首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purine-cytosine permease (PCP), a carrier located in the plasma membrane of Saccharomyces cerevisiae, mediates the active transport of purine (adenine, guanine and hypoxanthine) and cytosine into the cell. Previous studies [Ferreira, T, Brèthes, D., Pinson, B., Napias, C. & Chevallier, J. et al. (1997) J. Biol. Chem. 272, 9697-9702] suggest that the hydrophilic segment 371-377 (-I-A-N-N-I-P-N-) of the polypeptide chain may play a key role in the correct three-dimensional structure of the active carrier. This paper describes the effects of mutations in this particular segment: a four-residue deletion, Delta374-377, and two substitutions, P376G and P376R. The Delta374-377 PCP was expressed in tiny amounts and was totally inactive. When compared with the wild-type, the P376G PCP showed slightly decreased amounts and was able to transport the bases with significantly increased affinity and decreased turnover. The P376R PCP was normally expressed and targeted to the plasma membrane; however, despite a normal number of base-binding sites [1000-1200 pmol.(mg protein)-1], this mutated carrier was completely unable to transport any of its ligands. In addition, the Kd(app) for hypoxanthine binding was completely independent of the pH (within the range 3.5-6.0), showing that the conformational change induced by ligand binding was no longer present. Our results show that the 374-377 segment is essential for the expression and activity of this carrier. They also show that the P376 residue is part of an unusual secondary structure, probably a beta-turn motif, which must play a crucial dynamic role in the translocation process.  相似文献   

2.
The FCY2 gene of the purine-cytosine permease (PCP) of Saccharomyces cerevisiae and the allele fcy2-21 have been cloned on the yeast multicopy plasmid pJDB207. The corresponding plasmids were introduced into a S. cerevisiae strain carrying a chromosomal deletion at the FCY2 locus. The resulting strains were designated pAB4 and pAB25 respectively. The pAB25 strain, which carries the fcy2-21 allele, contains four amino acid changes in the open reading frame of the PCP (Weber et al., 1989). The influence of these mutations was studied on cells by determination of the uptake constants of purine bases and cytosine [apparent Michaelis constant of transport (Ktapp) and Vmax] and on plasma-membrane preparations, by measurements of binding parameters at equilibrium [(Kd and maximum amount of binding sites/Bmax)]. For strain pAB4, the Ktapp and Vmax of uptake were almost similar for all solutes considered [1.8-2.6 microM and 8.5-10.2 nmol.min-1.(10(7) cells)-1]. The main effect of the mutations in strain pAB25 was based on a large increase in Ktapp for all ligands except adenine. Plasma membranes of each strain displayed one class of specific binding sites. Variations in Kd of 0.4-1 microM were observed for pAB4. These slight variations had no effect on the Ktapp of uptake measured for the corresponding solutes. In contrast, using pAB25 membranes, Kd increased dramatically; 2.6 microM, 40 microM and 96 microM for adenine, cytosine and hypoxanthine, respectively. These increments were correlated to variations in Ktapp of the uptake for cytosine and hypoxanthine. Therefore, we conclude that modification in the Ktapp of uptake in the strain carrying fcy2-21 allele is merely due to a modification of the binding ability of the permease for its ligands.  相似文献   

3.
In this paper we demonstrate the existence of a second proline permease, gene proP, in Salmonella typhimurium. Uptake assays demonstrate that this second proline permease has 5 to 10% the uptake rate of the putP permease, the cell's major proline permease, when assayed at 20 microM proline. Genetic mapping by Hfr and P22-mediated genetic crosses placed the second proline permease gene at 92 min on the S. typhimurium genetic map, near the genes for melibiose utilization. F'-mediated complementation tests indicated that Escherichia coli also has the proP gene.  相似文献   

4.
Serratia marcescens hemTUV genes encoding a potential heme permease were cloned in Escherichia coli recombinant mutant FB827 dppF::Km(pAM 238-hasR). This strain, which expresses HasR, a foreign heme outer membrane receptor, is potentially capable of using heme as an iron source. However, this process is invalidated due to a dppF::Km mutation which inactivates the Dpp heme/peptide permease responsible for heme, dipeptide, and delta-aminolevulinic (ALA) transport through the E. coli inner membrane. We show here that hemTUV genes complement the Dpp permease for heme utilization as an iron source and thus are functional in E. coli. However, hemTUV genes do not complement the Dpp permease for ALA uptake, indicating that the HemTUV permease does not transport ALA. Peptides do not inhibit heme uptake in vivo, indicating that, unlike Dpp permease, HemTUV permease does not transport peptides. HemT, the periplasmic binding protein, binds heme. Heme binding is saturable and not inhibited by peptides that inhibit heme uptake by the Dpp system. Thus, the S. marcescens HemTUV permease and, most likely, HemTUV orthologs present in many gram-negative pathogens form a class of heme-specific permeases different from the Dpp peptide/heme permease characterized in E. coli.  相似文献   

5.
Growth of Pseudomonas acidovorans in the presence of l-tryptophan resulted in the appearance of a tryptophan transport system which was extremely sensitive to sodium azide or 2,4-dinitrophenol. Asparagine-grown cells possessed no detectable tryptophan "permease" activity. Substitution of l-kynurenine for l-tryptophan in the growth medium also induced the tryptophan permease activity, along with tryptophan oxygenase and kynurenine formamidase. This is the first reported example of the product induction of a permease activity. Irrespective of whether Pseudomonas cells are grown in the presence of d- or l-tryptophan, the resulting induced tryptophan permease activity is specific for the l-isomer. In addition, the radioactive compounds l-leucine, l-phenylalanine, or dl-5-hydroxytryptophan are not transported. When dl-5-fluorotryptophan is a component of the inducing medium (with l-tryptophan), induction of tryptophan permease activity, as well as tryptophan oxygenase, is inhibited. In the permease assay system, using normally induced cells, the fluoroanalogue inhibited strikingly tryptophan transport. Therefore, this analogue may inhibit induction by blocking inducer transport into the cell. When added to the l-tryptophan-inducing medium, dl-7-azatryptophan markedly enhanced induction of tryptophan oxygenase, but the level of tryptophan permease activity was not further elevated. The mechanism of this analogue is unclear at present. Invariant tryptophan permease activity levels are found in cells grown with 5 or 15 mml-tryptophan or 5 mml-kynurenine, whereas the respective tryptophan oxygenase levels are greatly different. Together with other results, these results indicate that the synthesis of tryptophan permease activity is not coordinate with that of tryptophan oxygenase. Tryptophan transport is strongly inhibited by l-formylkynurenine and by l-kynurenine. These two metabolites were prepared in radioactive form, and they are actively transported following bacterial growth on l-tryptophan or l-kynurenine. Preliminary results suggest the tryptophan permease activity may be distinct from the permease(s) activity for l-formylkynurenine and l-kynurenine. Kynurenine, then, is capable of inducing tryptophan permease and kynurenine permease activities.  相似文献   

6.
Wild-type Escherichia coli strains (beta-gl(-)) do not split beta-glucosides, but inducible mutants (beta-gl(+)) can be isolated which do so. This inducible system consists of a beta-glucoside permease and an aryl beta-glucoside splitting enzyme. Both can be induced by aryl and alkyl beta-glucosides. In beta-gl(-) and noninduced beta-gl(+) cells, C(14)-labeled thioethyl beta-glucoside (TEG) is taken up by a constitutive permease, apparently identical with a glucose permease (GP). This permease has a high affinity for alpha-methyl glucoside and a low affinity for aryl beta-glucosides. No accumulation of TEG occurs in a beta-gl(-) strain lacking glucose permease (GP(-)). In induced beta-gl(+) strains, there appears a second beta-glucoside permease with low affinity for alpha-methyl glucoside and high affinity for aryl beta-glucosides. Autoradiography shows that TEG is accumulated by the beta-glucoside permease and glucose permease in two different forms (one being identical with TEG, the other probably phosphorylated TEG). In GP(+) beta-gl(+) strains with high GP activity, alkyl beta-glucosides induce the enzyme and the beta-glucoside permease after a prolonged induction lag, and they competitively inhibit the induction by aryl beta-glucosides. The induction lag and competition do not exist in GP(-) beta-gl(+) strains. It is assumed that phosphorylated alkyl and thioalkyl beta-glucosides inhibit the induction, and that this inhibition is responsible for the induction lag.  相似文献   

7.
8.
Replacement of the glycine at position 117 by a cysteine in the melibiose permease creates an interesting phenotype: while the mutant transporter shows still transport activity comparable to the wild type its pre steady-state kinetic properties are drastically altered. The transient charge displacements after substrate concentration jumps are strongly reduced and the fluorescence changes disappear. Together with its maintained transport activity this indicates that substrate translocation in G117C melibiose permease is not impaired but that the initial conformation of the mutant transporter differs from that of the wild type permease. A kinetic model for the G117C melibiose permease based on a rapid dynamic equilibrium of the substrate free transporter is proposed. Implications of the kinetic model for the transport mechanism of the wild type permease are discussed.  相似文献   

9.
The general aromatic amino acid permease, AroP, of Escherichia coli is responsible for the active transport of phenylalanine, tyrosine, and tryptophan. A proposed topological model for the AroP permease, consisting of 12 hydrophobic transmembrane spans connected by hydrophilic loops, is very similar to that of the closely related phenylalanine-specific permease. The validity of this model and its similarity to that of the PheP permease were investigated by studying fusion proteins of AroP permease and alkaline phosphatase. Based on the results obtained from the AroP-alkaline phosphatase sandwich fusions, we have significantly revised the proposed topological model for AroP in two regions. In this modified AroP topological model, the three charged residues E151, E153, and K160 are repositioned within the membrane in span 5. These three residues are conserved in a large family of amino acid transport proteins, and site-directed mutagenesis identifies them as being essential for transport activity. It is postulated that these residues together with E110 in transmembrane span 3 may be involved in a proton relay system.  相似文献   

10.
Uptake of uracil by the yeast Saccharomyces cerevisiae is mediated by a specific permease encoded by the FUR4 gene. Uracil permease located at the cell surface is subject to two covalent modifications: phosphorylation and ubiquitination. The ubiquitination step is necessary prior to permease endocytosis and subsequent vacuolar degradation. Here, we demonstrate that a PEST-like sequence located within the cytoplasmic N terminus of the protein is essential for uracil permease turnover. Internalization of the transporter was reduced when some of the serines within the region were converted to alanines and severely impaired when all five serines within the region were mutated or when this region was absent. The phosphorylation and degree of ubiquitination of variant permeases were inversely correlated with the number of serines replaced by alanines. A serine-free version of this sequence was very poorly phosphorylated, and elimination of this sequence prevented ubiquitination. Thus, it appears that the serine residues in the PEST-like sequence are required for phosphorylation and ubiquitination of uracil permease. A PEST-like sequence in which the serines were replaced by glutamic acids allowed efficient permease turnover, suggesting that the PEST serines are phosphoacceptors.  相似文献   

11.
Uracil uptake by Saccharomyces cerevisiae is mediated by the FUR4-encoded uracil permease. The modification of uracil permease by phosphorylation at the plasma membrane is a key mechanism for regulating endocytosis of this protein. This modification in turn facilitates its ubiquitination and internalization. Following endocytosis, the permease is targeted to the lysosome/vacuole for proteolysis. We have previously shown that uracil permease is phosphorylated at several serine residues within a well characterized N-terminal PEST sequence. In this report, we provide evidence that lysine residues 38 and 41, adjacent to the PEST sequence, are the target sites for ubiquitination of the permease. Conservative substitutions at both Lys(38) and Lys(41) give variant permeases that are phosphorylated but fail to internalize. The PEST sequence contains potential phosphorylation sites conforming to the consensus sequences for casein kinase 1. Casein kinase 1 (CK1) protein kinases, encoded by the redundant YCKI and YCK2 genes, are located at the plasma membrane. Either alone supports growth, but loss of function of both is lethal. Here, we show that in CK1-deficient cells, the permease is poorly phosphorylated and poorly ubiquitinated. Moreover, CK1 overproduction rescued the defective endocytosis of a mutant permease in which the serine phosphoacceptors were replaced by threonine (a less effective phosphoacceptor), which suggests that Yck activity may play a direct role in phosphorylating the permease. Permease internalization was not greatly affected in CK1-deficient cells, despite the low level of ubiquitination of the protein. This may be due to CK1 having a second counteracting role in endocytosis as shown by the higher turnover of variant permeases with unphosphorylatable versions of the PEST sequence.  相似文献   

12.
The nucleotide sequence of tnaB of the tryptophanase operon of Escherichia coli is presented. TnaB is a tryptophan-specific permease that is homologous to Mtr, a second tryptophan-specific permease, and to TyrP, a tyrosine-specific permease. Each member of this family appears to contain 11 membrane-spanning domains.  相似文献   

13.
Site-directed mutagenesis of Pro327 in the lac permease of Escherichia coli   总被引:5,自引:0,他引:5  
By use of oligonucleotide-directed, site-specific mutagenesis, Pro327 in the lac permease of Escherichia coli has been replaced with Ala, Gly, or Leu. Permease with Ala at position 327 catalyzes lactose/H+ symport in a manner indistinguishable from wild-type permease. Permease with Gly at position 327, on the other hand, exhibits about one-tenth the activity of wild-type permease but catalyzes lactose accumulation to essentially the same steady-state level as wild-type permease. Finally, permease with Leu at position 327 is completely inactive. The results demonstrate that there is no relationship between permease activity and the helix-breaking (Pro and Gly) or helix-making (Ala and Leu) properties of the residue at position 327. It is suggested that it is primarily a chemical property of the side chain at position 327 (i.e., bulk, hydropathy, and/or ability to hydrogen bond) that is critical for activity and that neither cis/trans isomerization of Pro327 nor the presence of a kink at this position is important.  相似文献   

14.
P D Roepe  H R Kaback 《Biochemistry》1990,29(10):2572-2577
By use of techniques described recently for lac permease [Roepe, P.D., & Kaback, H.R. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6087], the melibiose permease from Escherichia coli, another polytopic integral plasma membrane protein, has been purified in a metastable soluble form after overexpression of the melB gene via the T7 RNA polymerase system. As demonstrated with lac permease, soluble melibiose permease is dissociated from the membrane with 5.0 M urea and appears to remain soluble in phosphate buffer at neutral pH after removal of urea by dialysis, although the protein aggregates in a time- and concentration-dependent fashion. Moreover, soluble melibiose permease behaves as a monomer during purification by size exclusion chromatography in the presence of urea. Circular dichroism of purified soluble melibiose permease reveals that the protein is highly helical in potassium phosphate buffer and that secondary structure is disrupted in 5.0 M urea. Finally, purified melibiose permease can be reconstituted into proteoliposomes, and the preparations catalyze membrane potential driven H+/melibiose or Na+/methyl 1-thio-beta,D-galactopyranoside symport. The results provide further support for the notion that hydrophobic transmembrane proteins may be able to assume a nondenatured conformation in aqueous solution and extend the implication that the approach described may represent a general method for rapid isolation and reconstitution of this class of membrane proteins.  相似文献   

15.
We have recently reported that the yeast plasma membrane uracil permease undergoes cell-surface ubiquitination, which is dependent on the Npi1/Rsp5 ubiquitin-protein ligase. Ubiquitination of this permease, like that of some other transporters and receptors, signals endocytosis of the protein, leading to its subsequent vacuolar degradation. This process does not involve the proteasome, which binds and degrades ubiquitin-protein conjugates carrying Lys48-linked ubiquitin chains. The data presented here show that ubiquitination and endocytosis of uracil permease are impaired in yeast cells lacking the Doa4p ubiquitin-isopeptidase. Both processes were rescued by overexpression of wild-type ubiquitin. Mutant ubiquitins carrying Lys-->Arg mutations at Lys29 and Lys48 restored normal permease ubiquitination. In contrast, a ubiquitin mutated at Lys63 did not restore permease polyubiquitination. Ubiquitin-permease conjugates are therefore extended through the Lys63 of ubiquitin. When polyubiquitination through Lys63 is blocked, the permease still undergoes endocytosis, but at a reduced rate. We have thus identified a natural target of Lys63-linked ubiquitin chains. We have also shown that monoubiquitination is sufficient to induce permease endocytosis, but that Lys63-linked ubiquitin chains appear to stimulate this process.  相似文献   

16.
The conformationally sensitive epitope for monoclonal antibody (mAb) 4B1, which uncouples lactose from H+ translocation in the lactose permease of Escherichia coli, is localized in the periplasmic loop between helices VII and VIII (loop VII/VIII) on one face of a short helical segment (Sun J, et al., 1996, Biochemistry 35;990-998). Comparison of sequences in the region corresponding to loop VII/VIII in members of Cluster 5 of the Major Facilitator Superfamily (MFS), which includes five homologous oligosaccharide/H+ symporters, reveals interesting variations. 4B1 binds to the Citrobacter freundii lactose permease or E. coli raffinose permease with resultant inhibition of transport activity. Because E. coli raffinose permease contains a Pro residue at position 254 rather than Gly, it is unlikely that the mAb recognizes the peptide backbone at this position. Consistently, E. coli lactose permease with Pro in place of Gly254 also binds 4B1. In contrast, 4B1 binding is not observed with either Klebsiella pneumoniae lactose permease or E. coli sucrose permease. When the epitope is transferred from E. coli lactose permease (residues 245-259) to the sucrose permease, the modified protein binds 4B1, but the mAb has no significant effect on sucrose transport. The studies provide further evidence that the 4B1 epitope is restricted to loop VII/VIII, and that 4B1 binding induces a highly specific conformational change that uncouples substrate and H+ translocation.  相似文献   

17.
Mannitol-specific enzyme II, or mannitol permease, of the phosphoenolpyruvate-dependent carbohydrate phosphotransferase system of Escherichia coli carries out the transport and phosphorylation of D-mannitol and is most active as a dimer in the membrane. We recently reported the importance of a glutamate residue at position 257 in the binding and transport of mannitol by this protein (C. Saraceni-Richards and G. R. Jacobson, J. Bacteriol. 179:1135-1142, 1997). Replacing Glu-257 with alanine (E257A) or glutamine (E257Q) eliminated detectable mannitol binding and transport by the permease. In contrast, an E257D mutant protein was able to bind and phosphorylate mannitol in a manner similar to that of the wild-type protein but was severely defective in mannitol uptake. In this study, we have coexpressed proteins containing mutations at position 257 with other inactive permeases containing mutations in each of the three domains of this protein. Activities of any active heterodimers resulting from this coexpression were measured. The results show that various inactive mutant permease proteins can complement proteins containing mutations at position 257. In addition, we show that both Glu at position 257 and His at position 195, both of which are in the membrane-bound C domain of the protein, must be on the same subunit of a permease dimer in order for efficient mannitol phosphorylation and uptake to occur. The results also suggest that mannitol bound to the opposite subunit within a permease heterodimer can be phosphorylated by the subunit containing the E257A mutation (which cannot bind mannitol) and support a model in which there are separate binding sites on each subunit within a permease dimer. Finally, we provide evidence from these studies that high-affinity mannitol binding is necessary for efficient transport by mannitol permease.  相似文献   

18.
19.
Previous studies utilizing site-directed mutagenesis [Pourcher et al. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 468-472] indicate that out of seven histidinyl residues in the melibiose (mel) permease of Escherichia coli, only His94 is important. The role of His94 has now been investigated by replacing the residue with Asn, Gln, or Arg. Cells expressing mel permease with Asn94 or Gln94 retain 30% or 20% of wild-type activity, respectively, and surprisingly, immunological assays demonstrate that diminished transport activity is due to a proportional reduction in the amount of permease in the membrane. Moreover, kinetic analyses of transport and ligand binding studies with right-side-out membrane vesicles indicate that both substrate recognition and turnover (kcat) are comparable in the mutant permeases and the wild-type. Mel permease with Arg in place of His94 also binds ligand and catalyzes sugar accumulation, but only when the cells are grown at 30 degrees C, and evidence is presented that Arg94 permease is inactivated at 37 degrees C. Finally, labeling studies demonstrate that expression and/or insertion of the permease, but not degradation, is strongly dependent on the amino acid present at position 94 and temperature. The findings indicate that an imidazole group at position 94 is required for proper insertion and stability of mel permease, but not for transport activity per se. Since replacement of the other six histidinyl residues in mel permease with Arg has little or no effect on transport activity, it is concluded that histidinyl residues do not play a direct role in the mechanism of this secondary transport protein.  相似文献   

20.
Cheng Q  Park JT 《Journal of bacteriology》2002,184(23):6434-6436
AmpG was originally identified as a gene required for induction of beta-lactamase. Subsequently, we found AmpG to be a permease required for recycling of murein tripeptide and uptake of anhydro-muropeptides. We have now studied the specificity of the AmpG permease. The principal requirement is for the presence of the disaccharide, N-acetylglucosaminyl-beta-1,4-anhydro-N-acetylmuramic acid (GlcNAc-anhMurNAc). These unique substrates for AmpG, which contain murein peptides linked to GlcNAc-anhMurNAc, are produced by turnover of the cell wall during logarithmic growth. AmpG permease is sensitive to carbonylcyanide m-chlorophenylhydrazone, demonstrating that AmpG permease is a single-component permease and that transport is dependent on the proton motive force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号