 and at 700 cm3 m–3 carbon dioxide concentrations in a controlled environment chamber to compare dry mass, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and photosynthetic acclimation at ambient and elevated carbon dioxide. The dry mass at the final harvest at elevated carbon dioxide relative to that at ambient carbon dioxide was highly correlated with the RGR at the lower carbon dioxide concentration. This relationship could be quite common, because it does not require that species differ in the response of RGR or photosynthesis to elevated carbon dioxide, and holds even when species differ moderately in these responses. RGR was also measured for a limited period at the end of the experiment to determine relationships with leaf gas exchange measured at this time. Relative increases in RGR at elevated carbon dioxide at this time were more highly correlated with the relative increase in NAR at elevated carbon dioxide than with the response of LAR. The amount of acclimation of photosynthesis was a good predictor of the relative increase in NAR at elevated carbon dioxide, and the long-term increase in photosynthesis in the growth environment. No differences between crops and weeds or between cool and warm climate species were found in the responses of growth or photosynthetic acclimation to elevated carbon dioxide.  相似文献   

5.
Yeo, A. R., Caporn, S. J. M.and Flowers, T. J. 1985. The effectof salinity upon photosynthesis in rice (Oryza sativa L.): Gasexchange by individual leaves in relation to their salt content.—J.exp. Bot. 36: 1240–1248. The effect of salinity upon net photosynthesis and transpirationby individual leaves of rice has been investigated by gas exchangemeasurements in seedlings at the five to six leaf stage. Salinitydid not, initially, reduce net photosynthesis in the whole plantbut only in the older leaves in which sodium accumulated. Analysisof the course of events in leaf four following salinizationof the medium showed that net photosynthesis was inversely correlatedwith the sodium concentration in the leaf tissue. There wasno evidence of a threshold effect; net photosynthesis declinedlinearly with increasing leaf sodium concentration and was reducedby 50% at only 05 mmol sodium per gram dry weight. The relationshipbetween transpiration rate and leaf sodium concentration closelyparalleled that for photosynthesis; there was no effect of leafsodium concentration on the carbon dioxide concentration inthe intercellular spaces, showing that sodium accumulation inthe leaf affected stomatal aperture and carbon dioxide fixationsimultaneously. Photosynthesis was reduced by half at a sodiumconcentration in the leaf which did not reduce the concentrationof chlorophyll. The nature of the effect of salinity upon leafgas exchange is discussed. Key words: Salinity, rice, Oryza sativa L., photosynthesis, apoplastic salt load  相似文献   

6.
A closed gas exchange system has been designed for connection to the Hewlett-Packard programmable calculator controlled data acquisition system to provide a complete process of measuring and control. The system enables routine measurements of photosynthetic and dark respiration rates at different irradiances and different carbon dioxide and oxygen concentrations and leaf temperatures, and also a simple and rapid automatic control of irradiance according to the actual photosynthetic rate.  相似文献   

7.
Summary A physiologically based steady-state model of whole leaf photosynthesis (WHOLEPHOT) is used to analyze observed net photosynthesis daily time courses of soybean, Glycine max (L.) Merr., leaves. Observations during two time periods of the 1978 growing season are analyzed and compared. After adjustment of the model for soybean, net photosynthesis rates are calculated with the model in response to measured incident light intensity, leaf temperature, air carbon dioxide concentration, and leaf diffusion resistance. The steady-state calculations closely approximate observed net photosynthesis. Results of the comparison reveal a decrease in photosynthetic capacity in leaves sampled during the second time period, which is associated with decreasing ability of leaves to respond to light intensity and internal air space carbon dioxide concentration, increasing mesophyll resistance, and increasing stomatal resistance.  相似文献   

8.
9.
渗透胁迫对小麦幼苗光合作用中氧和二氧化碳交换的影响   总被引:2,自引:0,他引:2  
小麦(TriticumaestivumL.cv.1166)幼苗在不同渗透势的聚乙二醇溶液胁迫下,叶片的相对含水量和水势随渗透势下降递降,膜的相对透性增加,叶绿素和可溶性蛋白含量减少,核酮糖1,5-双磷酸浚化酶/加氧酶活性下降,而乙醇酸氧化酶活性则上升了。渗透胁迫对植物光合作用造成的不良影响,还表现为损害了光合放氧和二氧化碳的交换与代谢过程,其中二氧化碳受到的影响比氧敏感。  相似文献   

10.
Large underestimates of the limitation to photosynthesis imposed by stomata can occur because of an error in the standard method of calculating average substomatal pressures of carbon dioxide when heterogeneity of those pressures occurs across a leaf surface. Most gas exchange data supposedly indicating nonstomatal inhibition of photosynthesis by water stress could have this error. However, if no stomatal closure occurs, any reduction in photosynthesis must be due to nonstomatal inhibition of photosynthesis. Net carbon dioxide exchange rates and conductances to water vapor were measured under field conditions in upper canopy leaves of tomato plants during two summers in Beltsville, Maryland, USA. Comparisons were made near midday at high irradiance between leaflets in air with the ambient water vapor content and in air with a higher water content. The higher water content, which lowered the leaf to air water vapor pressure difference (VPD), was imposed either one half hour or several hours before measurements of gas exchange. In both seasons, and irrespective of the timing of the imposition of different VPDs, net photosynthesis increased 60% after decreasing the VPD from 3 to 1 kPa. There were no differences in leaf conductance between leaves at different VPDs, thus transpiration rates were threefold higher at 3 than at 1 kPa VPD. It is concluded that nonstomatal inhibition of photosynthesis did occur in these leaves at high transpiration rate.  相似文献   

11.
Summary A physiologically based steady-state model of whole leaf photosynthesis (WHOLEPHOT) is used to describe net photosynthesis daily time courses in Prunus armeniaca. Net photosynthesis rates are calculated in response to incident light intensity, leaf temperature, air carbon dioxide concentration, and leaf diffusion resistance measured at five minute intervals. The steady-state calculations closely approximate the observed net photosynthesis rates for a broad range of weather conditions and leaf stomatal behavior.  相似文献   

12.
The kinetics of conformation change as determinant of Rubisco's specificity   总被引:1,自引:1,他引:0  
The molecular basis of Rubisco's specificity is investigated in terms of the structure and kinetics of the enzyme. We propose that the rates of the conformational changes (closing/opening) of the binding niche exert a crucial influence on apparent binding rates and the enzyme's specificity. An extended reaction scheme for binding and conformational kinetics is presented and expressed in a mathematical model. The closed conformation, known from X-ray structures, is assumed to be necessary for binding of the gaseous substrates (carbon dioxide and oxygen) and for catalysis. Opening the niche interrupts catalysis and enables a fast exchange of those molecules between the internal cavity and the surrounding solvent. Our model predicts that specificity of Rubisco for CO2 increases with the rate by which the niche opens. This is due to the fact that binding of the carbon dioxide is faster than oxygen binding, which is hampered by spin inversion. The apparent rate of carbon dioxide binding correlates with the repetition rate of the conformational change, and the rate of oxygen binding with the probability of the closed state. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Changes in the concentration and stable isotope ratio of atmospheric CO(2) can be used to study variations in the net exchange of carbon dioxide in terrestrial ecosystems (net difference between total photosynthesis and respiration). Changes in the timing of seasonal fluctuations in atmospheric CO(2) concentration have suggested that net uptake of carbon dioxide has been increasing in northern latitude ecosystems in association with warmer temperatures and a lengthening of the growing season. Stable isotope techniques allow a more detailed separation of differences between ecosystem photosynthesis and respiration because these two processes have contrasting effects on both the carbon and oxygen isotope ratio of atmospheric CO(2). Future applications of stable isotope analyses include documenting and monitoring the influence of global environmental change on ecosystem CO(2) exchange at regional scales (10-1000km(2)).  相似文献   

14.
15.
BACKGROUND: Flooding causes substantial stress for terrestrial plants, particularly if the floodwater completely submerges the shoot. The main problems during submergence are shortage of oxygen due to the slow diffusion rates of gases in water, and depletion of carbohydrates, which is the substrate for respiration. These two factors together lead to loss of biomass and eventually death of the submerged plants. Although conditions under water are unfavourable with respect to light and carbon dioxide supply, photosynthesis may provide both oxygen and carbohydrates, resulting in continuation of aerobic respiration. SCOPE: This review focuses on evidence in the literature that photosynthesis contributes to survival of terrestrial plants during complete submergence. Furthermore, we discuss relevant morphological and physiological responses of the shoot of terrestrial plant species that enable the positive effects of light on underwater plant performance. CONCLUSIONS: Light increases the survival of terrestrial plants under water, indicating that photosynthesis commonly occurs under these submerged conditions. Such underwater photosynthesis increases both internal oxygen concentrations and carbohydrate contents, compared with plants submerged in the dark, and thereby alleviates the adverse effects of flooding. Additionally, several terrestrial species show high plasticity with respect to their leaf development. In a number of species, leaf morphology changes in response to submergence, probably to facilitate underwater gas exchange. Such increased gas exchange may result in higher assimilation rates, and lower carbon dioxide compensation points under water, which is particularly important at the low carbon dioxide concentrations observed in the field. As a result of higher internal carbon dioxide concentrations in submergence-acclimated plants, underwater photorespiration rates are expected to be lower than in non-acclimated plants. Furthermore, the regulatory mechanisms that induce the switch from terrestrial to submergence-acclimated leaves may be controlled by the same pathways as described for heterophyllous aquatic plants.  相似文献   

16.
The general characteristics of diapause respiration in P. brassicae are described, together with an examination of short-term (supradian) and long-term (infradian) variation in oxygen uptake. Supradian cycles occur approximately every 3 hr at 10°C and are shown by closed box analyses to be initiated by carbon dioxide bursts. Maximal rates of oxygen uptake occur shortly after the burst in carbon dioxide release, not at the start of the burst as recorded in other diapausing species. The frequency of supradian cycles is directly related to temperature and metabolism in accordance with the characteristics of discontinuous carbon dioxide release.Infradian cycles of between 3 and 7 days duration are recorded for both oxygen uptake and net exchange rates. Peaks in oxygen demand occur on average every 4 days at 10°C, and are related in frequency to the level of metabolism of individual pupae. Just before post-diapause development, oxygen demands fall to about half their normal levels; these changes are associated with appropriate changes in the frequency of supradian and infradian cycles.  相似文献   

17.
Vertical variation in leaf gas exchange characteristics of trees grown in a lowland dipterocarp forest in Peninsular Malaysia was investigated. Maximum net photosynthetic rate, stomatal conductance, and electron transport rate of leaves at the upper canopy, lower canopy, and forest floor were studied in situ with saturated condition photosynthetic photon flux density. The dark respiration rate of leaves at the various heights was also studied. Relationships among gas exchange characteristics, and also with nitrogen content per unit leaf area and leaf dry matter per area were clearly detected, forming general equations representing the vertical profile of several important parameters related to gas exchange. Numerical analysis revealed that the vertical distribution of gas exchange parameters was well determined showing both larger carbon gain for the whole canopy and at the same time positive carbon gain for the leaves of the lowest layer. For correct estimation of gas exchange at both leaf and canopy scales using multi-layer models, it is essential to consider the vertical distribution of gas exchange parameters with proper scaling coefficients.  相似文献   

18.
Use of infrared analyzers to measure water vapor concentrations in photosynthesis systems is becoming common. It is known that sensitivity of infrared carbon dioxide and water vapor analyzers is affected by the oxygen concentration in the background gas, particularly for absolute analyzers, but the potential for large errors in estimates of stomatal conductance due to effects of oxygen concentration on the sensitivity of infrared water vapor analyzers is not widely recognized. This work tested three types of infrared water vapor analyzers for changes in sensitivity of infrared water vapor analyzers depending on the oxygen content of the background gas. It was found that changing from either 0 or 2% to 21% oxygen in nitrogen decreased the sensitivity to water vapor for all three types of infrared water vapor analyzers by about 4%. The change in sensitivity was linear with oxygen mole fraction. The resulting error in calculated stomatal conductance would depend strongly on the leaf to air vapor pressure difference and leaf temperature, and also on whether leaf temperature was directly measured or calculated from energy balance. Examples of measurements of gas exchange on soybean leaves under glasshouse conditions indicated that changing from 21% to 2% oxygen produced an artifactual apparent increase in stomatal conductance which averaged about 30%. Similar errors occurred for `conductances' of wet filter paper. Such errors could affect inferences about the carbon dioxide dependence of the sensitivity of photosynthesis to oxygen. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Long-term and direct measurements of CO2 and water vapour exchange are needed over forested ecosystems to determine their net annual fluxes of carbon dioxide and water. Such measurements are also needed to parameterize and test biogeochemical, ecological and hydrological assessment models. Responding to this need, eddy covariance measurements of CO2 and water vapour were made ever a deciduous forest growing near Oak Ridge, TN, between April 1993 and April 1994. Periodic measurements were made of leaf area index, stomatal resistance, soil moisture and pre-dawn leaf water potential to characterize the gas exchange capacity of the canopy. Four factors had a disproportionate influence on the seasonal variation of CO2 flux densities. These factors were photon flux densities (during the growing season), temperature (during the dormant season), leaf area index and the occurrence of drought The drought period occurred during the peak of the growing season and caused a significant decline in daily and hourly CO2 flux densities, relative to observations over the stand when soil moisture was plentiful. The annual net uptake of carbon was calculated by integrating flux measurements and filling missing and spurious data with the relations obtained between measured CO2 fluxes and environmental forcing variables. The net flux of carbon for the period between April 1993 and April 1994 was -525 g C m?2 y?1. This value represents a net flux of carbon from the atmosphere and into the forest. The net annual carbon exchange of this southern temperate broadleaved forest exceeded values measured over a northern temperate forest (which experiences a shorter growing season and has less leaf area) by 200 g C m?2 y?1 (cf. Wofsy et al 1993). The seasonal variation of canopy evaporation (latent heat flux) was controlled mostly by changes in leaf area and net radiation. A strong depression in evaporation rates was not observed during the drought Over a broadleaved forest large vapour pressure deficits promote evaporation and trees in a mixed stand are able to tap a variety of deep and shallow water sources.  相似文献   

20.
Phosphorus nutrition influence on leaf senescence in soybean   总被引:11,自引:0,他引:11       下载免费PDF全文
Remobilization of mineral nutrients from leaves to reproductive structures is a possible regulatory factor in leaf senescence. The relationship between P remobilization from leaves of soybean (Glycine max [L.] Merr. cv McCall) during reproductive development and leaf senescence was determined by utilizing soil P treatments that supplied deficient, optimum, and supraoptimum soil P levels. The soil P treatments simulated field conditions, being initiated at the time of planting with no subsequent addition or removal of P. It was hypothesized that P deficiency would accelerate leaf senescence and that supraoptimum P nutrition would delay the timing or rate of leaf senescence relative to plants grown with optimum P. Supraoptimum soil P led to a two- to fourfold increase in leaf P concentration compared with optimum P, and during senescence there was no net P remobilization from leaves for this treatment. Leaf P concentration was similar for plants grown at optimum or deficient soil P, and there was significant net P remobilization from leaves of both treatments in one of the two experiments. As indicated by changes in leaf N, carbon dioxide exchange rate, ribulose 1,5-bisphosphate carboxylase/oxygenase activity, and chlorophyll concentration, leaf senescence patterns were similar for all soil P treatments. Thus, it can be concluded that leaf senescence was not affected by either P deficiency or enhanced leaf P concentration resulting from supraoptimum soil P. The results suggest that P nutrition in general, and specifically P remobilization from leaves, does not exert any regulatory control on the process of leaf senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号