首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Zebrafish tgfβ3 is strongly expressed in a subpopulation of the migrating neural crest cells, developing pharyngeal arches and neurocranial cartilages. To study the regulatory role of tgfβ3 in head skeletal formation, we knocked down tgfβ3 in zebrafish and found impaired craniofacial chondrogenesis, evident by malformations in selected neurocranial and pharyngeal arch cartilages. Over-expressing tgfβ3 in embryos resulted in smaller craniofacial cartilages without any gross malformations. These defects suggest that tgfβ3 is required for normal chondrogenesis. To address the cellular mechanisms that lead to the observed malformations, we analyzed cranial neural crest development in morphant and tgfβ3 over-expressing fish. We observed reduced pre-migratory and migratory cranial neural crest, the precursors of the neurocranial cartilage and pharyngeal arches, in tgfβ3 knockdown embryos. In contrast, only the migratory neural crest was reduced in embryos over-expressing tgfβ3. This raised the possibility that the reduced number of cranial neural crest cells is a result of increased apoptosis. Consistent with this, markedly elevated TUNEL staining in the midbrain and hindbrain, and developing pharyngeal arch region was observed in morphants, while tgfβ3 over-expressing embryos showed marginally increased apoptosis in the developing pharyngeal arch region. We propose that both Tgfβ3 suppression and over-expression result in reduced chondrocyte and osteocyte formation, but to different degrees and through different mechanisms. In Tgfβ3 suppressed embryos, this is due to impaired formation and survival of a subpopulation of cranial neural crest cells through markedly increased apoptosis in regions containing the cranial neural crest cells, while in Tgfβ3 over-expressing embryos, the milder phenotype is also due to a slightly elevated apoptosis in these regions. Therefore, proper cranial neural crest formation and survival, and ultimately craniofacial chondrogenesis and osteogenesis, are dependent on tight regulation of Tgfβ3 protein levels in zebrafish.  相似文献   

4.
Hindbrain and craniofacial development during early organogenesis was studied in normal and retinoic acid-exposed Macaca fascicularis embryos. 13-cis-retinoic acid impaired hindbrain segmentation as evidenced by compression of rhombomeres 1 to 5. Immunolocalization with the Hoxb-1 gene product along with quantitative measurements demonstrated that rhombomere 4 was particularly vulnerable to size reduction. Accompanying malformations of cranial neural crest cell migration patterns involved reduction and/or delay in pre- and post-otic placode crest cell populations that contribute to the pharyngeal arches and provide the developmental framework for the craniofacial region. The first and second pharyngeal arches were partially fused and the second arch was markedly reduced in size. The otocyst was delayed in development and shifted rostrolaterally relative to the hindbrain. These combined changes in the hindbrain, neural crest, and pharyngeal arches contribute to the craniofacial malformations observed in the retinoic acid malformation syndrome manifested in the macaque fetus.  相似文献   

5.
It has been demonstrated that the septation of the outflow tract of the heart is formed by the cardiac neural crest. Ablation of this region of the neural crest prior to its migration from the neural fold results in anomalies of the outflow and inflow tracts of the heart and the aortic arch arteries. The objective of this study was to examine the migration and distribution of these neural crest cells from the pharyngeal arches into the outflow region of the heart during avian embryonic development. Chimeras were constructed in which each region of the premigratory cardiac neural crest from quail embryos was implanted into the corresponding area in chick embryos. The transplantations were done unilaterally on each side and bilaterally. The quail-chick chimeras were sacrificed between Hamburger-Hamilton stages 18 and 25, and the pharyngeal region and outflow tract were examined in serial paraffin sections to determine the distribution pattern of quail cells at each stage. The neural crest cells derived from the presumptive arch 3 and 4 regions of the neuraxis occupied mainly pharyngeal arches 3 and 4 respectively, although minor populations could be seen in pharyngeal arches 2 and 6. The neural crest cells migrating from the presumptive arch 6 region were seen mainly in pharyngeal arch 6, but they also populated pharyngeal arches 3 and 4. Clusters of quail neural crest cells were found in the distal outflow tract at stage 23.  相似文献   

6.
Pharyngeal arches are a prominent and critical feature of the developing vertebrate head. They constitute a series of bulges within which musculature and skeletal elements form; importantly, these tissues derive from different embryonic cell types [1]. Numerous studies have emphasised the role of the cranial neural crest, from which the skeletal components derive, in patterning the pharyngeal arches [2-4]. It has never been clear, however, whether all arch patterning is completely dependent on this cell type. Here, we show that pharyngeal arch formation is not coupled to the process of crest migration and, furthermore, that pharyngeal arches form, are regionalized and have a sense of identity even in the absence of the neural crest. Thus, vertebrate head morphogenesis can now be seen to be a more complex process than was previously believed and must result from an integration of both neural-crest-dependent and -independent patterning mechanisms. Our results also reflect the fact that the evolutionary origin of pharyngeal segmentation predates that of the neural crest, which is an exclusively vertebrate characteristic.  相似文献   

7.
Neural crest cells contribute extensively to vertebrate head morphogenesis and their origin is an important question to address in understanding the evolution of the craniate head. The distribution pattern of cephalic crest cells was examined in embryos of one of the living agnathan vertebrates, Lampetra japonica. The initial appearance of putative crest cells was observed on the dorsal aspect of the neural rod at stage 20.5 and ventral expansion of these cells was first seen at the level of rostral somites. As in gnathostomes, cephalic crest cells migrate beneath the surface ectoderm and form three major cell populations, each being separated at the levels of rhombomeres (r) 3 and r5. The neural crest seems initially to be produced at all neuraxial levels except for the rostral-most area, and cephalic crest cells are secondarily excluded from levels r3 and r5. Such a pattern of crest cell distribution prefigures the morphology of the cranial nerve anlage. The second or middle crest cell population passes medial to the otocyst, implying that the otocyst does not serve as a barrier to separate the crest cell populations. The three cephalic crest cell populations fill the pharyngeal arch ventrally, covering the pharyngeal mesoderm laterally with the rostral-most population covering the premandibular region and mandibular arch. The third cell population is equivalent to the circumpharyngeal crest cells in the chick, and its influx into the pharyngeal region precedes the formation of postotic pharyngeal arches. Focal injection of DiI revealed the existence of an anteroposterior organization in the neural crest at the neurular stage, destined for each pharyngeal region. The crest cells derived from the posterior midbrain that express the LjOtxA gene, the Otx2 cognate, were shown to migrate into the mandibular arch, a pattern which is identical to gnathostome embryos. It was concluded that the head region of the lamprey embryo shares a common set of morphological characters with gnathostome embryos and that the morphological deviation of the mandibular arch between the gnathostomes and the lamprey is not based on the early embryonic patterning.  相似文献   

8.
9.
The development of the vertebrate head is a highly complex process involving tissues derived from all three germ layers. The endoderm forms pharyngeal pouches, the paraxial mesoderm gives rise to endothelia and muscles, and the neural crest cells, which originate from the embryonic midbrain and hindbrain, migrate ventrally to form cartilage, connective tissue, sensory neurons, and pigment cells. All three tissues form segmental structures: the hindbrain compartmentalizes into rhombomeres, the mesoderm into somitomeres, and the endoderm into serial gill slits. It is not known whether the different segmented tissues in the head develop by the same molecular mechanism or whether different pathways are employed. It is also possible that one tissue imposes segmentation on the others. Most recent studies have emphasized the importance of neural crest cells in patterning the head. Neural crest cells colonize the segmentally arranged arches according to their original position in the brain and convey positional information from the hindbrain into the periphery. During the screen for mutations that affect embryonic development of zebrafish, one mutant, called van gogh (vgo), in which segmentation of the pharyngeal region is absent, was isolated. In vgo, even though hindbrain segmentation is unaffected, the pharyngeal endoderm does not form reiterated pouches and surrounding mesoderm is not patterned correctly. Accordingly, migrating neural crest cells initially form distinct streams but fuse when they reach the arches. This failure to populate distinct pharyngeal arches is likely due to the lack of pharyngeal pouches. The results of our analysis suggest that the segmentation of the endoderm occurs without signaling from neural crest cells but that tissue interactions between the mesendoderm and the neural crest cells are required for the segmental appearance of the neural crest-derived cartilages in the pharyngeal arches. The lack of distinct patches of neural crest cells in the pharyngeal region is also seen in mutants of one-eyed pinhead and casanova, which are characterized by a lack of endoderm, as well as defects in mesodermal structures, providing evidence for the important role of the endoderm and mesoderm in governing head segmentation.  相似文献   

10.
11.

Background  

Craniofacial birth defects result from defects in cranial neural crest (NC) patterning and morphogenesis. The vertebrate craniofacial skeleton is derived from cranial NC cells and the patterning of these cells occurs within the pharyngeal arches. Substantial efforts have led to the identification of several genes required for craniofacial skeletal development such as the endothelin-1 (edn1) signaling pathway that is required for lower jaw formation. However, many essential genes required for craniofacial development remain to be identified.  相似文献   

12.
Craniofacial and ocular morphogenesis require proper regulation of cranial neural crest migration, proliferation, survival and differentiation. Although alterations in maternal thyroid hormone (TH) are associated with congenital craniofacial anomalies, the role of TH on the neural crest has not been previously described. Using zebrafish, we demonstrate that pharmacologic and genetic alterations in TH signaling disrupt cranial neural crest migration, proliferation, and survival, leading to craniofacial, extraocular muscle, and ocular developmental abnormalities. In the rostral cranial neural crest that gives rise to the periocular mesenchyme and the frontonasal process, retinoic acid (RA) rescued migratory defects induced by decreased TH signaling. In the caudal cranial neural crest, TH and RA had reciprocal effects on anterior and posterior pharyngeal arch development. The interactions between TH and RA signaling were partially mediated by the retinoid X receptor. We conclude that TH regulates both rostral and caudal cranial neural crest. Further, coordinated interactions of TH and RA are required for proper craniofacial and ocular development.  相似文献   

13.
14.
Several syndromes characterized by defects in cardiovascular and craniofacial development are associated with a hemizygous deletion of chromosome 22q11 in humans and involve defects in pharyngeal arch and neural crest cell development. Recent efforts have focused on identifying 22q11 deletion syndrome modifying loci. In this study, we show that mouse embryos deficient for Gbx2 display aberrant neural crest cell patterning and defects in pharyngeal arch-derived structures. Gbx2(-/-) embryos exhibit cardiovascular defects associated with aberrant development of the fourth pharyngeal arch arteries including interrupted aortic arch type B, right aortic arch, and retroesophageal right subclavian artery. Other developmental abnormalities include overriding aorta, ventricular septal defects, cranial nerve, and craniofacial skeletal patterning defects. Recently, Fgf8 has been proposed as a candidate modifier for 22q11 deletion syndromes. Here, we demonstrate that Fgf8 and Gbx2 expression overlaps in regions of the developing pharyngeal arches and that they interact genetically during pharyngeal arch and cardiovascular development.  相似文献   

15.
16.
The developing hind-brain of vertebrates consists of segmental units called rhombomeres. Although crest cells emigrate from the hind-brain, they are subsequently subdivided into several cell populations that are attached to restricted regions of the hind-brain. At the preotic level, only even-numbered rhombomeres are accompanied by crest cells, while the odd-numbered ones are not. At the postotic level, such the birhombomeric repetition becomes obscure. In order to map the origins and distributions of postotic crest cells, focal injections of Dil were made into various axial levels of the postotic neural tube. Cephalic crest cells at the postotic level first form a single cell population deposited by cells along the dorsolateral pathway. They are called the circumpharyngeal crest cells (CP cells) and are secondarily subdivided into each pharyngeal arch ectomesenchyme. The neural tube extending from r5 to the somite 3/4 boundary gave rise to CP cells. The neuraxial origins of each pharyngeal ectomesenchyme extended for more than three somite lengths, most of which overlapped with the other. Unlike in the preotic region, there is no segmental registration between neuraxial levels and pharyngeal arches. Caudal portions of the CP cell population show a characteristic distribution pattern that circumscribes the postotic pharyngeal arches caudally. Heterotopic transplantation of the Dil-labeled neural crest into the somite 3 level resulted in a distribution of labeled cells similar to that of CP cells, suggesting that the pattern of distribution depends upon dynamic modification of the body wall associated with pharyngeal arch formation.  相似文献   

17.
Characterisation of human craniofacial syndromes and studies in transgenic mice have demonstrated the requirement for Fgf signalling during morphogenesis of membrane bone of the cranium. Here, we report that Fgf activity is also required for development of the oro-pharyngeal skeleton, which develops first as cartilage with some elements subsequently becoming ossified. We show that inhibition of FGF receptor activity in the zebrafish embryo following neural crest emigration from the neural tube results in complete absence of neurocranial and pharyngeal cartilages. Moreover, this Fgf signal is required during a 6-h period soon after initiation of neural crest migration. The spatial and temporal expression of Fgf3 and Fgf8 in pharyngeal endoderm and ventral forebrain and its correlation with patterns of Fgf signalling activity in migrating neural crest makes them candidate regulators of cartilage development. Inhibition of Fgf3 results in the complete absence of cartilage elements that normally form in the third, fourth, fifth, and sixth pharyngeal arches, while those of the first, second, and seventh arches are largely unaffected. Inhibition of Fgf8 alone has variable, but mild, effects. However, inhibition of both Fgf3 and Fgf8 together causes a complete absence of pharyngeal cartilages and the near-complete loss of the neurocranial cartilage. These data implicate Fgf3 and Fgf8 as key regulators of cartilage formation in the vertebrate head.  相似文献   

18.
The velo-cardio-facial syndrome (VCFS)/DiGeorge syndrome (DGS) is a genetic disorder characterized by phenotypic abnormalities of the derivatives of the pharyngeal arches, including cardiac outflow tract defects. Neural crest cells play a major role in the development of the pharyngeal arches, and defects in these cells are likely responsible for the syndrome. Most patients are hemizygous for a 1.5- to 3.0-Mb region of 22q11, that is suspected to be critical for normal pharyngeal arch development. Mice hemizygous for a 1.5-Mb homologous region of chromosome 16 (Lgdel/+) exhibit conotruncal cardiac defects similar to those seen in affected VCFS/DGS patients. To investigate the role of Lgdel genes in neural crest development, we fate mapped neural crest cells in Lgdel/+ mice and we performed hemizygous neural crest-specific inactivation of Lgdel. Hemizygosity of the Lgdel region does not eliminate cardiac neural crest migration to the forming aortic arches. However, neural crest cells do not differentiate appropriately into smooth muscle in both fourth and sixth aortic arches and the affected aortic arch segments develop abnormally. Tissue-specific hemizygous inactivation of Lgdel genes in neural crest results in normal cardiovascular development. Based on our studies, we propose that Lgdel genes are required for the expression of soluble signals that regulate neural crest cell differentiation.  相似文献   

19.
An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome   总被引:12,自引:0,他引:12  
Deletion of chromosome 22q11, the most common microdeletion detected in humans, is associated with a life-threatening array of birth defects. Although 90% of affected individuals share the same three megabase deletion, their phenotype is highly variable and includes craniofacial and cardiovascular anomalies, hypoplasia or aplasia of the thymus with associated deficiency of T cells, hypocalcemia with hypoplasia or aplasia of the parathyroids, and a variety of central nervous system abnormalities. Because ablation of neural crest in chicks produces many features of the deletion 22q11 syndrome, it has been proposed that haploinsufficiency in this region impacts neural crest function during cardiac and pharyngeal arch development. Few factors required for migration, survival, proliferation and subsequent differentiation of pharyngeal arch neural crest and mesoderm-derived mesenchyme into their respective cardiovascular, musculoskeletal, and glandular derivatives have been identified. However, the importance of epithelial-mesenchymal interactions and pharyngeal endoderm function is becoming increasingly clear. Fibroblast growth factor 8 is a signaling molecule expressed in the ectoderm and endoderm of the developing pharyngeal arches and known to play an important role in survival and patterning of first arch tissues. We demonstrate a dosage-sensitive requirement for FGF8 during development of pharyngeal arch, pharyngeal pouch and neural crest-derived tissues. We show that FGF8 deficient embryos have lethal malformations of the cardiac outflow tract, great vessels and heart due, at least in part, to failure to form the fourth pharyngeal arch arteries, altered expression of Fgf10 in the pharyngeal mesenchyme, and abnormal apoptosis in pharyngeal and cardiac neural crest. The Fgf8 mutants described herein display the complete array of cardiovascular, glandular and craniofacial phenotypes seen in human deletion 22q11 syndromes. This represents the first single gene disruption outside the typically deleted region of human chromosome 22 to fully recapitulate the deletion 22q11 phenotype. FGF8 may operate directly in molecular pathways affected by deletions in 22q11 or function in parallel pathways required for normal development of pharyngeal arch and neural crest-derived tissues. In either case, Fgf8 may function as a modifier of the 22q11 deletion and contribute to the phenotypic variability of this syndrome.  相似文献   

20.
Wnt activity is critical in craniofacial morphogenesis. Dysregulation of Wnt/β-catenin signaling results in significant alterations in the facial form, and has been implicated in cleft palate phenotypes in mouse and man. In zebrafish, we show that wnt9a is expressed in the pharyngeal arch, oropharyngeal epithelium that circumscribes the ethmoid plate, and ectodermal cells superficial to the lower jaw structures. Alcian blue staining of morpholino-mediated knockdown of wnt9a results in loss of the ethmoid plate, absence of lateral and posterior parachordals, and significant abrogation of the lower jaw structures. Analysis of cranial neural crest cells in the sox10:eGFP transgenic demonstrates that the wnt9a is required early during pharyngeal development, and confirms that the absence of Alcian blue staining is due to absence of neural crest derived chondrocytes. Molecular analysis of genes regulating cranial neural crest migration and chondrogenic differentiation suggest that wnt9a is dispensable for early cranial neural crest migration, but is required for chondrogenic development of major craniofacial structures. Taken together, these data corroborate the central role for Wnt signaling in vertebrate craniofacial development, and reveal that wnt9a provides the signal from the pharyngeal epithelium to support craniofacial chondrogenic morphogenesis in zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号