首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Cursorial spiders are important predators of crop pests in a variety of agricultural systems. Their survivorship, growth, and fecundity can be enhanced by the consumption of extra‐floral nectar. We recently showed that Hibana futilis (Banks) (Araneae: Anyphaenidae) engages in restricted area search following contact with nectar, is stimulated by nectar aroma, and can learn to recognize novel aroma cues. Studies have shown that H. futilis is also responsive to solvent extracts of the eggs and scales of the corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), one of its primary prey insects in cotton. The arrestment behavior of cursorial spiders following consumption of prey and non‐prey food has not been characterized. In the present study, the responses of spiders were measured following consumption of prey (H. zea eggs) or non‐prey (droplets of dilute honey) food items and compared with individuals tested without food items. The food items were presented to the spiders in test arenas constructed from the top of an inverted glass Petri dish cover. A combination of real time and recorded observations were made via a video camera attached to a computer. The behaviors and movement patterns of individual spiders were analyzed with behavioral tracking software. Significant differences in the behaviors and motion paths of spiders tested in the different treatments were observed. Hibana futilis displayed significantly more dispersal behavior on a blank test arena, than on test arenas supplied with honey droplets or moth eggs. Likewise, spiders tested on the blank arena crawled faster and their motion paths were significantly less tortuous than those of spiders tested in the arenas with honey or moth eggs. Following consumption of both the honey droplets and moth eggs, spiders showed elevated levels of restricted area search and lowered levels of dispersal behavior. The analysis showed that these spiders could crawl rapidly for extended distances. Behaviors such as restricted area search and learned recognition of food‐based stimuli would facilitate efficient location of the food resources needed to maintain their high activity levels.  相似文献   

2.
Plant–pollinator interactions offer an excellent system to study the stability of mutualistic interactions. While nectar production requires resources and a reduction could in principle benefit plant fitness, only few angiosperms lack nectar, and thus cheat from a pollinator's perspective. Cheating behavior may be scarce because of pollinator foraging behaviors that select for nectariferous plants. Shorter inspection duration, interaction with fewer flowers, or even complete avoidance of plants with low/no nectar may reduce the fitness of cheating plants. The effectiveness of pollinator strategies may depend on how they are implemented. Innate strategies would invariably decrease the fitness of a cheating plant, while learned responses allow cheaters to exploit naïve pollinators. Here, we studied the foraging strategies of the hawkmoth Manduca sexta during interactions with nectariferous and reward‐minimized Petunia axillaris. We found that neither naïve nor experienced hawkmoths discriminated a priori between rewarding and nectar‐less plants. However, naïve hawkmoths displayed reduced probing time per flower and number of flowers visited on reward‐minimized plants during the first trial, without showing further improved discrimination with experience. In conclusion, the foraging decision rules of hawkmoths that may reduce the fitness of reward‐minimized plants appear to be innate, with little scope for additional learning.  相似文献   

3.
Many plants secrete nectar from extrafloral nectaries (EFNs), specialized structures that usually attract ants which can act as plant defenders. We examined the nectar-mediated interactions between Chamaecrista nictitans (Caesalpineaceae) and jumping spiders (Araneae, Salticidae) for 2 years in old fields in New Jersey, USA. Previous research suggests that spiders are entirely carnivorous, yet jumping spiders (Eris sp. and Metaphidippus sp.) on C. nictitans collected nectar in addition to feeding on herbivores, ants, bees, and other spiders. In a controlled-environment experiment, when given a choice between C. nictitans with or without active EFNs, foraging spiders spent 86% of their time on plants with nectar. C. nictitans with resident jumping spiders did set significantly more seed than plants with no spiders, indicating a beneficial effect from these predators. However, the presence of jumping spiders did not decrease numbers of Sennius cruentatus (Bruchidae), a specialist seed predator of C. nictitans. Jumping spiders may provide additional, unexpected defense to plants possessing EFNs. Plants with EFNs may therefore have beneficial interactions with other arthropod predators in addition to nectar-collecting ants. Received: 27 May 1998 / Accepted: 23 December 1998  相似文献   

4.
Extrafloral nectaries are a defence trait that plays important roles in plant–animal interactions. Gossypium species are characterized by cellular grooves in leaf midribs that secret large amounts of nectar. Here, with a panel of 215 G. arboreum accessions, we compared extrafloral nectaries to nectariless accessions to identify a region of Chr12 that showed strong differentiation and overlapped with signals from GWAS of nectaries. Fine mapping of an F2 population identified GaNEC1, encoding a PB1 domain‐containing protein, as a positive regulator of nectary formation. An InDel, encoding a five amino acid deletion, together with a nonsynonymous substitution, was predicted to cause 3D structural changes in GaNEC1 protein that could confer the nectariless phenotype. mRNA‐Seq analysis showed that JA‐related genes are up‐regulated and cell wall‐related genes are down‐regulated in the nectary. Silencing of GaNEC1 led to a smaller size of foliar nectary phenotype. Metabolomics analysis identified more than 400 metabolites in nectar, including expected saccharides and amino acids. The identification of GaNEC1 helps establish the network regulating nectary formation and nectar secretion, and has implications for understanding the production of secondary metabolites in nectar. Our results will deepen our understanding of plant–mutualism co‐evolution and interactions, and will enable utilization of a plant defence trait in cotton breeding efforts.  相似文献   

5.
  • Research into the influence of stress factors, such as drought, different temperatures and/or varied light conditions, on plants due to climate changes is becoming increasingly important. Epiphytes, like many species of the Bromeliaceae, are particularly affected by this, but little is known about impacts on nectar composition and nectary metabolism.
  • We investigated the influence of drought, different temperatures and light–dark regimes on nectar and nectaries of the epiphytic bromeliad species, Aechmea fasciata, and also the influence of drought with the terrestrial bromeliad, Billbergia nutans. The content of sugars, amino acids and ions in nectar and nectaries was analysed using HPLC. In addition, the starch content and the activities of different invertases in nectaries were determined.
  • Compositions of nectar and nectaries were hardly influenced, neither by light nor dark, nor by different temperatures. In contrast, drought revealed changes in nectar volumes and nectar sugar compositions in the epiphytic bromeliad as well as in the terrestrial bromeliad. In both species, the sucrose‐to‐hexose ratio in nectar decreased considerably during the drought period. These changes in nectar sugar composition do not correlate with changes in the nectaries. The total sugar, amino acid and ion concentrations remained constant in nectar as well as in nectaries during the drought period.
  • Changes in nectar composition or in the production of floral pollinator rewards are likely to affect plant–pollinator interactions. It remains questionable how far the adaptations of the bromeliads to drought and diverse light or temperature conditions are still sufficient.
  相似文献   

6.
1. For predators, prey selection should maximise nutrition and minimise fitness costs. In the present study, it was investigated whether a generalist predator [Chrysoperla carnea (Stephens) lacewing larvae] rejected harmful, chemically‐defended prey [Brevicoryne brassicae (Linnaeus) aphids] when non‐defended prey [Myzus persicae (Sulzer) aphids] were available. 2. It was tested: (i) whether consuming different prey species affects predator mortality; (ii) whether naïve predators reject chemically‐defended prey while foraging when non‐defended prey are available; (iii) whether the relative abundance of each prey affects the predator's prey choice; and (iv) whether predators learn to avoid consuming chemically‐defended prey after exposure to both prey species. 3. Consumption of B. brassicae yielded greater C. carnea mortality than M. persicae consumption, but naïve C. carnea did not reject B. brassicae in favour of M. persicae during foraging. When presented at unequal abundances, naïve predators generally consumed each aphid species according to their initial relative abundance, although, predation of non‐defended prey was less than expected when defended prey were initially more abundant, indicating a high consumption of B. brassicae impeded M. persicae consumption. With experience, C. carnea maintained predation of both aphid species but consumed more M. persicae than B. brassicae, indicating a change in behaviour. 4. Although prey choice by C. carnea may change with experience of available prey, prey chemical defences do not appear to influence prey choice by naïve predators. This inability to avoid harmful prey could facilitate wider, indirect interactions. Myzus persicae may benefit where high consumption of B. brassicae hinders predators in the short term, and in the long term, increases predator mortality.  相似文献   

7.
Members of the spider families Thomisidae, Salticidae, Miturgidae, Anyphaenidae, and Corinnidae have been observed on floral and extrafloral nectaries of plants, where they are presumably feeding on nectar. Nectar feeding is a phenomenon that has long intrigued biologists. However, few studies have focused on the effect of nectar on biological characteristics of these spiders. The aim of this study was to determine whether crab spiders, Ebrechtella tricuspidata (Fabricius) (Araneae: Thomisidae), show an active preference for honey solution (a simulated nectar source) and to test the effect of honey solution on the survival and development time of spiderlings and the fecundity of adult E. tricuspidata. The results showed that the number of females feeding on the 10, 20, and 30% honey solution was significantly higher than those feeding on water alone, and there was no difference in the number of females feeding on the three concentrations of honey solution. Significantly more E. tricuspidata preferred feeding on the 20% honey solution, and they spent significantly more time feeding on 20% honey solution than on water, regardless of whether they were males or females, adults or spiderlings. Ingestion of honey solution significantly increased the survival and shortened the development time of E. tricuspidata. Female spiders that fed on honey solution had a shorter pre‐oviposition period and laid more eggs than those given only water. Our results suggest that nectar could be a high‐quality supplementary food to maintain normal growth and metabolism in spiderlings and adult female spiders in nature.  相似文献   

8.
Spiders are assumed to be strictly carnivorous in assessments of their nutritional and energetic requirements, their habitat preferences, and their potential as biological control agents. However, members of Salticidae (jumping spiders), Thomisidae (crab spiders), and the fast-moving Miturgidae, Anyphaenidae, and Corinnidae, all non-webbuilding wandering spiders, have been observed at floral and extrafloral nectaries of plants, presumably feeding on nectar. To test spiders in the field for nectar feeding, we used a cold anthrone test to detect the presence of ingested fructose, a plant-derived sugar, in wandering spiders occupying cotton plants (Gossypium hirsutum L.), which have floral and extrafloral nectaries. Field collections focused on three ecologically similar, highly active nocturnal spiders: Cheiracanthium inclusum (Hentz) (Miturgidae), Hibana futilis (Banks), and H. arunda (Platnick) (Anyphaenidae). During 2002 and 2003, 27 and 21%, respectively, of all field-collected adults and subadults tested positive for fructose, indicating consumption of extrafloral nectar. In both years, significantly more females were positive than males (38 versus 11% in 2002; 26 versus 12% in 2003). Immatures tested positive at a lower rate than adults (3 and 13%, respectively). Smaller numbers of spiders in the Lycosidae, Oxyopidae, and Thomisidae were also tested. Among the thomisids, 38% in 2002 and 41% in 2003 tested positive for fructose. None of the lycosids (wolf spiders) tested positive; two of nine oxyopids (lynx spiders) did test positive. Oxyopidae is new to the list of nectarivorous spiders. These results suggest that nectarivory is common for foliage wandering spiders and may contribute to fitness.  相似文献   

9.
Predators frequently leave behind chemical information (i.e., semiochemicals such as pheromones or kairomones) that can be detected by their prey and used to avoid areas where predators are likely present. Prey that have interacted indirectly with predators via chemical information thus may gain insight into their risk of being consumed that naïve individuals lack. Pardosa milvina (Araneae: Lycosidae) is a chemosensitive wolf spider that shows adaptive responses to chemotactile cues deposited by the larger wolf spider Tigrosa helluo. We raised offspring from P. milvina to examine the effect of experience with a predation cue on activity, foraging, and antipredator behavior. Spiders differed in activity and foraging behavior across ontogeny and between sexes, but there was no effect of experience with a predation cue. However, a sex‐specific effect of experience was found in antipredator behavior. Male spiders, but not females, used experience with a predator cue to increase their survival in the presence of a live predator. Specifically, naïve males were attacked sooner than experienced males, indicating that prior exposure to predator cues can modify Pardosa antipredator behavior. Intersexual differences in how spiders respond to experience with a predation cue likely reflect the risk of predation faced by males and females in nature.  相似文献   

10.
Eric  W.  Riddick Zhixin  Wu  M  Guadalupe Rojas 《Insect Science》2014,21(1):83-92
The lady beetle Coleomegilla maculata De Geer is an omnivorous predator that could help suppress aphid and spider mite populations on plants in greenhouses, plantscapes or interiorscapes. We are assessing the nutritional requirements and feeding behavior of C. maculata on target prey (spider mites) and factitious (unnatural) food. Our ultimate goal is to develop an efficacious diet to mass produce C. maculata. In this study, we tested the hypothesis that Tetranychus urticae Koch (two-spotted spider mite) is not suitable prey for development and reproduction of naive C. maculata (i.e., with no prior exposure to T. urticae). Our objectives were to (i) provide baseline data on the effects of consuming T. urticae on C. maculata life history, (ii) to compare the effects of consuming all stages of T. urticae versus eggs ofMusca domestica L. (common housefly), and (iii) to determine if the consumption of plant products was beneficial. We used C. maculata from a colony reared only on Ephestia kuehniella Zeller (Mediterranean flour moth) eggs. In experiments, C. maculata larvae were reared from the first instar to adult stage with prey/food in replicated arenas; adult females were paired with a single male with prey/food. The results showed that naive C. maculata readily attacked and consumed T. urticae. Nevertheless, T. urticae was less suitable than M. domestica eggs for C. maculata development and reproduction. Applying a synthetic pollen-Chlorella alga powder (SPCA) in arenas containing T. urticae appeared to boost C. maculata female development and reproduction.  相似文献   

11.
The lady beetle Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae) is an important predator of aphids in agroecosystems. The inundative release of coccinellid beetles can be an effective biological control strategy. An understanding of how biological control agents perceive and use stimuli from host plants is the key to successfully implement commercially produced predators. Here, we studied the relative role of visual and volatile cues. Dual‐choice assays using foraging‐naïve and foraging‐experienced P. japonica adults were conducted using cotton plants [Gossypium hirsutum L. (Malvaceae)] with or without infestation by the cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae). Overall, experienced beetles were more attracted than naïve beetles toward cues associated with aphid‐infested plants. Experienced beetles were also more responsive to olfactory cues compared with naïve beetles. Both foraging‐naïve and ‐experienced lady beetles integrate olfactory and visual cues from plants infested with aphids, with an apparently greater reliance on olfactory cues. The results suggest that foraging experience may increase prey location in P. japonica.  相似文献   

12.
We present a framework for explaining variation in predator invasion success and predator impacts on native prey that integrates information about predator–prey naïveté, predator and prey behavioral responses to each other, consumptive and non‐consumptive effects of predators on prey, and interacting effects of multiple species interactions. We begin with the ‘naïve prey’ hypothesis that posits that naïve, native prey that lack evolutionary history with non‐native predators suffer heavy predation because they exhibit ineffective antipredator responses to novel predators. Not all naïve prey, however, show ineffective antipredator responses to novel predators. To explain variation in prey response to novel predators, we focus on the interaction between prey use of general versus specific cues and responses, and the functional similarity of non‐native and native predators. Effective antipredator responses reduce predation rates (reduce consumptive effects of predators, CEs), but often also carry costs that result in non‐consumptive effects (NCEs) of predators. We contrast expected CEs versus NCEs for non‐native versus native predators, and discuss how differences in the relative magnitudes of CEs and NCEs might influence invasion dynamics. Going beyond the effects of naïve prey, we discuss how the ‘naïve prey’, ‘enemy release’ and ‘evolution of increased competitive ability’ (EICA) hypotheses are inter‐related, and how the importance of all three might be mediated by prey and predator naïveté. These ideas hinge on the notion that non‐native predators enjoy a ‘novelty advantage’ associated with the naïveté of native prey and top predators. However, non‐native predators could instead suffer from a novelty disadvantage because they are also naïve to their new prey and potential predators. We hypothesize that patterns of community similarity and evolution might explain the variation in novelty advantage that can underlie variation in invasion outcomes. Finally, we discuss management implications of our framework, including suggestions for managing invasive predators, predator reintroductions and biological control.  相似文献   

13.
Nectaries occur widely in Convolvulaceae. These structures remain little studied despite their possible importance in plant–animal interactions. In this paper, we sought to describe the structure and ultrastructure of the receptacular nectaries (RNs) of Ipomoea cairica, together with the dynamics of nectar secretion. Samples of floral buds, flowers at anthesis and immature fruits were collected, fixed and processed using routine methods for light, scanning and transmission electron microscopy. Circadian starch dynamics were determined through starch measurements on nectary sections. The secretion samples were subjected to thin layer chromatography. RNs of I. cairica were cryptic, having patches of nectar‐secreting trichomes, subglandular parenchyma cells and thick‐walled cells delimiting the nectary aperture. The glandular trichomes were peltate type and had typical ultrastructural features related to nectar secretion. The nectar is composed of sucrose, fructose and glucose. Nectar secretion was observed in young floral buds and continued as the flower developed, lasting until the fruit matured. The starch content of the subglandular tissue showed circadian variation, increasing during the day and decreasing at night. The plastids were distinct in different portions of the nectary. The continuous day–night secretory pattern of the RNs of I. cairica is associated with pre‐nectar source circadian changes in which the starch acts as a buffer, ensuring uninterrupted nectar secretion. This circadian variation may be present in other extrafloral nectaries and be responsible for full daytime secretion. We conclude that sampling time is relevant in ultrastructural studies of dynamic extranuptial nectaries that undergo various changes throughout the day.  相似文献   

14.
Clara de Vega  Carlos M. Herrera 《Oikos》2012,121(11):1878-1888
Nectar‐dwelling yeasts are emerging as widely distributed organisms playing a potentially significant and barely unexplored ecological role in plant pollinator mutualisms. Previous efforts at understanding nectar–pollinator–yeast interactions have focused on bee‐pollinated plants, while the importance of nectarivorous ants as vectors for yeast dispersal remains unexplored so far. Here we assess the abundance and composition of the nectar fungal microbiota of the ant‐pollinated plant Cytinus hypocistis, study whether yeast transmission is coupled with ant visitation, and discern whether ant‐ transported yeasts promote changes in nectar characteristics. Our results show that a high percentage of flowers (77%) and plants (94%) contained yeasts, with yeast cell density in nectar reaching up to 6.2 × 104 cells mm?3, being the highest densities associated with the presence of the nectar‐specialist yeast Metschnikowia reukaufii. The establishment of fungal microbiota in nectar required flower visitation by ants, with 70% of yeast species transported by them being also detected in nectar. Ant‐vectored yeasts diminished the nutritional quality of nectar, with flowers exposed to pollinators and yeasts containing significantly lower nectar sugar concentration than virgin flowers (13.4% and 22.8%, respectively). Nectar of flowers that harbored M. reukaufii showed the lowest quality, with nectar concentration declining significantly with increasing yeast density. Additionally, yeasts modified patterns of interpopulation variation in nectar traits, homo genizing differences between populations in some nectar attributes. We show for the first time that the outcome of the tripartite pollinator–flower–yeast interaction is highly dependent on the identity and inherent properties of the participants, even to the extent of influencing the species composition of this ternary system, and can be mediated by ecological characteristics of plant populations. Through their influence on plant functional traits, yeasts have the potential to alter nectar consumption, pollinator foraging behavior and ultimately plant reproduction.  相似文献   

15.
16.
Some plant species attacked by herbivore species produce additional resources to attract predators and induce an indirect defence process. We evaluated whether Palicourea rigida (Rubiaceae) individuals can induce indirect defences as response to herbivory simulation by increasing pericarpial nectar production and volatile emissions, as well as whether spiders are attracted by such induced indirect defences. We selected 30 P. rigida individuals and simulated herbivory in 15 of them by cutting out half of all leaves using pruning shears. We did not manipulate the other 15 plants (control group). At three different times, we measured nectar volume and calories of the pericarpial nectary in the inflorescences of all plants of control and treatment groups. We also quantified spider abundance on these plants. In another experiment, we selected salticid spider, Thiodina sp., to determine whether predators detect chemical tracks of plant volatiles produced by the plant after herbivory simulations. We also tested whether the honey solution could emit olfactory signals capable of attractive spiders. We showed that P. rigida produced higher volume of pericarpial nectar presenting more calories after herbivory simulation. The abundance of spiders was higher in plants subjected to herbivory simulation than control plants. Thiodina sp. did not respond to the volatile chemical tracks produced by the leaves after the simulation, but it had a positive response to olfactory tracks associated with the sucrose solution. Such an outcome indicates the ability of this spider to locate nectar honey plants and olfactory signals of honey. Thus, plants respond to the action of herbivores by producing more pericarpial nectar and nectar with more calories. Although our knowledge about the olfactory physiology of arachnids remains incipient, we highlight the importance of chemical and olfactory tracks for decision‐making of spiders in foraging on plants and the herbivory influence on the behaviour of cursorial spiders.  相似文献   

17.
Prior work has shown that yellowjacket waSPS remember food odors and use them as cues when foraging. There is also evidence they have mechanisms to recruit nest mates to highly rewarding food sources, as naïve individuals are more likely to go to food sources with scents similar to those visited by nest mates. We asked whether recruitment requires behavioral stimulation by returning foragers, as in honey bees, or if sampling the food source inside the nest is sufficient. We tested this by eliminating the behavior of returning foragers by inserting a scented sugar solution directly into a Vespula germanica nest. Exiting foragers were given a choice of the test scent and a control scent. WaSPS were more likely to choose the test scent. We conclude that behavioral interactions with returning foragers are not necessary to stimulate nest mates to associate an odor with a food source and search for a resource bearing that odor, and that experience with the scented reward inside the nest is sufficient to achieve this result.  相似文献   

18.
Predation is a pervasive selective agent shaping a prey's behaviour, morphology and life history. To survive, prey animals have to respond adaptively to predation threats and this can be achieved through learned predator recognition. Cultural transmission of predator recognition is likely a widespread means of learning in social animals, including mammals, birds and fishes. However, no studies have investigated the cultural transmission of predator recognition in amphibians. In our study, we examined whether naïve woodfrog (Rana sylvatica) tadpoles can acquire the recognition of the odour of a predatory tiger salamander (Ambystoma tigrinum) from experienced conspecifics. After conditioning some tutors to recognize salamander odour, we paired naïve observer tadpoles with either a salamander‐naïve or salamander‐experienced tutor and exposed the pairs to either salamander odour or a water control. Observers were subsequently tested alone for a response to salamander odour. We found that when given salamander odour, observer tadpoles that were paired with a salamander‐experienced tutor successfully learned to recognize the salamander odour as a threat, whereas the observers paired with salamander‐naïve tutors did not. Likewise, tadpoles exposed to the water control did not learn to recognize the salamander regardless of whether they were paired with a naïve or experienced tutor. This is the first study demonstrating cultural transmission of predator recognition in an amphibian species.  相似文献   

19.
A specialist predator that has a specialized diet, prey‐specific prey‐capture behaviour and a preference for a particular type of prey may or may not be specialized metabolically. Previous studies have shown that jumping spiders of the genus Portia prey on other spiders using prey‐specific prey‐capture behaviour, prefer spiders as prey to insects and gain long‐term benefits in terms of higher survival and growth rates on spider diets than on insect diets. However, it is unclear whether there are substances uniquely present in spiders on which Portia depends, or, alternatively, spiders and insects all contain more or less the same nutrients but the relative amounts of these substances are such that Portia perform better on a spider diet. These questions are addressed by testing the hypothesis that prey specialization includes metabolic adaptations that allow Portia an enhanced nutrient extraction or nutrient utilization efficiency when feeding on spider prey compared with insect prey. Three groups of Portia quei Zabka are fed either their preferred spider prey or one of two types of flies (Drosophila melanogaster Meigen) that differ in nitrogen and lipid content. Portia quei shows a higher feeding rate of high‐protein flies than of high‐lipid flies and spiders but, after 5 days of feeding, there is no significant difference in growth between treatments, and the diets lead to significant changes in the macronutrient composition of P. quei as a result of variable extraction and utilization of the prey. The short‐term utilization of spider prey is similar to that of high‐lipid flies and both differ in several respects from the utilization of high‐protein flies. Thus, the short‐term nutrient utilization is better explained by prey macronutrient content than by whether the prey is a spider or not. The results suggest that spider prey may have a more optimal macronutrient composition for P. quei and that P. quei does not depend on spider‐specific substances.  相似文献   

20.
Introduced mammalian predators may pose a high risk for native and naïve prey populations, but little is known about how native fish species may recognize and respond to scents from introduced mammalian predators. We investigated the role of diet‐released chemical cues in facilitating predator recognition, hypothesizing that native brown trout (Salmo trutta) would exhibit antipredator behaviours to faeces scents from the introduced American mink (Neovision vison) fed conspecifics, but not to non‐trout diets. In treatments‐control and replicate stream tank experiments, brown trout showed significant antipredator responses to faeces scent from mink fed conspecifics, but not to faeces scent from mink fed a non‐trout diet (chicken), or the non‐predator food control, Eurasian beaver (Castor fiber). We conclude that native and naïve brown trout show relevant antipredator behaviours to an introduced mammalian predator, presumably based on diet‐released conspecific alarm cues and thereby estimate the predation risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号