首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies indicated that synthesis of B beta chain may be a rate-limiting factor in the production of human fibrinogen since Hep G2 cells contain surplus pools of A alpha and gamma but not of B beta chains, and fibrinogen assembly commences by the addition of preformed A alpha and gamma chains to nascent B beta chains attached to polysomes. To test whether B beta chain synthesis is rate limiting Hep G2 cells were transfected with B beta cDNA, and its effect on fibrinogen synthesis and secretion was measured. Two sets of stable B beta cDNA-transfected Hep G2 cells were prepared, and both cell lines synthesized 3-fold more B beta chains than control cells. The B beta-transfected cells also synthesized and secreted increased amounts of fibrinogen. Transfection with B beta cDNA not only increased the synthesis of B beta chain but also increased the rate of synthesis of the other two component chains of fibrinogen and maintained surplus intracellular pools of A alpha and gamma chains. Transfection with B beta cDNA did not affect the synthesis of albumin, transferrin, or anti-chymotrypsin and had a small inhibitory effect on the synthesis of C-reactive protein. Taken together these studies demonstrate that increased B beta chain synthesis specifically causes increased production of the other two component chains of fibrinogen and that unequal and surplus amounts of A alpha and gamma chains are maintained intracellularly.  相似文献   

2.
HepG2 cells, which synthesize and secrete fibrinogen, accumulate surplus Aalpha and gamma chains. The nonsecreted fibrinogen chains are degraded both by proteasomes and lysosomes, with unassembled chains primarily degraded by proteasomes and an Aalpha-gamma complex by lysosomes. To further determine the mechanisms by which unassembled fibrinogen chains are degraded, and to explain the pools of Aalpha and gamma chains that occur in HepG2 cells, the association of fibrinogen chains with Sec61beta, a component of the translocon, and with a cytosol chaperone, Hsp70, was studied in both HepG2 cells and COS cells expressing single fibrinogen chains. Retrotranslocation from the lumen of the endoplasmic reticulum was shown by treatment with MG132, a proteasome inhibitor. MG132 caused glycosylated Bbeta to accumulate on Sec61beta in COS cells expressing Bbeta and acted similarly with all three fibrinogen chains in HepG2 cells. In HepG2 cells, Bbeta was associated with Sec61beta ahead of Aalpha and gamma chains, suggesting that pools of Aalpha and gamma chains may be caused by unequal rates of retrotranslocation. In COS cells, retrotranslocation into the cytoplasm was demonstrated by the ATP-sensitive association of ubiquitinylated Aalpha, Bbeta, and gamma chains bound to Hsp70. More Aalpha and gamma than Bbeta accumulated on Hsp70 of HepG2 cells, consistent with more rapid degradation of Bbeta. Overexpression of Hsp70 in HepG2 cells resulted in decreased secretion, but not synthesis, of fibrinogen. Decreased secretion may be due to enhanced degradation of unassembled fibrinogen chains, indicating that proteolysis by proteasomes might regulate both the intracellular pools of fibrinogen chains and fibrinogen secretion.  相似文献   

3.
4.
Studies on the assembly and secretion of fibrinogen.   总被引:2,自引:0,他引:2  
cDNAs of fibrinogen A alpha and gamma chains were individually subcloned into a eukaryotic expression vector by using the polymerase chain reaction. Triple cotransfection into COS cells of the two plasmids together with a B beta chain expression plasmid, constructed as described previously (Danishefsky, K.J., Hartwig, R., Banerjee, D., and Redman, C. (1990) Biochim. Biophys. Acta 1048, 202-208), resulted in the secretion of complete fibrinogen into the media and the formation of four additional intracellular complexes which we also showed to be present in the hepatocyte cell line Hep 3B. The complexes, which have Mr = 232, 150, 135, and 128 (x 10(-3) conform with the Mr expected for A alpha B beta gamma 2, B beta gamma 2 and gamma 3, respectively. A A mechanism of assembly is proposed based on the assumption that all these complexes are precursors of complete fibrinogen. Each of the expressed fibrinogen chains in transfected COS cells interacts noncovalently with binding protein (BiP, GRP 78), but not to the same extent; gamma chain binds less BiP than the A alpha and B beta chains. Assembly of fibrinogen is not absolutely required for its secretion. In addition to complete fibrinogen, the conditioned media of hepatocytes and of transfected COS cells contained free A alpha, free gamma, and two of the above-mentioned complexes, A alpha gamma 2 and A alpha B beta gamma 2.  相似文献   

5.
Fibrinogen chains are assembled in a stepwise manner in the rough endoplasmic reticulum prior to secretion of the final six-chain dimeric molecule. Previous studies indicated that the synthesis of B beta may be a rate-limiting factor in the assembly of human fibrinogen. To determine the domains of B beta which interact with the other two component chains of fibrinogen, deletion mutants of B beta were transiently co-expressed, together with A alpha and gamma chains, in COS cells, and fibrinogen assembly and secretion were measured. Deletion of the COOH-terminal half of the B beta chain (amino acids 208-461) did not affect assembly and secretion. Assembly of A alpha, gamma, and B beta also occurred when the first NH2-terminal 72 amino acids of B beta were deleted, but not when 93 amino acids were deleted. This indicates that the B beta domain between amino acids 73 and 93 is necessary for the assembly of the three fibrinogen chains. This domain marks the start of the alpha-helical "coiled-coil" region of fibrinogen.  相似文献   

6.
Based on evidence that 50% of herpes simplex 1 DNA is transcribed in HEp-2 cells in the absence of protein synthesis we examined the order and rates of synthesis of viral polypeptides in infected cells after reversal of cycloheximide- or puromycin-mediated inhibition of protein synthesis. These experiments showed that viral polypeptides formed three sequentially synthesized, coordinately regulated groups designated alpha, beta, and gamma. Specifically: (i) The alpha group, containing one minor structural and several nonstructural polypeptides, was synthesized at highest rates from 3 to 4 h postinfection in untreated cells and at diminishing rates thereafter. The beta group, also containing minor structural and nonstructural polypeptides, was synthesized at highest rates from 5 to 7 h and at decreasing rates thereafter. The gamma group containing major structural polypeptides was synthesized at increasing rates until at least 12 h postinfection. (ii) The synthesis of alpha polypeptides did not require prior infected cell protein synthesis. In contrast, the synthesis of beta polypeptides required both prior alpha polypeptide synthesis as well as new RNA synthesis, since the addition of actinomycin D immediately after removal of cycloheximide precluded beta polypeptide synthesis. The function supplied by the alpha polypeptides was stable since interruption of protein synthesis after alpha polypeptide synthesis began and before beta polypeptides were made did not prevent the immediate synthesis of beta polypeptides once the drug was withdrawn. The requirement of gamma polypeptide synthesis for prior synthesis of beta polypeptides seemed to be similar to that of beta polypeptides for prior synthesis of the alpha group. (iii) The rates of synthesis of alpha polypeptides were highest immediately after removal of cycloheximide and declined thereafter concomitant with the initiation of beta polypeptide synthesis; this decline in alpha polypeptide synthesis was less rapid in the presence of actinomycin D which prevented the appearance of beta and gamma polypeptides. The decrease in rates of synthesis of beta polypeptides normally occurring after 7 h postinfection was also less rapid in the presence of actinomycin D than in its absence, whereas ongoing synthesis of gamma polypeptides at this time was rapidly reduced by actinomycin D. (iv) Inhibitors of DNA synthesis (cytosine arabinoside or hydroxyurea) did not prevent the synthesis of alpha, beta, or gamma polypeptides, but did reduce the amounts of gamma polypeptides made.  相似文献   

7.
Differential detergent gel electrophoresis conditions are described which enable the accurate quantitation of radiolabel incorporated into each of the closely migrating, constituent polypeptides of chicken fibrinogen: glycosylated and nonglycosylated A alpha, B beta, gamma', and gamma. These methods were applied to analysis of fibrinogen synthesis by monolayer cultures of chick embryo hepatocytes to determine whether the cells coordinate biosynthesis of the fibrinogen subunits under nonstimulated or basal conditions (i.e. in the absence of hormones) and in the presence of serum, which is a potent stimulator of fibrinogen production. Since secretion of the subunits apparently depends on their oligomeric assembly into the general structure (A alpha, B beta, gamma)2, it was thought that their synthesis might be stoichiometric. Incorporation of [35S]methionine into the subunit chains was determined for both cellular and secreted fibrinogen, immunoprecipitated from pulse-labeled and continuously labeled cultures. Molar ratios of subunit synthesis and the degree of serum-induced stimulation for each subunit were calculated. Specific subunit mRNA levels were also evaluated with a cell-free translation assay as well as microinjection of RNA into Xenopus oocytes. The results indicate, to the contrary, that in hormone-deprived hepatocytes there is a deficiency in A alpha chain synthesis, correlating with reduced A alpha-specific mRNA levels, which leads to hepatocellular degradation of surplus B beta and gamma chains. Addition of serum to the cellular environment, while increasing rates of subunit synthesis, also corrects the deficiency in A alpha chain synthesis, thereby restoring a measure of balance and preventing much of the degradation. The outcome of this serum-induced enhancement and coordination of fibrinogen subunit gene expression is a dramatic (more than 20-fold) stimulation of fibrinogen secretion.  相似文献   

8.
Hepatocyte monolayers, derived from chick embryos and cultured in chemically defined medium without hormones, synthesize and secrete fibrinogen that resembles chicken plasma fibrinogen immunochemically and structurally. Addition of a synthetic glucocorticoid, dexamethasone, to the cultured cells resulted in an appreciable and relatively selective increase in fibrinogen synthesis. Autoradiography of fibrinogen that had been metabolically labelled with [35S]methionine and then subjected to SDS-polyacrylamide gel electrophoresis, unreduced or under disulfide-reducing conditions, revealed that only dimeric forms of fibrinogen, containing undegraded A alpha, B beta, and gamma chains, were secreted under stimulated and unstimulated culture conditions.  相似文献   

9.
Crotalus atrox venom contains agents that render human fibrinogen and plasma incoagulable by thrombin. To elucidate the mechanism of alteration of fibrinogen clotting function by the venom, four immunochemically different proteases, I, II, III, and IV, were purified from the venom by anion-exchange chromatography and column gel filtration. All four proteases had anticoagulant activity rendering purified fibrinogen incoagulable. Proteases I and IV do not affect fibrinogen in plasma but in purified fibrinogen cleave the A alpha chain first and then the B beta and gamma chains. Both enzymes are metalloproteases containing a single polypeptide chain with 1 mol of zinc, are inhibited by (ethylenedinitrilo)tetraacetate and human alpha 2-macroglobulin, and have an optimal temperature of 37 degrees C and an optimal pH of 7. Protease I has a molecular weight (Mr) of 20 000 and is the most cationic. Protease IV has an Mr of 46 000 and is the most anionic glycoprotein with one free sulfhydryl group. Proteases II and III degrade both purified fibrinogen and fibrinogen in plasma, cleaving only the B beta chain and leaving the A alpha and gamma chains intact. Both enzymes are alkaline serine proteases, cleave chromogenic substrates at the COOH terminal of arginine or lysine, are inhibited by diisopropyl fluorophosphate and phenylmethanesulfonyl fluoride, and have an optimal temperature of 50-65 degrees C. Protease II is a single polypeptide chain glycoprotein with an Mr of 31 000. Protease III is a two polypeptide chain protein with an Mr of 24 000, each of the two chains having an Mr of 13 000; its activity is not affected by major protease inhibitors of human plasma. Proteases II and III are enzymes with unique and limited substrate specificity by cleaving only the B beta chain, releasing a peptide of Mr 5000 and generating a fibrinogen derivative of Mr 325 000, with intact A alpha and gamma chains and poor coagulability. Since the two enzymes are active in human plasma and serum, it is postulated that proteases II and III can mediate anticoagulant effects in vivo after envenomation.  相似文献   

10.
Three forms of the normal human plasma fibrinogen gamma-chain which differ in molecular weight have been purified. Plasma fibrinogen was separated by ion exchange chromatography on DEAE-Sephacel into three populations of molecules, each with a unique gamma-chain composition. Following reduction and S-carboxymethylation, the fibrinogen polypeptide chains in each chromatographic peak were separated by ion exchange chromatography on DEAE-Sephacel and identified following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The A alpha, B beta and smallest gamma-chain (gamma 50) eluted at progressively higher ionic strengths, but the elution positions of A alpha, B beta and gamma 50 chains were identical for fibrinogen from each of the three different chromatographic fractions. The unique gamma chain of fibrinogen in the second chromatographic peak (gamma 55) eluted at an ionic strength higher than that of the gamma 50 chain, while the largest gamma-chain (gamma 57.5), which was contained only in the third chromatographic peak of fibrinogen, eluted at the highest ionic strength. The higher ionic strengths needed to elute fibrinogen in the second and third peaks was paralleled by the higher ionic strengths needed to elute the gamma-chains unique to them, suggesting that the gamma-chain composition of the three fibrinogen fractions accounted for their differential binding to the ion exchange resin. Following desialation with neuraminidase, the differences in electrophoretic mobilities between the three gamma-chain forms was maintained, indicating that differential migration on SDS-polyacrylamide gel electrophoresis was not due to variation in sialic acid content.  相似文献   

11.
12.
Human fibrinogen exposed to protease III from Crotalus atrox venom is cleaved near the NH2 terminus of the B beta chain yielding a species of Mr 325,000 (Fg325) with impaired thrombin clottability. The derivative was compared with intact fibrinogen in a number of ways to determine whether the functional defect resulted from a conformational change or from the loss of a polymerization site. NH2-terminal amino acid sequencing of isolated A alpha, B beta, and gamma chains showed that Fg325 contained intact A alpha and gamma chains, but differed from fibrinogen by the absence of the first 42 residues of the B beta chain. Fibrinopeptide A was present and was cleaved at the same rate in both fibrinogen and Fg325. The rate and extent of A alpha and gamma cross-linking by factor XIIIa was also indistinguishable. In contrast, the thrombin-catalyzed coagulation of Fg325 was 46% less in extent and 180-fold slower than observed for intact fibrinogen. A conformational comparison of Fg325 and fibrinogen was made using immunochemical and spectroscopic approaches. Antisera specific for different regions of the fibrinogen molecule were used to characterize the epitopes in Fg325. The only significant differences were found in the NH2-terminal region of the B beta chain, probed with antiserum to B beta 1-118. The conformational similarity of Fg325 and fibrinogen was confirmed by the identity of both near and far UV CD spectra of the two proteins. Structural, functional, and immunochemical results imply that cleavage of 42 NH2-terminal residues from the B beta chain is not accompanied by a measurable conformational change. The residues of this B beta chain segment, which are evidently located on the surface of the molecule, in conjunction with the NH2-terminal part of the A alpha chain appear to play an important role in the expression of a fibrin polymerization site.  相似文献   

13.
Members of the cytokine receptor family are composed of several noncovalently linked chains with sequence and structure homologies in their extracellular domain. Receptor subfamily members share at least one component: thus the receptors for interleukin (IL) 2 and IL15 have common beta and gamma chains, while those for IL2, 4, 7, and 9 have a common gamma chain. The intracellular pathway followed by IL2 receptors after ligand binding and endocytosis was analyzed by immunofluorescence and confocal microscopy in a human T lymphocytic cell line. Surprisingly, the alpha, beta, and gamma chains had different intracellular localizations after being endocytosed together. The alpha chain was always in transferrin-positive compartments (early/recycling endosomes), both at early and late internalization times, but was never detected in rab7-positive compartments (late endosomes). On the other hand, at late internalization times, the beta and gamma chains were excluded from transferrin-positive organelles and did not colocalize with alpha. Furthermore, beta could be found in rab7-positive vesicles. These differences suggest that the alpha chain recycles to the plasma membrane, while the beta and gamma chains are sorted towards the degradation pathway. The half-lives of these three chains on the cell surface also reflect their different intracellular fates after endocytosis. The beta and gamma chains are very short-lived polypeptides since their half-life on the surface is only approximately 1 h, whereas alpha is a much more stable surface protein. This shows for the first time that components of a multimeric receptor can be sorted separately along the endocytic pathway.  相似文献   

14.
Intracellular assembly of human fibrinogen   总被引:7,自引:0,他引:7  
Hep-G2 cells, pulse-labeled with L-[35S]methionine, incorporate radioactivity within 2 min into precursor forms of fibrinogen and into fibrinogen. Pulse-labeled intracellular fibrinogen is first composed of radioactive B beta chains, followed by nascent A alpha chains. Radioactive gamma chains accumulate in the cells and later contribute, via intermediate forms, to the assembly of fibrinogen. Following a pulse-chase incubation with L-[35S]methionine, the radioactive composition of newly secreted fibrinogen also reflects the fact that there is a large intracellular pool of gamma chains.  相似文献   

15.
Cells were enucleated with cytochalasin B after infection with herpes simplex virus 1. When protein synthesis was blocked by cycloheximide from the time of infection, mRNA for viral alpha-infected cell polypeptides (ICP) 4, 0, and 27 accumulated in the cytoplasm and was expressed after the removal of both drug and nucleus. A host protein, ICP 22, whose synthesis is stimulated in intact cells, was not made, and viral protein ICP4, which is normally modified to a form that migrates more slowly in polyacrylamide gels, was not modified in the absence of the nucleus. After enucleation at 2 h postinfection, a number of viral beta and gamma proteins continued to be made, starting at 20 to 25% of the normal rates and declining with a half-time of about 2 h. The synthesis of ICP 4 declined more rapidly, suggesting that it is switched off in the cytoplasm.  相似文献   

16.
Hep G2 cells produce surplus A alpha and gamma fibrinogen chains. These excess chains, which are not secreted, exist primarily as free gamma chains and as an A alpha-gamma complex. We have determined the intracellular location and the degradative fate of these polypeptides by treatment with endoglycosidase-H and by inhibiting lysosomal enzyme activity, using NH4Cl, chloroquine, and leupeptin. Free gamma chain and the gamma component of A alpha-gamma are both cleaved by endoglycosidase-H, indicating that the gamma chains accumulate in a pre-Golgi compartment. Lysosomal enzyme inhibitors did not affect the disappearance of free gamma chains but inhibited A alpha-gamma by 50%, suggesting that A alpha-gamma is degraded in lysosomes. The degradative fate of individual chains was determined in transfected COS cells which express but do not secrete single chains. Leupeptin did not affect B beta chain degradation, had very little affect on gamma chain, but markedly inhibited A alpha chain degradation. Antibody to immunoglobulin heavy chain-binding protein (GRP 78) co-immunoprecipitated B beta but not A alpha or gamma chains. Preferential binding of heavy chain-binding protein to B beta was also noted in Hep G2 cells and in chicken hepatocytes. Taken together these studies indicate that B beta and gamma chains are degraded in the endoplasmic reticulum, but only B beta is bound to BiP. By contrast A alpha chains and the A alpha-gamma complex undergo lysosomal degradation.  相似文献   

17.
Adachi K  Yang Y  Lakka V  Wehrli S  Reddy KS  Surrey S 《Biochemistry》2003,42(34):10252-10259
The role of heterotetramer interaction sites in assembly and autoxidation of hemoglobin is not clear. The importance of beta(116His) (G-18) and gamma(116Ile) at one of the alpha1beta1 or alpha1gamma1 interaction sites for homo-dimer formation and assembly in vitro of beta and gamma chains, respectively, with alpha chains to form human Hb A and Hb F was assessed using recombinant beta(116His)(-->)(Asp), beta(116His)(-->)(Ile), and beta(112Cys)(-->)(Thr,116His)(-->)(Ile) chains. Even though beta chains (e.g., 116 His) are in monomer/tetramer equilibrium, beta(116Asp) chains showed only monomer formation. In contrast, beta(116Ile) and beta(112Thr,116Ile) chains showed homodimer and homotetramer formation like gamma-globin chains which contain 116 Ile. Assembly rates in vitro of beta(116Ile) or beta(112Thr,116Ile) chains with alpha chains were 340-fold slower, while beta(116Asp) chains promoted assembly compared to normal beta-globin chains. These results indicate that amino acid hydrophobicity at the G-18 position in non-alpha chains plays a key role in homotetramer, dimer, and monomer formation, which in turn plays a critical role in assembly with alpha chains to form Hb A and Hb F. These results also suggest that stable dimer formation of gamma-globin chains must not occur in vivo, since this would inhibit association with alpha chains to form Hb F. The role of beta(116His) (G-18) in heterotetramer-induced stabilization of the bond with oxygen in hemoglobin was also assessed by evaluating autoxidation rates using recombinant Hb tetramers containing these variant globin chains. Autoxidation rates of alpha(2)beta(2)(116Asp) and alpha(2)beta(2)(116Ile) tetramers showed biphasic kinetics with the faster rate due to alpha chain oxidation and the slower to the beta chain variants whose rates were 1.5-fold faster than that of normal beta-globin chains. In addition, NMR spectra of the heme area of these two hemoglobin variant tetramers showed similar resonance peaks, which are different from those of Hb A. Oxygen-binding properties of alpha(2)beta(2)(116His)(-->)(Asp) and alpha(2)beta(2)(116His)(-->)(Ile), however, showed slight alteration compared to Hb A. These results suggest that the beta116 amino acid (G18) plays a critical role in not only stabilizing alpha1beta1 interactions but also in inhibiting hemoglobin oxidation. However, stabilization of the bonds between oxygen and heme may not be dependent on stabilization of alpha1beta1 interactions. Tertiary structural changes may lead to changes in the heme region in beta chains after assembly with alpha chains, which could influence stability of dioxygen binding of beta chains.  相似文献   

18.
19.
20.
1. Two hemorrhagic toxins of mol. wt 27,000 (B1) and 27,500 (B2) and pI 9.8 and 5.2 respectively were isolated from Crotalus basiliscus venom. 2. The two proteinases did not cross-react antigenically. 3. Both toxins caused hemorrhage in mice and each was capable of hydrolyzing hide power azure, casein, collagen and fibrin. 4. B1 hydrolyzed the A alpha, B beta and gamma chains of fibrinogen. B2 hydrolyzed the A alpha and B beta chains of fibrinogen, but not the gamma chain. 5. Both proteinases inactivated guinea pig complement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号