首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An interstitial collagenase was purified from the explant medium of bovine dental pulp and was shown to degrade collagens I and III but not IV and V. The enzyme halted cleft initiation in the epithelium of 12-day mouse embryonic submandibular glands in vitro, indicating the active involvement of interstitial collagens in the branching morphogenesis. Transmission electron microscopic observation of the intact 12-day gland without any clefts showed the scattered localization of a few collagen fibrils at the epithelial-mesenchymal interface of the bulb and also revealed the presence of numerous microfibrils around the stalk. Collagen bundles were regularly seen close to the wavy basal lamina at the bottom of clefts of the intact 13-day gland and 12-day gland cultured for 17 h under normal conditions. Mesenchymal cells were found in the clefts together with the frequent localization of peripheral nerve fibres and capillary endothelial cells. The collagen bundles were more often observed in the 12-day gland cultured in the presence of bovine dental pulp collagenase inhibitor, which had been shown to enhance cleft formation. In contrast, collagen fibrils were rarely found at the epithelial-mesenchymal interface of the 12-day gland cultured in the presence of Clostridial or bovine dental pulp collagenase. The findings indicated that the formation of interstitial collagen bundles is essential to form clefts in the epithelium both in vivo and in vitro.  相似文献   

2.
An X-ray irradiation method was employed to analyse the role of cell proliferation in vitro in the cleft formation of mouse embryonic submandibular epithelium at early stages. When the mid 12-day gland was exposed to 200 rad of X-rays, the growth was severely retarded. In contrast, late 12-day and early 13-day glands grew apparently in a normal fashion, as did the control gland, for up to 40 h. In either case, they formed shallow clefts within 10 h of culture. With 1000 rad irradiation, the mid 12-day gland did not grow at all, but formed clefts within 20 h of culture followed by a rapid degeneration. Under the same conditions, the growth of the late 12-day gland, which was at the stage just before branching, was retarded until 10 h of culture, followed by a slight increase in epithelial size, but cleft formation was also observed within 6-10 h, as in the control gland. When exposed to a dose of 1000 rad of X-rays, the early 13-day and the late 12-day glands exhibited similar radiosensitivity; the initial narrow clefts in the epithelium deepened and new clefts began to form within 6-10 h of culture. [3H]thymidine incorporation studies revealed that a dose of 1000 rad reduced DNA synthesis of mid and late 12-day glands by 72 and 65%, respectively. Histological examination of X-irradiated late 12-day gland showed that mitotic figures were rarely seen in the epithelium at 6 h of culture. Aphidicolin, a specific inhibitor of DNA synthesis, could not halt the cleft formation of the late 12-day gland. In this experiment 89% of DNA synthesis was inhibited. Treatment of an X-ray irradiated late 12-day gland with aphidicolin blocked 92% of the DNA synthesis, but did not prevent cleft formation taking place. These results indicate that neither cell division nor DNA synthesis, is required for the initiation process of the cleft formation of the mouse embryonic submandibular epithelium at early morphogenetic stages in vitro.  相似文献   

3.
The distribution of collagens I, III, IV and V was studied by immunoperoxidase staining of early developing mouse submandibular glands. Collagen I was always present in the extracellular matrices of the mesenchyme and at the epithelial-mesenchymal interfaces of the 12-day gland with no clefts and of the 13-day gland with a few definite clefts. Collagen III was found in a similar fashion to that of collagen I in the mesenchyme, but the distribution at the epithelial-mesenchymal interfaces was very different. In the mid 12-day gland with a round lobule, collagen III was distributed at every slightly indented site of basal epithelial surfaces. At the late 12-day stage, a few initial signs of cleft appeared on the surface, at which accumulation of collagen III became evident. Intense immunoreaction of collagen III in the early 13-day gland was seen at the bottom of every narrow cleft. No specific accumulation of collagens IV and V was observed in clefts of the late 12-day and early 13-day glands. Staining of collagen III in the 12-day gland cultured for 10 h in the presence of bovine dental pulp collagenase inhibitor, which has been shown to stimulate cleft initiation, was very prominent at the bottom of every narrow cleft. These observations suggest that collagen III works as a key substance for either in vitro or in vivo cleft initiation of the mouse embryonic submandibular epithelium.  相似文献   

4.
Nerve growth from the mouse parasympathetic submandibular ganglion is stimulated by the developing target epithelium. To investigate the nature of this trophic influence, homogenates of salivary glands, gland-conditioned medium, and formalin-fixed glands were assayed for ability to elicit parasympathetic axon extension in tissue culture. Neither homogenates nor conditioned medium stimulated axon outgrowth from submandibular ganglia. However, when ganglia were added to glands in which protein synthesis and cell movement had been halted by formalin fixation, stimulation of outgrowth into the tissue was observed. Stimulation of axonal growth occurred after hyaluronidase and collagenase treatment of the glands, but not after treatment with proteases or with heat. Moreover, prolonged formalin fixation destroyed the glandular ability to elicit axon elongation. Intact ganglia cultured with whole live submandibular glands in the presence of low levels of hyaluronidase or collagenase showed extensive axon outgrowth despite disruption of the normal morphogenetic pattern of both epithelium and axons. Our results suggest that stimulation of axon outgrowth does not directly depend on the concomitant metabolic or morphogenetic activity of the epithelium, but is caused by some epithelial product, probably a protein.  相似文献   

5.
Branching morphogenesis of mouse salivary gland has been studied with organ-culture system. We developed a novel transfilter culture system for analyzing branching morphogenesis of the salivary epithelium. The submandibular salivary epithelium from early 13-day mouse fetus, clotted with Matrigel and separated from the mesenchyme by membrane filter, showed extensive growth and branching morphogenesis, morphological differentiation of lobules and stalks, and a typical cleft shape. The epithelium showed little growth and no branching without Matrigel clot or without the mesenchyme. This branching morphogenesis was induced even when the pore size of the filter was reduced to 0.05 microns. Use of type I collagen gel instead of Matrigel mostly induced incomplete morphogenesis with various histological abnormalities. These results suggest that the salivary epithelium can undergo branching morphogenesis in the absence of the mechanical action of mesenchymal cells although it needs an appropriate extracellular matrix and some mesenchymal factors transmitted through the filter.  相似文献   

6.
We showed previously that digitonin-permeabilized salivary glands form prominent puffs in response to ecdysterone only when the incubation medium is supplemented with a homogenate of intact glands. To develop a chemically defined medium that supports puff formation in permeabilized salivary glands, we examined the requirement of ribonucleoside triphosphates (NTPs), precursors of RNA synthesis, for puff formation in permeabilized salivary glands. We found that prominent ecdysone puffs were induced in permeabilized salivary glands when the concentration of each NTP in the medium was higher than 0.5 mM. The puff size was significantly reduced if the volume of the medium were more than 2.0 microliter per gland. This suggests the existence of a factor(s), in addition to NTPs, which is required for puff formation and is diffusible from permeabilized glands.  相似文献   

7.
Cleft of the secondary palate is one of the most common congenital birth defects in humans. The primary cause of cleft palate formation is a failure of fusion of bilateral palatal shelves, but rupture of the once fused palate has also been suggested to take place in utero. The possibility of post-fusion rupture of the palate in humans has hardly been accepted, mainly because in all the cleft palate cases, the cleft palatal edge is always covered with intact epithelium. To verify whether the intrauterine environment of the fetus plays roles in wound healing when the once fused palate is torn apart, we artificially tore apart fetal mouse palates after fusion and cultivated them in culture medium with or without mouse or human amniotic fluid. We thereby found that the wounded palatal edge became completely covered with flattened epithelium after 36 hours in culture with amniotic fluid, but not in culture without amniotic fluid. Using histological and scanning electron microscopic analyses of the healing process, it was revealed that the epithelium covering the wound was almost exclusively derived from the adjacent nasal epithelium, but not from the oral epithelium. Such actions of amniotic fluid on the fetal wound were never simulated by exogenous epidermal growth factor (EGF), albumin, or both. In addition, the rapid epithelialization induced by amniotic fluid was not prevented by either PD168393 (an inhibitor of the EGF receptor-specific tyrosine kinase) or SB431542 (a specific inhibitor of TGFbeta receptor type I/ALK5). The present study provides new insights into the unique biological actions of amniotic fluid in the repair of injured fetal palate.  相似文献   

8.
To investigate how the mesenchyme interacts with the epithelium, we employed three different culture systems: System A, in which intact submandibular gland rudiments at the mid 13-day stage were cultured on Millipore filters; System B, in which the 13-day epithelium and mesenchyme were separated once with dispase, recombined again, and cultured on the filter; System C, in which the separated 13-day epithelium was clotted with Matrigel and cultured with the mesenchyme across the filter or in the presence of EGF instead of the mesenchyme. In Systems A and B, 13-day epithelia expanded and produced similar lobules with narrow clefts and stalk. When the 13-day epithelium was cultured in System C under the influence of the mesenchyme, it formed rather oval lobules with stalk that were superficially similar to those in System A, but narrow clefts, as seen in the intact early 13-day gland, were rarely found in System C. Furthermore, no long stalk formation was observed when EGF was introduced in place of the mesenchyme. A bacterial collagenase from Clostridium histolyticum gave a considerable inhibition of branching of the 13-day epithelium in Systems A and B, but no significant inhibition was observed in System C when the mesenchyme or EGF was employed as the source of diffusible factor(s). In contrast, although the 13-day epithelium was significantly resistant to the action of heparitinase I from Flavobacterium heparinum in Systems A and B, the enzyme almost completely inhibited the expansion and branching of the epithelium in System C. Judging from these observations, we conclude that the mechanisms of lobular formation in Systems A and B are not the same as those in System C, where the epithelium is clotted with basement membrane matrix components during tissue culture.  相似文献   

9.
《Insect Biochemistry》1991,21(2):137-144
Protein phosphatase activity in tick salivary glands was inhibited by heat-stable protein(s) from tick salivary glands as well as by an inhibitor protein from rabbit skeletal muscle. Inhibitor activity was increased after phosphorylation of inhibitor proteins with the catalytic subunit (C) of cyclic AMP-dependent protein kinase and ATP. C inhibited protein phosphatase activity of the partially purified enzyme, while purified cyclic AMP-dependent protein kinase inhibitor protein prevented inhibition of tick salivary gland protein phosphatase by C suggesting that the inhibitor phosphoprotein coelutes with the partially purified enzyme. A soluble heat-stable protein with a molecular weight of approx. 26 kDa was phosphorylated by C, suggesting that a protein phosphatase inhibitor protein similar to inhibitor-1 in mammalian tissue, is present in tick salivary glands.  相似文献   

10.
Sj?gren's syndrome is a chronic autoimmune disorder characterized by inflammation of salivary glands resulting in impaired secretory function. Our present studies indicate that chronic exposure of salivary epithelium to TNF-α and/or IFN-γ alters tight junction integrity, leading to secretory dysfunction. Resolvins of the D-series (RvDs) are endogenous lipid mediators derived from DHA that regulate excessive inflammatory responses leading to resolution and tissue homeostasis. In this study, we addressed the hypothesis that activation of the RvD1 receptor ALX/FPR2 in salivary epithelium prevents and/or resolves the TNF-α-mediated disruption of acinar organization and enhances monolayer formation. Our results indicate that 1) the RvD1 receptor ALX/FPR2 is present in fresh, isolated cells from mouse salivary glands and in cell lines of salivary origin; and 2) the agonist RvD1 (100 ng/ml) abolished tight junction and cytoskeletal disruption caused by TNF-α and enhanced cell migration and polarity in salivary epithelium. These effects were blocked by the ALX/FPR2 antagonist butyloxycarbonyl-Phe-Leu-Phe-Leu-Phe. The ALX/FPR2 receptor signals via modulation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways since, in our study, blocking PI3K activation with LY294002, a potent and selective PI3K inhibitor, prevented RvD1-induced cell migration. Furthermore, Akt gene silencing with the corresponding siRNA almost completely blocked the ability of Par-C10 cells to migrate. Our findings suggest that RvD1 receptor activation promotes resolution of inflammation and tissue repair in salivary epithelium, which may have relevance in the restoration of salivary gland dysfunction associated with Sj?gren's syndrome.  相似文献   

11.
Interleukin 1 (IL-1) stimulates the synthesis of collagenase in human uterine cervical fibroblasts. This inductive effect of IL-1 on collagenase production was augmented by N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a specific inhibitor of calmodulin, in a dose-dependent manner. The apparent collagenase activity observed in the culture medium of the cells treated with IL-1 and 40 microM W-7 was about three times higher than that produced by the cells treated with IL-1 alone. The immunoblotting with the specific antibody against human collagenase showed that the increased collagenase activity resulted from the accelerated biosynthesis of collagenase. Another calmodulin inhibitor, trifluoperazine, enhanced the effect of IL-1 on collagenase production similarly. However, the effect of N-(6-aminohexyl)-1-naphthalenesulfonamide, the weakest inhibitor of calmodulin, was negligible. These results suggest that W-7 enhances the collagenase production by specifically inhibiting calmodulin and that calmodulin may act as a suppressor of the IL-1-induced collagenase production in human uterine cervical fibroblasts.  相似文献   

12.
The acinous and accessory salivary glands in Nucella lapillusare derived from two distinctly separate sites; the acinoussalivary glands evaginate from the walls of the buccal cavity,whilst the accessory salivary glands arise as paired invaginationsof the epithelium of the ventral lip of the mouth. During thedevelopment of the oesophagus, the acinous salivary glands growposteriorly and come to lie behind the nerve ring, but are pulledanteriorly through it when the proboscis elongates during development.The ducts of the accessory salivary glands fuse to form a singleduct with paired tubular glands during proboscis formation.The secretory cells in both pairs of salivary glands differentiateprior to the crawlaway's emergence from the egg capsule. Theontogeny of the salivary glands in Nucella shows that the accessorysalivary glands cannot be homologdus with the acinous salivaryglands or venom apparatus of the Conoidea. (Received 13 September 1996; accepted 25 November 1996)  相似文献   

13.
Bone explants from foetal and newborn rabbits synthesize and release a collagenase inhibitor into culture media. Inhibitor production in the early days of culture is followed first by latent collagenase and subsequently active collagenase in the culture media. A reciprocal relationship exists between the amounts of free inhibitor and latent collagenase in culture media, suggesting strongly that the inhibitor is a component of the latent form of the enzyme. Over 90% of the inhibitory activity of culture media is associated with a fraction of apparent mol.wt. 30000 when determined by gel filtration on Ultrogel AcA 44. The inhibitor blocks the action of rabbit collagenase on both reconstituted collagen fibrils and collagen in solution. It inhibits the action of either active collagenase or latent collagenase activated by 4-aminophenylmercuric acetate. Latent collagenase activated by trypsin is usually much less susceptible to inhibition. The activity of the inhibitor is destroyed by heat, by incubation with either trypsin or chymotrypsin and by 4-aminophenylmercuric acetate. Collagenase activity can be recovered from complexes of enzyme (activated with 4-aminophenylmercuric acetate) with free inhibitor by incubation with either trypsin or 4-aminophenylmercuric acetate, at concentrations similar to those that activate latent collagenase from culture media. The rabbit bone inhibitor does not affect the activity of bacterial collagenase, but blocks the action of collagenases not only from a variety of rabbit tissues but also from other mammalian species.  相似文献   

14.
Although growth factor signaling is required for embryonic development of organs, individual signaling mechanisms regulating these organotypic processes are just beginning to be defined. We compared signaling activated in fetal mouse submandibular glands (SMGs) by three growth factors, epidermal growth factor (EGF), fibroblast growth factor (FGF) 7, or FGF10, and correlated it with specific events of branching morphogenesis. Immunoblotting showed that EGF strongly stimulated phosphorylation of extracellular signal-regulated kinase-1/2 (ERK-1/2) and weakly stimulated phosphorylation of phospholipase C γ 1 (PLC γ 1) and phosphatidylinositol-3 kinase (PI3K) in cultured E14 SMG. However, FGF7 and FGF10 stimulated phosphorylation of both PLC γ 1 and PI3K, but elicited only minimal phosphorylation of ERK-1/2. Morphological study of mesenchyme-free SMG epithelium cultured in Matrigel revealed that EGF induced cleft formation of endpieces, that FGF7 stimulated both cleft formation and stalk elongation, but that FGF10 induced only stalk elongation. In mesenchyme-free SMG epithelium cultured with EGF, FGF7 and FGF10, U0126 (MEK inhibitor) completely blocked cleft formation, whereas U73122 (PLC γ 1 inhibitor) suppressed stalk elongation. These finding suggest that EGF stimulates cleft formation and drives branch formation via ERK-1/2, and that FGF7 stimulates both cleft formation and stalk elongation via PLC γ 1 and partly via ERK-1/2, but that FGF10 stimulates stalk elongation mainly via PLC γ 1.  相似文献   

15.
Human articular chondrocytes in culture produced large amounts of specific mammalian collagenase, gelatinase and proteoglycanase when exposed to dialysed supernatant medium derived from cultured human blood mononuclear cells (mononuclear cell factor) or to conditioned medium, partially purified by fractionation with ammonium sulphate (60–90% fraction), from cultures of human synovial tissue (synovial factor). Human chondrocytes and synovial cells also released into culture medium an inhibitor of collagenase of apparent molecular weight about 30 000, which appeared to be similar to the tissue inhibitor of metalloproteinases synthesised by tissues in culture. The amounts of free collagenase inhibitor were reduced in culture media from chondrocytes or synovial cells exposed to mononuclear cell factor or synovial factor. While retinol inhibited the production of collagenase brought about by mononuclear cell factor or synovial factor, it restored the levels of inhibitor, which were reduced in the presence of mononuclear cell factor or synovial factor. Dexamethasone markedly reduced the production of collagenase by synovial cells, while only partially inhibiting factor-stimulated collagenase production by chondrocytes. Addition of puromycin as an inhibitor of protein synthesis reduced the amounts of both collagenase and inhibitor to control or undetectable levels.  相似文献   

16.
Summary Alterations in the ultrastructure of in vitro cultured larval salivary glands of Drosophila melanogaster in response to the steroid hormone ecdysone were studied in relation to complex changes in puffing patterns. We found that the changes in the fine structure of cultured glands reflected progression of the puffing pattern, and they paralleled those seen in vivo. We observed that glue secretion by exocytosis, the main function of salivary glands, took place between puff stage 5 (PS5) and PS7. Glue could not be expectorated under culture conditions but was slowly released from the lumen through a duct into the medium. After the cultured glands reached PS13/PS14, further progress of puffing and fine structural alterations required that the ecdysteroid titer be transiently extremely low or absent. Under in vitro conditions we did not observe the putative new secretory program(s) described for glands in vivo after PS12. However, ultrastructural changes which unambiguously indicated that an autohistolytic process had begun in vitro started to appear after PS17. Many salivary gland cells developed numerous features of progressive self-degradation between PS18 and PS21. Actual degradation of salivary glands in vivo seemed to be rapid, but in vitro degradation was never completed, probably due to a lack of exogenous factors from the hemolymph. Manipulations of ecdysone titer in vitro in the culture medium, known during the larval puffing cycle to cause premature induction of developmentally specific puffing patterns, did not affect the normal development of ultrastructural features of the cytoplasm and nucleus.  相似文献   

17.
1. Pure rabbit bone metalloproteinase inhibitor (TIMP) bound tightly to pure rabbit bone collagenase with an apparent Kd of 1.4 X 10(-10) M. 2. The molecular weight of the enzyme-inhibitor complex was found to be 54 000, but no enzyme activity could be recovered from the complex after treatment with either mercurials or proteinases. The complex thus differed from latent collagenase in terms of size, susceptibility to mercurials and behaviour on concanavalin A-Sepharose. 3. The interaction of the purified components was compared with that of crude collagenase and crude inhibitor in culture medium. Mercurial treatment partially reversed the inhibition in the crude system, but not when the purified components were used. 4. The significance of the results is discussed in relation to the extracellular control of the activity of collagenase.  相似文献   

18.
Evidence has recently accumulated suggesting that osteoblasts play a direct role in bone resorption by producing collagenase. In this paper we describe studies carried out with explants of bone from osteopetrotic grey lethal (gl/gl) mice and show that despite the lack of osteoclastic activity the production of both active and latent collagenase and its specific inhibitor TIMP (tissue inhibitor of metalloproteinases) is similar to that of normal bones. Synthesis of collagenase was stimulated by the bone resorptive agent vitamin A (retinol); concomitantly, TIMP levels fell to zero and active enzyme was detected in the culture medium. This work supports the view that bone collagenase is produced by cells other than osteoclasts, since the response of the osteoblastic population to resorptive signals appears normal.  相似文献   

19.
A rat carcinoma cell line (T2/H7) constitutively synthesised interstitial collagenase. When these cells were incubated with 12-O-tetradecanoylphorbol 13-acetate (TPA) they secreted an inhibitor of collagenase, which resulted in a net decrease of collagenolytic activity being detected in conditioned medium. Using reverse zymography, the Mr of the inhibitor was found to be 20,000 which suggests that it may be the rat homologue of inhibitor of metalloproteinase 2 (IMP2; TIMP-2), as it inhibited both the gelatinolytic and collagenolytic activities of rat collagenase. The inhibitor was separated from collagenase by filtration through a YM30 membrane. The inhibitor was purified further by sequential chromatography on heparin-Sepharose and Con A-Sepharose. It bound to heparin-Sepharose in 75 mM NaCl and was eluted with 300 mM NaCl. It did not bind to Con A-Sepharose, suggesting that it was a non-glycosylated molecule. The inhibitor was resistant to treatment with either trypsin, APMA or heat.  相似文献   

20.
《Developmental biology》1987,122(2):396-406
A simple assay system for gene regulation using chromosomal puffing as an index of gene activity was established. Salivary glands of Drosophila melanogaster treated with a mild detergent, digitonin, were permeable to high molecular substances, including β-galactosidase (MW 465,000). The permeabilized salivary glands retained the ability to form puffs at the ecdysterone-stimulated loci (74EF and 75B) in response to the hormone. Incubation of the permeabilized salivary glands at puff stage 1 (PS1) for 2 hr in a medium containing both ecdysterone and a homogenate of intact salivary glands at puff stage 8–9 (PS8–9) induced a puff at 78C, where puffing occurs only at puff stages 6–11 in vivo. The puff at 78C was not induced when the permeabilized PS1 glands were incubated with the combination of ecdysterone and a homogenate of the PS1 salivary glands. Likewise, the 78C puff was not induced in intact PS1 salivary glands by a 2-hr incubation with ecdysterone and PS8–9 gland homogenate. These results indicate that a factor(s) required for 78C puff formation is present in PS8–9 but not in PS1 salivary glands and that factor(s) can permeate digitonin-treated salivary glands but not intact glands. The effectiveness of the permeabilized salivary glands as an assay system for gene-regulating factors is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号