首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
The effect of NH4Cl on release of amine and amino acid transmitters from rat brain synaptosomes was investigated. Ammonia (0.1-10 mM) stimulated the secretion of dopamine and 5-hydroxytryptamine in a dose-dependent manner, in a process which was additive with the effect of 40 mM K+, almost unaffected by withdrawal of Ca2+, and markedly decreased by increasing [H+] in the medium. The NH4Cl-induced dopamine efflux, in contrast to that caused by high [K+]e, was inhibited by benztropine. The release of gamma-aminobutyric acid, aspartate, and glutamate was unaltered by [NH4Cl] less than 5 mM, but somewhat stimulated at higher levels. Transmembrane pH gradient, acid inside, was dissipated by NH4Cl in a concentration-dependent manner and the internal alkalinization correlated with the stimulation of the rate of dopamine efflux. Transmembrane electrical potential was unaffected by [ammonia] less than 5 mM, but a small depolarization was observed at higher levels. It is postulated that ammonia-induced alkalinization of the intrasynaptic storage granules causes extrusion of amines into the cytoplasm and their subsequent leakage into the medium through a reversal of the plasma membrane transporters. A lack of correlation between the release of amino acid neurotransmitters and the dissipation of the delta pH suggests that in rat brain intrasynaptic vesicles, acidic inside, are unlikely to store substantial amounts of gamma-aminobutyric acid, aspartate, or glutamate.  相似文献   

3.
Stimulation of lymphocytes by specific antigens is followed by the activation of different signal transduction mechanisms, such as alterations in the cytoplasmic levels of Ca(2+), H(+) and variations in membrane potential. To study interrelationships among these parameters, changes in pHi and Ca(2+) were measured with the fluorescent probes BCECF and Fura-2 in freshly isolated blood human lymphocytes. Moreover, membrane potential qualitative alterations were recorded with the fluorescent dye bis-oxonol. In a bicarbonate-free medium, cell alkalinization with NH(4)Cl slightly decreased intracellular Ca(2+) concentration ([Ca(2+)](i)) due to efflux of Ca(2+) from the cell. In contrast, an elevation of pHi induced with 4-AP increased [Ca(2+)](i), either in the presence or absence of external Ca(2+). The increase in Ca(2+)-free medium is likely to be due to Ca(2+) release from thapsigargin and caffeine-independent intracellular stores. Both 4-AP or NH(4)Cl induced a plasma membrane depolarisation, although with different kinetics. The ionosphere ionomycin increased pHi, Ca(2+) levels and also induced membrane depolarisation. Together, these observations demonstrate a lack of correlation between the magnitude of changes in pHi and Ca(2+).  相似文献   

4.
45Ca efflux from skinned muscle fibers is stimulated transiently, by a highly Ca2+-dependent mechanism, by KCl replacement of K propionate. In the present studies, Cl replaced the much less permeant anion methanesulfonate (Mes) either (a) at constant [K], in which increased [K][Cl] permits net KCl and water flux across internal membranes, or (b) at constant [K][Cl] (choline substitution), in which the imposed gradients and diffusion potentials should dissipate slowly. 45Ca efflux and isometric force were measured simultaneously on segments of frog semitendinosus fibers skinned by microdissection. EGTA was applied to chelate released 45Ca either (a) shortly after high [Cl] (interrupted response), to minimize reaccumulation, (b) before high [Cl] (pretreated response), to evaluate Ca2+ dependence, or (c) under control conditions in KMes. KCl replacement of KMes stimulated release of 65% fiber 45Ca within 1 min in interrupted responses; EGTA pretreatment was only moderately inhibitory with substantial residual stimulation. In contrast, choline Cl replacement of KMes induced release of 26-35% fiber 45Ca in interrupted responses; EGTA pretreatment was strongly inhibitory, but release significantly exceeded control with a small, sustained increase in Ca2+-insensitive efflux. These differences in 45Ca release and EGTA inhibition suggest that Cl replacement of Mes at constant [K] stimulates efflux by osmotic effects as well as imposed diffusion potentials; at least half the stimulated 45Ca loss (above control) in interrupted KCl responses is attributable to an osmotic component with low Ca2+ sensitivity. In the highly Ca2+-sensitive stimulation at constant [K][Cl], 45Ca release (above control) in interrupted responses correlated well with that in the pretreated responses of segments from the same fiber, with a slope of 8.4. This relationship suggests that imposed diffusion potentials stimulate a small Ca2+-insensitive component that gradates a much larger Ca2+-dependent efflux. The Ca2+-insensitive component apparently reflects intermediate steps in the excitation-contraction coupling that require positive feedback to result in sufficient Ca release for contraction.  相似文献   

5.
Human lymphocytes in culture loaded with radioactive polyamines slowly release radioactivity into the medium. N1-Acetylspermidine is mostly released from spermidine and spermine. Both ouabain and calcium ionophore A23187 increase the outward transport, but by different mechanisms. Ouabain inhibits the acetylation of spermidine, and free spermidine is released, whereas A23187 increases both acetylation of spermidine and the efflux of N1-acetylspermidine.  相似文献   

6.
Role of intracellular pH in secretion from adrenal medulla chromaffin cells   总被引:5,自引:0,他引:5  
The role of intracellular pH in stimulus-secretion coupling was investigated in cultured bovine adrenal medullary chromaffin cells. NH4Cl (1-25 mM) did not affect basal catecholamine or ATP release but markedly inhibited nicotine- or high K+-induced release by up to 60%. The inhibition had a rapid onset (less than 1 min) and was maximal at about 5 mM NH4Cl. The effect of NH4Cl was largely sustained over 20 min and was reversed upon NH4Cl removal. Sodium propionate did not affect secretion but partially reversed the inhibition by NH4Cl in a concentration-dependent manner. Methylamine (10 mM) produced a similar, but slower, inhibition than NH4Cl. Monensin (1-10 microM) inhibited catecholamine secretion by 30-60%, and its effect was reduced in the presence of NH4Cl. Using the fluorescent Ca2+ probe Fura-2, we found that the increase of [Ca2+]i following stimulation was not altered by concentrations of NH4Cl which inhibited secretion maximally. Measurement of cytosolic pH (pHi) with the fluorescent probe 2',7'-bis-carboxyethyl-5(6)-carboxyfluorescein (BCECF) revealed an alkalinization by NH4Cl (2.5-25 mM) of 0.1-0.23 pH units and acidification by sodium propionate (10-20 mM) of 0.2-0.25 pH units, with intermediate combined effects. Monensin (1 microM) caused a cytosolic acidification of 0.26 pH units. All pHi changes were partly recovered in 15 min. Fluorescence quenching measurements using the weakly basic fluorescent probe acridine orange indicated the accumulation of the probe into acidic compartments, presumably the chromaffin granules, which was strongly reduced by both NH4Cl and monensin. From these findings we conclude that the pH of the chromaffin granule modulates secretion by affecting some step in the secretory process unrelated to the rise in [Ca2+]i.  相似文献   

7.
A human mast cell line (HMC-1) has been used to study the effect of cytosolic alkaline pH in exocytosis. Compound 48/80, concanavalin A, and thapsigargin do not induce histamine release in HMC-1 cells. Although thapsigargin does not activate histamine release, it does show a large increase in cytosolic Ca(2+), and no change in cytosolic pH. However, when HMC-1 cells were activated with ionomycin, a significant histamine release takes place, and this effect is higher in the presence of thapsigargin. Both drugs show an additive effect on cytosolic Ca(2+) levels. Ammonium chloride (NH(4)Cl) does activate cytosolic alkalinization and histamine release, with no increase in cytosolic Ca(2+). NH(4)Cl does block the release of internal Ca(2+) by thapsigargin, not by ionomycin, and decreases Ca(2+) influx stimulated by these drugs. Under conditions in which the alkalinization induced by NH(4)Cl is blocked by acidification with sodium propionate, histamine release is inhibited. The release of histamine is also observed when NH(4)Cl is added after propionate addition, regardless of the final pH value attained. Our results show that a shift in pH alkaline values, even with final pH below 7.2 is enough to activate histamine release. A shift to less acidic values is a sufficient signal to activate the cells.  相似文献   

8.
Receptor-stimulated phosphoinositide turnover leads to activation of Na+/H+ exchange and subsequent intracellular alkalinization. To probe the effect of increased intracellular pH (pHi) on Ca2+ homeostasis in cultured bovine aortic endothelial cells (BAEC), we studied the effect of weak bases, ammonium chloride (NH4Cl) and methylamine (agents which increase pHi by direct passive diffusion), on resting and ATP (purinergic receptor agonist)-induced Ca2+ fluxes. Changes in cytosolic free Ca2+ ([Ca2+]i) or pHi were monitored in BAEC monolayers using the fluorescent dyes, fura-2 or 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, respectively. NH4Cl-induced, dose-dependent (5-20 mM) increases in [Ca2+]i (maximum change = 195 +/- 26 nM) which were temporally similar to the NH4Cl-induced pHi increases. Methylamine (20 mM) induced a more sustained pHi increase and also stimulated a prolonged [Ca2+]i increase. When BAEC were bathed in HCO3- buffer, removal of extracellular CO2/bicarbonate caused pHi to increase and also induced [Ca2+]i to increase transiently. Extracellular Ca2+ removal did not abolish the rapid NH4Cl-induced rise in [Ca2+]i, although the response was blunted and more transient. NH4Cl addition to BAEC cultures resulted in an increase in 45Ca efflux and decrease in total cell 45Ca content. BAEC treatment with ATP (100 microM) to deplete inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pools completely blocked the NH4Cl (20 mM)-induced rise in [Ca2+]i. Likewise, prior NH4Cl addition partially inhibited ATP-induced increases in [Ca2+]i, as well as slowed the frequency of repetitive [Ca2+]i spikes in single endothelial cells due to agonist. NH4Cl augmented the rate of [Ca2+]i increase that occurs in response to the depletion of agonist-sensitive intracellular Ca2+ pools. However, the internal Ca2+ store remained depleted during the continued presence of NH4Cl, as indicated by a decreased [Ca2+]i response to ATP in Ca2(+)-free medium. Finally, NH4Cl exerted these actions without affecting basal or ATP-stimulated IP3 formation. These observations provide direct evidence that increased pHi leads to Ca2+ mobilization from an agonist-sensitive pool and impairs Ca2+ pool(s) refilling mechanisms without altering cellular IP3 levels.  相似文献   

9.
Ca2+ dependence of stimulated 45Ca efflux in skinned muscle fibers   总被引:7,自引:4,他引:3       下载免费PDF全文
Stimulation of sarcoplasmic reticulum Ca release by Mg reduction of caffeine was studied in situ, to characterize further the Ca2+ dependence observed previously with stimulation by Cl ion. 45Ca efflux and isometric force were measured simultaneously at 19 degrees C in frog skeletal muscle fibers skinned by microdissection; EGTA was added to chelate myofilament space Ca either before or after the stimulus. Both Mg2+ reduction (20 or 110 microM to 4 microM) and caffeine (5 mM) induced large force responses and 45Ca release, which were inhibited by pretreatment with 5 mM EGTA. In the case of Mg reduction, residual efflux stimulation was undetectable, and 45Ca efflux in EGTA at 4 microM Mg2+ was not significantly increased. Residual caffeine stimulation at 20 microM Mg2+ was substantial and was reduced further in increased EGTA (10 mM); at 600 microM Mg2+, residual stimulation in 5 mM EGTA was undetectable. Caffeine appears to initiate a small Ca2+-insensitive efflux that produces a large Ca2+-dependent efflux. Additional experiments suggested that caffeine also inhibited influx. The results suggest that stimulated efflux is mediated mainly or entirely by a channel controlled by an intrinsic Ca2+ receptor, which responds to local [Ca2+] in or near the channel. Receptor affinity for Ca2+ probably is influenced by Mg2+, but inhibition is weak unless local [Ca2+] is very low.  相似文献   

10.
Ionic gradients imposed by choline Cl replacement of K methanesulfonate (Mes) at constant [K][Cl] product stimulate 45Ca efflux from skinned muscle fibers; a small, sustained Ca2+-insensitive efflux component, observed in EGTA, appears to grade a much larger Ca2+-dependent component responsible for contractile activation and is likely to reflect intermediate steps in excitation-contraction coupling. The present studies examined ATP-related effects on the Ca2+-insensitive stimulation. 45Ca efflux was measured on segments of frog semitendinosus muscle skinned by microdissection, with isometric force monitored continuously. The Ca2+-insensitive component was potentiated by quercetin, a flavonoid thought to inhibit the sarcoplasmic reticulum (SR) Ca pump by stabilizing a phosphorylated intermediate. Quercetin increased the stimulated net 45Ca release in the absence of EGTA, as expected from inhibition of reaccumulation, but its effectiveness in EGTA indicated potentiation of unidirectional efflux as such. Quercetin also increased unstimulated (control) 45Ca efflux in EGTA, to a smaller extent; potentiation appeared to be a function of efflux, with stimulation above control loss increased approximately 2.6-fold. ATP removal before stimulation, which led to rigor force and increased stiffness, prevented all quercetin effects in EGTA. ATP removal by itself inhibited ionic stimulation of the Ca2+-insensitive component, with little residual increase above the parallel control loss. Addition of the nonhydrolyzable ATP analogue AMP-PCP ([adenylyl-beta,gamma-methylene]diphosphate) (0.8 mM) after ATP removal gave similar results to ATP-free solution, which suggests that adenine nucleotide binding alone does not support stimulation by choline Cl. These results imply a fundamental role for ATP in the excitation of skinned fibers by imposed diffusion potentials; they also suggest that ATP regulates the SR Ca efflux channel, in a manner that could provide the positive feedback in Ca2+-dependent Ca release.  相似文献   

11.
Benzoate stimulates glutamate release from perfused rat liver.   总被引:1,自引:1,他引:0       下载免费PDF全文
In isolated perfused rat liver, benzoate addition to the influent perfusate led to a dose-dependent, rapid and reversible stimulation of glutamate output from the liver. This was accompanied by a decrease in glutamate and 2-oxoglutarate tissue levels and a net K+ release from the liver; withdrawal of benzoate was followed by re-uptake of K+. Benzoate-induced glutamate efflux from the liver was not dependent on the concentration (0-1 mM) of ammonia (NH3 + NH4+) in the influent perfusate, but was significantly increased after inhibition of glutamine synthetase by methionine sulphoximine or during the metabolism of added glutamine (5 mM). Maximal rates of benzoate-stimulated glutamate efflux were 0.8-0.9 mumol/min per g, and the effect of benzoate was half-maximal (K0.5) at 0.8 mM. Similar Vmax. values of glutamate efflux were obtained with 4-methyl-2-oxopentanoate, ketomethionine (4-methylthio-2-oxobutyrate) and phenylpyruvate; their respective K0.5 values were 1.2 mM, 3.0 mM and 3.8 mM. Benzoate decreased hepatic net ammonia uptake and synthesis of both urea and glutamine from added NH4Cl. Accordingly, the benzoate-induced shift of detoxication from urea and glutamine synthesis to glutamate formation and release was accompanied by a decreased hepatic ammonia uptake. The data show that benzoate exerts profound effects on hepatic glutamate and ammonia metabolism, providing a new insight into benzoate action in the treatment of hyperammonaemic syndromes.  相似文献   

12.
1. The efflux of chloride (using 36Cl) from lactating rat mammary tissue slices has been investigated. 2. Chloride efflux was found to be temperature dependent; lowering the temperature of the incubation medium reduced the fractional efflux. 3. The stilbene derivatives DIDS was without effect on the fractional release of Cl when studied at 20 degrees C. However, DIDS was found to attenuate the increase in efflux found upon transferring the tissue from a medium maintained at 4 degrees C to one at 20 degrees C. 4. The loop-diuretic furosemide, also reduced the temperature-sensitive portion of Cl efflux. 5. Chloride efflux was transiently increased when tissue slices were transferred from a medium containing gluconate as the principal anion to one containing Cl. 6. The results appear to confirm that mammary Cl transport is mediated via anion exchange and via (Na + K + Cl) cotransport.  相似文献   

13.
Isolated cortices from sea urchin eggs accumulate calcium in a non-mitochondrial store at a rate dependent on ATP and enhanced by oxalate. Calcium efflux is increased by ionomycin and by A23187 which has been used as a parthenogenetic agent, but not by weak base (NH4Cl). Accumulated calcium is partially released by 1,4,5 inositol triphosphate.  相似文献   

14.
BACKGROUND INFORMATION: Recent work suggests that part of the control of vasopressin output is mediated by taurine released from pituicytes, the astroglial cells of the neurohypophysis. Taurine release, in turn, is stimulated by hypotonic conditions and by vasopressin itself. As adenosine is generated from ATP co-released with vasopressin, it appeared important to study its effects on taurine efflux from pituicytes. RESULTS: We measured radioactive efflux from cultured pituicytes and whole neurohypophyses pre-loaded with [(3)H]taurine. Cultured pituicytes were also used to study adenosine-receptor mRNA expression. Taurine efflux elicited by hypotonic shocks is approximately 30-50% smaller in the presence of 10 microM adenosine or 1 microM NECA (5'-N-ethylcarboxamidoadenosine). Both compounds also inhibited basal efflux in a manner that was not immediately reversible. Agonists of the adenosine A1-, A2a- or A3-receptor subtypes have no relevant effect on basal taurine release, and the A1-receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) has no effect on the inhibition of release by NECA. In turn, the A2b-receptor antagonists MRS 1706 {N-(4-acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]acetamide} or alloxazine partially reverse the inhibition of basal or hypotonicity-evoked efflux by NECA. Both A1- and A2b-receptor mRNAs are expressed in pituicytes, which is consistent with an A1-receptor-mediated effect on cell morphology and an A2b-receptor-mediated effect on taurine release. Forskolin and dibutyryl cAMP mimic the inhibitory effects of purinergics on basal taurine efflux, and the adenylate cyclase inhibitor DDA (2',5'-dideoxyadenosine) partially reverses the inhibition of the hypotonic response by NECA.Conclusions. Our results suggest that purinergic inhibition of taurine efflux from pituicytes operates through A2b receptors coupled to intracellular cAMP increase. They point to a possible modulation of neurohypophysial hormone output by endogenous adenosine released in either physiological or pathological situations.  相似文献   

15.
Acid release, Ca2+ influx and stimulation of protein synthesis were investigated with sea urchin eggs submitted to an excess of KCl, to NH4Cl, and to a combination of both. KCl, though unable to promote any acid release, triggers a large 45Ca uptake by eggs and slightly stimulates protein synthesis, provided that external Ca2+ is present. NH4Cl, which induces an intracellular pH increase, triggers a late and small 45Ca uptake but highly stimulates protein synthesis. The combined use of NH4Cl + KCl allows a large 45Ca uptake to occur but the level of protein synthesis is similar to that obtained with NH4Cl alone and is identical whether external Ca2+ is present or not. In contrast to previous works, our results show that the large stimulation of protein synthesis triggered by an intracellular pH increase, as after NH4Cl activation, cannot be enhanced by a Ca2+ influx. This suggests that the Ca2+ influx occurring after fertilization has only a minimal effect on the overall stimulation of protein synthesis.  相似文献   

16.
1. The effect of rabbit anti-(pigeon erythrocyte) antibodies plus human complement on the concentration of intracellular free Ca2+ in sealed pigeon erythrocyte ''ghosts'' was investigated with the photoprotein obelin. 2. The addition of human serum, as a source of complement, to ''ghosts'' coated with antibody caused a rapid increase in intracellular free Ca2+ after a lag of 20-40 s, as detected by an increase in obelin luminescence. 3. The increase in obelin luminescence could not be explained by release of obelin into the medium. It was also Ca2+-dependent in that extracellular EGTA abolished the effect and intracellular EGTA inhibited it and required the complete terminal complex (C56789). No effect was seen with C5678. 4. The concentration of intracellular free Ca2+ before addition of complement was approx. 0.3 microM. This increased to a maximum of 5-30 microM after complement addition and then remained constant for at least 1-2 min. 5. Antibody plus complement induced a rapid increase in 42K+ efflux and an inhibition of cyclic AMP formation. 6. When partially purified complement components (C5b-9) were used in ''reactive lysis'' it was possible to inhibit the release of macromolecules from pigeon erythrocyte ''ghosts'' by extracellular EGTA. 7. It was concluded that the increase in intracellular free Ca2+ concentration caused by anti-cell antibody plus complement occurred before cell lysis and may be involved in the mechanism of complement-induced cell injury.  相似文献   

17.
The light-dependent phosphorylation of the photosynthetic phosphoenolpyruvate carboxylase (PyrPC) was shown to occur in protoplasts from Sorghum mesophyll cells. It was accompanied by an increase in PyrPC protein-serine-kinase activity and conferred the target-specific functional properties, i.e. an increase in Vmax and apparent Ki for L-malate, as previously found with the whole leaf. The light-dependent regulatory phosphorylation of PyrPC was (a) specifically promoted by the weak bases NH4Cl and methylamine (agents which increase cytosolic pH), but not by KNO3, (b) inhibited by the cytosolic protein-synthesis inhibitor, cycloheximide, thus confirming that protein turnover is a component of the signal-transduction cascade, as reported in [4], (c) found to moderately decrease in the presence of EGTA and to be strongly depressed when the Ca(2+)-selective ionophore A23187 was added to the incubation medium together with EGTA. Addition of Ca2+, but not of Mg2+, to the Ca(2+)-depleted protoplasts partially, but significantly, relieved the inhibition. Calcium deprivation apparently affected the in-situ light-activation of the PyrPC protein kinase. These data indicated that both Ca2+ and an increase in cytosolic pH are required for the induction of PyrPC protein kinase activity/PyrPC phosphorylation in illuminated protoplasts from Sorghum mesophyll cells.  相似文献   

18.
The release of 3H-labeled purines at rest and during electrical stimulation was investigated in slices of rat cortex prelabeled with [3H]adenine and perfused with Krebs solution. A linear relationship was found between radioactivity efflux and stimulation frequency from 2.5 to 20 Hz. At frequencies of less than 2.5 Hz, no increase in radioactivity efflux was detected. The amount of tritium released per pulse increased with stimulation frequency up to 10 Hz and declined at 20 Hz. The tritium efflux from the slices at rest and at a stimulation frequency of 10 Hz, analyzed by HPLC with ultraviolet absorbance detection at 254 nm, consisted mostly of adenosine, inosine, and hypoxanthine. The 3H-labeled purine release evoked by 10-Hz stimulation increased with current intensity from 15 to 100 mA/cm2. At 20 mA/cm2, addition of 0.5 microM tetrodotoxin to the superfusing Krebs solution brought about a 98% decrease of 3H-labeled purine release. At higher current strength, the percentage of tetrodotoxin-sensitive-evoked tritium efflux was smaller. At 30 mA/cm2, 86% of the evoked release was tetrodotoxin sensitive. Under these stimulation conditions, tritium efflux showed a 69% decrease when the slices were superfused with calcium-free Krebs solution containing 0.5 mM EGTA. The muscarinic agonist oxotremorine (30 microM) significantly enhanced the 10-Hz-stimulated 3H-labeled purine release. The effect of oxotremorine was partially prevented by tetrodotoxin, was antagonized by atropine (1.5 microM), and was mimicked by addition of physostigmine (3.8 microM) to the superfusion fluid. Atropine alone did not affect the evoked release, and none of the drugs modified the basal tritium efflux.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
1. Urea synthesis was studied in isolated perfused rat liver during cell volume regulatory ion fluxes following exposure of the liver to anisotonic perfusion media. Lowering of the osmolarity in influent perfusate from 305 mOsm/l to 225 mOsm/l (by decreasing influent [NaCl] by 40 mmol/l) led to an inhibition of urea synthesis from NH4Cl (0.5 mmol/l) by about 60% and a decrease of hepatic oxygen uptake by 0.43 +/- 0.03 mumol g-1 min-1 [from 3.09 +/- 0.13 mumol g-1 min-1 to 2.66 +/- 0.12 mumol g-1 min-1 (n = 9)]. The effects on urea synthesis and oxygen uptake were observed throughout hypotonic exposure (225 mOsm/l). They persisted although volume regulatory K+ efflux from the liver was complete within 8 min and were fully reversible upon reexposure to normotonic perfusion media (305 mOsm/l). A 42% inhibition of urea synthesis from NH4Cl (0.5 mmol/l) during hypotonicity was also observed when the perfusion medium was supplemented with glucose (5 mmol/l). Urea synthesis was inhibited by only 10-20% in livers from fed rats, and was even stimulated in those from starved rats when an amino acid mixture (twice the physiological concentration) plus NH4Cl (0.2 mmol/l) was infused. 2. The inhibition of urea synthesis from NH4Cl (0.5 mmol/l) during hypotonicity was accompanied by a threefold increase of citrulline tissue levels, a 50-70% decrease of the tissue contents of glutamate, aspartate, citrate and malate, whereas 2-oxoglutarate, ATP and ornithine tissue levels, and the [3H]inulin extracellular space remained almost unaltered. Further, hypotonic exposure stimulated hepatic glutathione (GSH) release with a time course roughly paralleling volume regulatory K+ efflux. NH4Cl stimulated lactate release from the liver during hypotonic but not during normotonic perfusion. In the absence of NH4Cl, hypotonicity did not significantly affect the lactate/pyruvate ratio in effluent perfusate. With NH4Cl (0.5 mmol/l) present, the lactate/pyruvate ratio increased from 4.3 to 8.2 in hypotonicity, whereas simultaneously the 3-hydroxybutyrate/acetoacetate ratio slightly, but significantly decreased. 3. Addition of lactate (2.1 mmol/l) and pyruvate (0.3 mmol/l) to influent perfusate did not affect urea synthesis in normotonic perfusions, but completely prevented the inhibition of urea synthesis from NH4Cl (0.5 mmol/l) induced by hypotonicity. Restoration of urea production in hypotonic perfusions by addition of lactate and pyruvate was largely abolished in the presence of 2-cyanocinnamate (0.5 mmol/l). Addition of 3-hydroxybutyrate (0.5 mmol/l), but not of acetoacetate (0.5 mmol/l) largely reversed the hypotonicity-induced inhibition of urea synthesis from NH4Cl.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
We used sporogenous mutants of Dictyostelium discoideum to investigate the mechanism(s) by which exogenous NH4Cl and high ambient pH promote spore formation during in vitro differentiation. The level of NH4Cl required to optimize spore formation is correlated inversely with pH, indicating that NH3 rather than NH4+ is the active species. The spore-promoting activity of high ambient pH (without exogenous NH4Cl) was eliminated by the addition of an NH3-scavenging cocktail, suggesting that high pH promotes spore differentiation by increasing the ratio of NH3:NH4+ secreted into the medium by developing cells. High ammonia levels and high pH stimulated precocious accumulation of intracellular cAMP in both sporogenous and wild-type cells. In both treatments, peak cAMP levels equaled or exceeded control levels and were maintained for longer periods than in control cells. In contrast, ammonia strongly inhibited accumulation of extracellular cAMP without increasing the rate of extracellular cAMP hydrolysis, indicating that ammonia promotes accumulation of intracellular cAMP by inhibiting cAMP secretion. These results are consistent with previous observations that factors that raise intracellular cAMP levels increase spore formation. Lowering intracellular cAMP levels with caffeine or progesterone inhibited spore formation, but simultaneous exposure to these drugs and optimal concentrations of NH4Cl restored both cAMP accumulation and spore formation to normal levels. These data suggest that ammonia, which is a natural Dictyostelium morphogen, favors spore formation by promoting accumulation or maintenance of high intracellular cAMP levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号