首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutant strains of Anabaena variabilis which are resistant to the tryptophan analogue, 6-fluorotryptophan, liberated a wide range of amino acids although none liberated tryptophan in detectable quantities. Four strains (FT-7, FT-8, FT-9, FT-10) produced predominantly alanine together with small amounts of phenylalamine and tyrosine, strain FT-2 liberated mainly phenylalanine and tyrosine and strain FT-6 liberated mainly glutamate, NH 4 + and several unidentified ninhydrin-positive compounds. Two forms of 3-deoxy-D-arbinoheptulosonate 7-phosphate (DAHP) synthase were identified in the parent strain, a tyrosine-sensitive form and a phenylalanine-sensitive form. In strains FT-2 and FT-6 the phenylalanine-sensitive enzyme was not detected and in strain FT-7 it was apparently deregulated with respect to inhibition by phenylalanine. No deregulation of anthranilate synthase was observed but mutant strains were found to have higher specific activities of this enzyme than the parent strain.Abbreviations chla chlorophyll a - 6-FT 6-fluorotryptophan - DAHP 3-deoxy-D-arabinoheptulosonate 7-phosphate - PEP phosphoenolpyruvate  相似文献   

2.
The evolution of aromatic amino acid biosynthesis and its regulation is under study in a large assemblage of prokaryotes (Superfamily A) whose phylogenetic arrangement has been constructed on the criterion of oligonucleotide cataloging. One section of this Superfamily consists of a well defined (rRNA homology) cluster denoted as Group III pseudomonads. Pseudomonas acidovorans ATCC 11299a, a Group III member, was chosen for indepth studies of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase, the initial regulatory enzyme of aromatic biosynthesis. This strain is of particular interest for evolutionary studies of aromatic metabolism because it possesses phenylalanine hydroxylase, an enzyme whose physiological role and distribution among prokaryotes is largely unknown. Although P. acidovorans ATCC 11299a has been of uncertain identity, we now establish it unambiguously as a species of acidovorans by virtue of its 87% DNA homology with P. acidovorans ATCC 15668 (type strain). This result conformed with enzyme patterning studies which placed ATCC 11299a into pseudomonad Group IIIa, a subgroup containing the acidovorans species. Crude extracts of Group III pseudomonads had previously been shown to share, as a common group characteristic, sensitivity of DAHP synthase to feedback inhibition by either l-tyrosine or l-phenylalanine. Detailed studies with partially purified preparations from strain ATCC 11299a revealed the presence of two distinct regulatory isozymes, DAHP synthase-phe and DAHP synthase-tyr. DAHP synthase-tyr is tightly controlled by l-tyrosine with 50% inhibition of activity being achieved at 4.0 M effector. DAHP synthase-phe is inhibited 50% by 40 M l-phenylalanine and exhibits dramatic changes in levels of activity, as well as chromatographic elution patterns, in response to dithiothreitol. This two-isozyme pattern of DAHP synthase has not been described previously, although it may prove to be widespread.Abbreviations DAHP 3-deoxy-d-arabino-heptulosonate 7-phosphate - E4P d-erythrose-4-phosphate - PEP phosphoenolpyruvate - DTT dithiothreitol - BSA fraction V bovine serum albumin  相似文献   

3.
The broad-spectrum herbicide glyphosate inhibits the growth of Candida maltosa and causes the accumulation of shikimic acid and shikimate-3-phosphate. Glyphosate is a potent inhibitor of three enzymes of aromatic amino acid biosynthesis in this yeast. In relation to tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase and dehydroquinate synthase, the inhibitory effect appears at concentrations in the mM range, but 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase is inhibited by micromolar concentrations of glyphosate. Inhibition of partially purified EPSP synthase reaction by glyphosate is competitive with respect to phosphoenolpyruvate (PEP) with a K i -value of 12 M. The app. K m for PEP is about 5-fold higher and was 62 M. Furthermore, the presence of glyphosate leads to derepression of many amino acid biosynthetic enzymes.Abbreviations DAHP 3-deoxy-D-arabino-heptulosonate 7-phosphate - EPSP synthase 5-enolpyruvylshikimate 3-phosphate synthase - PEP phosphoenolpyruvate - S-3-P shikimate-3-phosphate  相似文献   

4.
3-Deoxy-d-manno-octulosonate 8-phosphate (KDOP) synthase and 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase catalyze similar phosphoenolpyruvate-utilizing reactions. The genome of Neisseria gonorrhoeae contains one gene encoding KDOP synthase and one gene encoding DAHP synthase. Of the two nonhomologous DAHP synthase families known, the N. gonorrhoeae protein belongs to the family I assemblage. KDOP synthase exhibited an ability to replace arabinose-5-P with either erythrose-4-P or ribose-5-P as alternative substrates. The results of periodate oxidation studies suggested that the product formed by KDOP synthase with erythrose-4-P as the substrate was 3-deoxy-d-ribo-heptulosonate 7-P, an isomer of DAHP. As expected, this product was not utilized as a substrate by dehydroquinate synthase. The significance of the ability of KDOP synthase to substitute erythrose-4-P for arabinose-5-P is (i) recognition of the possibility that the KDOP synthase might otherwise be mistaken for a species of DAHP synthase and (ii) the possibility that the broad-specificity type of KDOP synthase might be a relatively vulnerable target for antimicrobial agents which mimic the normal substrates. An analysis of sequences in the database indicates that the family I group of DAHP synthase has a previously unrecognized membership which includes the KDOP synthases. The KDOP synthases fall into a subfamily grouping which includes a small group of DAHP synthases. Thus, family I DAHP synthases separate into two subfamilies, one of which includes the KDOP synthases. The two subfamilies appear to have diverged prior to the acquisition of allosteric-control mechanisms for DAHP synthases. These allosteric control specificities are highly diverse and correlate with the presence of N-terminal extensions which lack homology with one another.3-Deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) and 3-deoxy-d-manno-octulosonate 8-phosphate (KDOP) are analogous seven- and eight-carbon 2-keto-3-deoxy sugars that are synthesized by enzymes which belong to functionally unrelated pathways. DAHP synthase forms DAHP as the acyclic precursor of the aromatic amino acids in bacteria, lower eukaryotes, and plants (3); KDOP synthase is best known for its role in the formation of KDOP as a critical component of the lipopolysaccharide of gram-negative bacteria (37), but its distribution in nature has recently been recognized to be broader (13). Both enzymes catalyze an overall condensation of phosphoenolpyruvate (PEP) with an aldose, i.e., erythrose-4-phosphate (E4P) in the case of DAHP synthase and arabinose-5-phosphate (A5P) in the case of KDOP synthase. The reactions are irreversible and are not aldol-type condensations, which unfortunately has been implied by the Enzyme Commission naming that has been recommended for DAHP synthase.As might be expected from the close structural relationship of A5P and E4P, the reactions are strikingly similar. This similarity is reflected at the level of mechanistic detail (see reference 16 and references therein). DAHP synthase and KDOP synthase, along with enolpyruvoylshikimate 3-phosphate synthase and UDP-N-acetylglucosamine enolpyruvoyl transferase, comprise a small class of PEP-utilizing enzymes that catalyze C—O bond cleavage with respect to the release of Pi from PEP (1, 27). This contrasts with the more familiar nucleophilic attack at the phosphorous atom of PEP that results in P—O bond cleavage by the action of enzymes such as pyruvate kinase (25), PEP carboxylase (34), and PEP carboxykinase (8).In classical studies with Escherichia coli, DAHP synthase (44, 45) and KDOP synthase (41) are specific for E4P and A5P, respectively. In contrast, we found that the KDOP synthase of Neisseria gonorrhoeae possessed the ability to utilize E4P in place of A5P. We addressed the question of whether KDOP synthase of N. gonorrhoeae in the presence of E4P and PEP was able to form DAHP, in which case it would also have the potential to function as a DAHP synthase. The time-dependent cleavage of the product was investigated by the periodate-oxidation-thiobarbituric acid (TBA) assay, and these results allow some speculation on the stereospecific course of the reaction in comparison with the reaction of DAHP synthase.  相似文献   

5.
The effect of N-2-(6-methyl-pyridyl)-aminomethylene bisphosphonic acid (M-pyr-AMBPA), a compound previously shown to exhibit herbicidal properties on whole plants and to inhibit in vitro activity of the first enzyme in the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) synthase, was investigated on Nicotiana plumbaginifolia suspension cultured cells and compared to that of the herbicide glyphosate. The addition of M-pyr-AMBPA from 10−4 to 10−3 M was found to cause a severe cell growth reduction. Kinetic analysis of partially purified DAHP synthase accounted for non-competitive inhibition type with respect to both phospho-enol-pyruvate and erythrose-4-phosphate, with KI values of 0.43 and 0.62 mM, respectively. Amino acid pool measurements of cells grown in the presence of sublethal doses of M-pyr-AMBPA pointed to an actual reduction of free aromatic amino acids, showing that DAHP synthase inhibition takes place in vivo, and suggesting that the interference of this aminophosphonate with plant aromatic biosynthesis may account for a large part of its phytotoxicity. However, exogenous supply of a mixture of phenylalanine, tyrosine and tryptophan failed to achieve full reversal of cell growth inhibition, yet the occurrence of other target(s) cannot be ruled out. Received November 24, 1998; accepted June 3, 1999  相似文献   

6.
The synthesis of chitin during germ-tube formation in Candida albicans may be regulated by the first and last steps in the chitin pathway: namely l-glutamine-d-fructose-6-phosphate aminotransferase and chitin synthase. Induction of germ-tube formation with either glucose and glutamine or serum was accompanied by a 4-fold increase in the specific activity of the aminotransferase. Chitin synthase in C. albicans is synthesized as a proenzyme. N-acetyl glucosamine increased the enzymic activity of the activated enzyme 3-fold and the enzyme exhibited positive co-operativity with the substrate, UDP-N-acetylglucosamine. Although chitin synthase was inhibited by polyoxin D (K i =1.2M) this antibiotic did not affect germination. During germ-tube formation the total chitin synthase activity increased 1.4-fold and the expressed activity (in vivo activated proenzyme) increased 5-fold. These results could account for the reported 5-fold increase in chitin content observed during the yeast to mycelial transformation.Non-Standard Abbreviations GlcNac N-acetyl glucosamine - UDP-GlcNac UDP-N-acetyl glucosamine - PMSF phenylmethylsulphonylfluoride  相似文献   

7.
5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (3-phosphoshikimate 1-carboxyvinyltransferase; EC 2.5.1.19), 3-dehydroquinate dehydratase (EC 4.2.1.10) and shikimate: NADP+ oxidoreductase (EC 1.1.1.25) were present in intact chloroplasts and root plastids isolated from pea seedling extracts by sucrose and modified-silica density gradient centrifugation. In young (approx. 10-d-old) seedling shoots the enzymes were predominantly chloroplastic; high-performance anion-exchange chromatography resolved minor isoenzymic activities not observed in density-gradientpurified chloroplasts. The initial enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (EC 4.1.2.15) was also associated with intact density-gradient-purified chloroplasts. 3-Dehydroquinate synthase (EC 4.6.1.3) and shikimate kinase (EC 2.7.1.71) were detected together with the other pathway enzymes in stromal preparations from washed chloroplasts. Plastidic EPSP synthase was inhibited by micromolar concentrations of the herbicide glyphosate.Abbreviations DAHP 3-deoxy-d-arabino-heptulosonate 7-phosphate - DEAE diethylaminoethyl - DHQase 3-dehydroquinate dehydratase - DTT dithiothreitol - EPSP 5-enolpyruvylshikimate 3-phosphate - SORase shikimate:NADP+ oxidoreductase  相似文献   

8.
Nocardia sp. 239 is able to use l-tyrosine and both d- and l-phenylalanine as carbon-, energy- and nitrogen sources for growth. The catabolism of these compounds is by way of (4-hydroxy)phenylpyruvate and (4-hydroxy)-phenylacetate as intermediates and the pathways merge at the level of homogentisate. The conversion of the amino acids into (4-hydroxy)phenylpyruvate is catalyzed by an inducible NAD-dependent phenylalanine dehydrogenase and l-tyrosine aminotransferase, respectively. Incubation of the organism in media with l-phenylalanine plus phenyl-pyruvate resulted in diauxic growth, with phenylpyruvate used first. Phenylalanine dehydrogenase activity cold only be detected after depletion of phenylpyruvate, in the ensuing second growth phase on l-phenylalanine. During growth on phenylalanine plus methanol, low levels of phenylalanine dehydrogenase were detected and this resulted in simultaneous utilization of the two substrates. Following diepoxyoctane treatment, mutants of Nocardia sp. 239 affected in phenylalanine and phenylpyruvate degradation were isolated. Double mutants blocked in both phenylalanine dehydrogenase and phenylpyruvate decarboxylase completely failed to catabolize phenylalanine. The absence of these enzymes did not affect growth on tyrosine.Abbreviations RuMP ribulose monophosphate - EMS ethylmethanesulphonate - NTG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

9.
Two novel genes, aroF and aroG, from the filamentous fungus Aspergillus nidulans were isolated and the regulative fine-tuning between the encoded, differentially regulated 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthases was analyzed. A wide range of DAHP synthase isoenzymes of various organisms are known, but only a few have been characterized further. DAHP synthases (EC 4.1.2.15) catalyze the first committed step of the shikimate pathway, which is a putative target for anti-weed drugs. The reaction is the condensation of erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP) to yield DAHP. The two purified DAHP synthases showed different affinities for the substrates: 175 microM for PEP and 341 microM for E4P for the aroFp isoenzyme and weaker affinities of 239 microM (PEP) and 475 microM (E4P) for the aroGp isoenzyme. The enzymes are differentially regulated by tyrosine (aroFp) and phenylalanine (aroGp). The calculated kcat values are 7.0 s-1 for the tyrosine-inhibitable (aroFp) and 5.5 s-1 for the phenylalanine inhibitable (aroGp) enzyme. Tyrosine is a competitive inhibitor of the aroFp DAHP synthase in its reaction with PEP. Phenylalanine is a competitive inhibitor of the isoenzyme aroGp in its reaction with E4P. Both enzymes are inhibited by the chelating agent EDTA, which indicates a metal ion as cofactor.  相似文献   

10.
Roots of carrots (Daucus carota) contain three activities of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase, the enzyme that catalyzes the first step of the shikimate pathway. The three activities, enzymes I, II, and III, are separated by chromatography on phosphocellulose. Enzyme III, purified to electrophoretic homogeneity, has a native molecular weight of 103,000 and consists of two identical subunits of 53,000 daltons each. Double reciprocal plots of reaction velocity versus substrate concentration yield Km values of 0.03 and 0.07 millimolar for P-enolpyruvate and erythrose-4-P, respectively. Both products, DAHP and orthophosphate, inhibit the enzyme. Enzyme III is a hysteretic enzyme that is activated by physiological concentrations of l-tryptophan and Mn2+, both of which also partially eliminate the hysteretic lag. Feedback activation of carrot DAHP synthase by tryptophan is interpreted to be an early regulatory signal for polyphenol biosynthesis. The three carrot DAHP synthase isoenzymes share antigenic determinants.  相似文献   

11.
The pathway construction and allosteric regulation of phenylalanine and tyrosine biosynthesis was examined in Neisseria gonorrhoeae. A single 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase enzyme sensitive to feedback inhibition by l-phenylalanine was found. Chorismate mutase and prephenate dehydratase appear to co-exist as catalytic components of a bifunctional enzyme, known to be present in related genera. The latter enzyme activities were both feedback inhibited by l-phenylalanine. Prephenate dehydratase was strongly activated by l-tyrosine. NAD+-linked prephenate dehydrogenase and arogenate dehydrogenase activities coeluted following ion-exchange chromatography, suggesting their identity as catalytic properties of a single broad-specificity cyclohexadienyl dehydrogenase. Each dehydrogenase activity was inhibited by 4-hydroxyphenylpyruvate, but not by l-tyrosine. Two aromatic aminotransferases were resolved, one preferring the l-phenylalanine:2-ketoglutarate substrate combination and the other preferring the l-tyrosine: 2-ketoglutarate substrate combination. Each aminotransferase was also able to transaminate prephenate. The overall picture of regulation is one in which l-tyrosine modulates l-phenylalanine synthesis via activation of prephenate dehydratase. l-Phenylalanine in turn regulates early-pathway flow through inhibition of DAHP synthase. The recent phylogenetic positioning of N. gonorrhoeae makes it a key reference organism for emerging interpretations about aromatic-pathway evolution.  相似文献   

12.
Catalytic properties and membrane associations of the phosphatidylglycerophosphate (PGP) and phosphatidylserine (PS) synthases of Rhodobacter sphaeroides were examined to further characterize sites of phospholipid biosynthesis. In preparations of cytoplasmic membrane (CM) enriched in these activities, apparent K m values of PGP synthase were 90 M for sn-glycerol-3-phosphate and 60 M for CDP-diacylglycerol; the apparent K m of PS synthase for l-serine was near 165 M. Both enzymes required Triton X-100 with optimal PS synthase activity at a detergent/CDP-diacylglycerol (mol/mol) ratio of 7.5:1.0, while for optimal PGP synthase, a range of 10–50:1.0 was observed. Unlike the enzyme in Escherichia coli and several other Gram-negative bacteria, the PS synthase activity had a specific requirement for magnesium and was tightly associated with membranes rather than ribosomes in crude cell extracts. Sedimentation studies suggested that the PGP synthase ws distributed uniformly over the CM in both chemoheterotrophically and photoheterotrophically grown cells, while the PS synthase was confined mainly to a vesicular CM fraction. Solubilized PGP synthase activity migrated as a single band with a pI value near 5.5 in a chromatofocusing column and 5.8 on isoelectric focusing; in the latter procedure, the pI was shifted to 5.3 in the presence of CDP-diacylglycerol. The PGP synthase activity gave rise to a single polypeptide band in lithium dodecyl sulfatepolyacrylamide gel electrophoresis at 4°C.Abbreviations CM cytoplasmic membrane - ICM intracytoplasmic photosynthetic membrane - OM outer membrane - PGP phosphatidylglycerophosphate - PS phosphatidylserine - TLC thin-layer chromatography Supported in part by a Fellowship Awards from the Charles and Johanna Busch Memorial Fund Award to the Rutgers Bureau of Biological Research  相似文献   

13.
S. K. Goers  R. A. Jensen 《Planta》1984,162(2):117-124
The reaction catalyzed by chorismate mutase (EC 5.4.99.5) is a crucial step for biosynthesis of two aromatic amino acids as well as for the synthesis of phenylpropanoid compounds. The regulatory properties of two chorismate-mutase isoenzymes expressed in Nicotiana silvestris Speg. et Comes are consistent with their differential roles in pathway flow routes ending with l-phenylalanine and l-tyrosine on one hand (isoenzyme CM-1), and ending with secondary metabolites on the other hand (isoenzyme CM-2). Isoenzyme CM-1 was very sensitive to allosteric control by all three aromatic amino acids. At pH 6.1, l-tryptophan was a potent allosteric activator (K a =1.5 M), while feedback inhibition was effected by l-tyrosine (K i =15 M) or by l-phenylalanine (Ki=15 M). At pH 6.1, all three effectors acted competitively, influencing the apparent K m for chorismate. All three allosteric effectors protected isoenzyme CM-1 at pH 6.1 from thermal inactivation at 52° C. l-Tryptophan abolished the weak positive cooperativity of substrate binding found with isoenzyme CM-1 only at low pH. At pH 7.2, the allosteric effects of l-tyrosine and l-tryptophan were only modestly different, in striking contrast to results obtained with l-phenylalanine. At pH 7.2 (i) the K i for l-phenylalanine was elevated over 30-fold to 500 M, (ii) the kinetics of inhibition became non-competitive, and (iii) l-phenylalanine now failed to protect isoenzyme CM-1 against thermal inactivation. l-Phenylalanine may act at different binding sites depending upon the intracellular pH milieu. In-vitro data indicated that the relative ability of allosteric activation to dominate over allosteric inhibition increases markedly with both pH and temperature. The second isoenzyme, CM-2, was inhibited competitively by caffeic acid (K i =0.2 mM). Aromatic amino acids failed to affect CM-2 activity over a broad range of pH and temperature. Inhibition curves obtained in the presence of caffeic acid were sigmoid, yielding an interaction coefficient (from Hill plots) of n=1.8.Abbreviation DAHP synthase 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase  相似文献   

14.
The free tryptophan pool and the levels of two enzymes of tryptophan biosynthesis (anthranilate synthase and indoleglycerolphosphate synthase) have been determined in a wild type strain of Saccharomyces cerevisiae and in mutants with altered regulatory properties.The tryptophan pool of wild type cells growing in minimal medium is 0.07 mole per g dry weight. Addition of anthranilate, indole or tryptophan to the medium produces a fifteen- to forty-fold increase in tryptophan pool, but causes no repression of the biosynthetic enzymes. Inclusion of 5-methyltryptophan in the growth medium causes a reduction in growth rate and a derepression of the biosynthetic enzymes, and this is shown here not to be correlated with a decrease in the free tryptophan pool.Mutants with an altered anthranilate synthase showing decreased sensitivity to inhibition by l-tryptophan or by the analogue dl-5-methyltryptophan have a tryptophan pool far higher than the wild type strain, but no repression of indoleglycerolphosphate synthase was observed. Mutants with an anthranilate synthase more sensitive to tryptophan inhibition show a slightly reduced tryptophan pool, but no derepression of indoleglycerolphosphate synthase was found.A mutant with constitutively derepressed levels of the biosynthetic enzymes shows a considerably increased tryptophan pool. Addition of 5-methyltryptophan to the growth medium of non-derepressible mutants causes a decrease in growth rate accompanied by a decrease in the tryptophan pool.Abbreviations CDRP 1-(o-carboxyphenylamino)-1-deoxyribulosephosphate - paba paraaminobenzoic acid - PRA N-(5-phosphoribosyl)-anthranilate - tRNA transfer ribonucleic acid; trp1 to trp5 refer to the structural genes for corresponding tryptophan biosynthetic enzymes  相似文献   

15.
Clostridium sphenoides was grown on glucose in a phosphate-limited medium. Below 80 M phosphate two new products were formed in addition to ethanol, acetate, H2 and CO2: d(-)-1,2-propanediol and d(-)-lactate. These compounds were apparently synthesized via the methylglyoxal by-pass. The activity of the enzymes involvedmethylglyoxal synthase, methylglyoxal reductase, 1,2-propanediol dehydrogenase and glyoxalase-could be demonstrated in cell extracts of C. sphenoides. The formation of 1,2-propanediol from methylglyoxal proceeded via lactaldehyde. The enzyme methylgloxal synthase was inhibited by phosphate. Clostridium glycolicum, C. nexile, C. cellobioparum, C. oroticum and C. indolis did not produce propanediol under the condition of phosphate limitation. The latter two species, however, formed d(-)-lactate.Dedicated to Prof. Dr. G. Drews on the occasion of his 60th birthday  相似文献   

16.
Summary Further steps required for overproduction of aromatic amino acids by a mutant strain of Nocardia sp. 239 (Noc 87-13), unable to grow on l-phenylalanine as a sole carbon and energy source, were investigated. A number of analogues of the aromatic amino acids displayed severe inhibitory effects on the activities of regulatory enzymes in the biosynthetic pathway and growth of the organism in glucose mineral medium. l-Tryptophane analogues strongly inhibited 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase activity. l-Tyrosine analogues especially inhibited DAHP synthase and chorismate mutase, whereas l-phenylalanine analogues strongly inhibited chorismate mutase and prephenate dehydratase activity. Addition of the aromatic amino acids and their precursors chorismate, 4-hydroxyphenylpyruvate, phenylpyruvate and anthranilate, to the medium counteracted the growth inhibitory effect of specific analogues. The data indicate that ortho- (OFP) and para-fluoro-d,l-phenylalanine (PFP), and l-phenylalanine amide, are the most suitable analogues for the isolation of feedback-inhibition-insensitive prephenate dehydratase mutants. Attempts to isolate l-tyrosine and l-trytophane auxotrophic mutants were only successful in the latter case, resulting in the selection of a stable anthranilate synthase-negative mutant (Noc 87-13-14). Uptake of aromatic amino acids in Nocardia sp. 239 most likely involves a common transport system. This necessitates the use of anthranilate, rather than l-trytophane, as a supplement during the isolation of l-tyrosine auxotrophic and OFP- and/or PFP-resistant mutant derivative strains of Noc 87-13-14. Offprint requests to: L. Dijkhuizen  相似文献   

17.
The rhizocticines and plumbemicines are two groups of di- and tripeptid antibiotics thought to interfere with threonine or threonine-related metabolism. Z-2-amino-5-phosphono-3-pentenoic acid, the common unusual amino acid constituent of the rhizocticines and plumbemicines, was found to irreversibly inhibit Escherichia coli threonine synthase in a time-dependent reaction that followed pseudo-first order and saturation kinetics. These data provide evidence that the toxicity of the rhizocticines and plumbemicines is due to the inhibition of threonine synthase by Z-2-amino-5-phosphone-3-pentenoic acid, which is liberated by peptidases after uptake into the target cell. Additionally, methods for the purification of threonine synthase from an overproducing E. coli strain and for the enzymatic synthesis of l-homoserine phosphate are described.Abbreviations APPA Z-2-amino-5-phosphono-3-pentenoic acid - HSerP l-homoserine phosphate - PEP phosphoenolpyruvate - PLP pyndoxal 5-phosphate - TS threonine synthase  相似文献   

18.
In extracts from Zea mays shoots, the presence of thiol compoundsin the extraction buffer was necessary to get an active 3 deoxy-D-arabinoheptulosonic acid 7-phosphate (DAHP) synthase. Its pH optimumfor activity was about 7.5. Of the different cations tested,only Mn++ was an activator. Enzyme stability was optimal inTris-HCl buffer, pH 7.5, that contained a reducing agent, Mn++and a polyol. Contrary to other reports, phosphoenolpyruvate(PEP) did not stabilize the preparation significantly. The synthaseexhibited high affinities for both erythrose-4-phosphate (Km:0.24 mM) and PEP (Km: 0.31 mM). Its specific activity was highestin young shoots. Corn DAHP synthase was inhibited in vitro by tryptophan. Moreover,the enzyme was retarded on a tryptophan agarose affinity column,but it was removed with the bulk of protein from the same supportwhen eluted with buffer containing tryptophan. Inhibition whichwas easily lost during storage at 4°C was pH dependent andincreased during development. Maximal inhibition, about 60%with 1 mM tryptophan, was observed in extracts from 8 day-oldshoots. Phenylalanine and tyrosine were not inhibitory, andno synergistic effects were observed when the aromatic aminoacids were tested in combination. Isoenzymes could not be demonstrated. (Received April 23, 1980; )  相似文献   

19.
In Nocardia sp. 239 d-phenylalanine is converted into l-phenylalanine by an inducible amino acid racemase. The further catabolism of this amino acid involves an NAD-dependent l-phenylalanine dehydrogenase. This enzyme was detected only in cells grown on l- or d-phenylalanine and in batch cultures highest activities were obtained at relatively low amino acid concentrations in the medium. The presence of additional carbon- or nitrogen sources invariably resulted in decreased enzyme levels. From experiments with phenylalanine-limited continuous cultures it appeared that the rate of synthesis of the enzyme increased with increasing growth rates. The regulation of phenylalanine dehydrogenase synthesis was studied in more detail during growth of the organism on mixtures of methanol and l-phenylalanine. Highest rates of l-phenylalanine dehydrogenase production were observed with increasing ratios of l-phenylalanine/methanol in the feed of chemostat cultures. Characteristic properties of the enzyme were investigated following its (partial) purification from l- and d-phenylalanine-grown cells. This resulted in the isolation of enzymes with identical properties. The native enzyme had a molecular weight of 42 000 and consisted of a single subunit; it showed activity with l-phenylalanine, phenylpyruvate, 4-hydroxyphenyl-pyruvate, indole-3-pyruvate and -ketoisocaproate, but not with imidazolepyruvate, d-phenylalanine and other l-amino acids tested. Maximum activities with phenylpyruvate (310 mol min-1 mg-1 of purified protein) were observed at pH 10 and 53°C. Sorbitol and glycerol stabilized the enzyme.Abbreviations RuMP ribulose monophosphate - HPS hexulose-6-phosphate synthase - HPT hexulose-6-phosphate isomerase - FPLC fast protein liquid chromatography  相似文献   

20.
Using 3′-RACE and 5′-RACE, we have cloned and sequenced the genomic gene and complete cDNA encoding l-glutamine d-fructose 6-phosphate amidotransferase (GFAT) from the edible straw mushroom, Volvariella volvacea. Gfat contains five introns, and encodes a predicted protein of 697 amino acids that is homologous to other reported GFAT sequences. Southern hybridization indicated that a single gfat gene locus exists in the V. volvacea genome. Recombinant native V. volvacea GFAT enzyme, over-expressed using Escherichia coli and partially purified, had an estimated molecular mass of 306 kDa and consisted of four equal-sized subunits of 77 kD. Reciprocal plots revealed K m values of 0.55 and 0.75 mM for fructose 6-phosphate and l-glutamine, respectively. V. volvacea GFAT activity was inhibited by the end-product of the hexosamine pathway, UDP-GlcNAc, and by the glutamine analogues N 3-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid and 2-amino-2-deoxy-d-glucitol-6-phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号