首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, and mutations in the TCOF1 gene are responsible for over 90% of TCS cases. The knowledge about the molecular mechanisms responsible for this syndrome is relatively scant, probably due to the difficulty of reproducing the pathology in experimental animals. Zebrafish is an emerging model for human disease studies, and we therefore assessed it as a model for studying TCS. We identified in silico the putative zebrafish TCOF1 ortholog and cloned the corresponding cDNA. The derived polypeptide shares the main structural domains found in mammals and amphibians. Tcof1 expression is restricted to the anterior-most regions of zebrafish developing embryos, similar to what happens in mouse embryos. Tcof1 loss-of-function resulted in fish showing phenotypes similar to those observed in TCS patients, and enabled a further characterization of the mechanisms underlying craniofacial malformation. Besides, we initiated the identification of potential molecular targets of treacle in zebrafish. We found that Tcof1 loss-of-function led to a decrease in the expression of cellular proliferation and craniofacial development. Together, results presented here strongly suggest that it is possible to achieve fish with TCS-like phenotype by knocking down the expression of the TCOF1 ortholog in zebrafish. This experimental condition may facilitate the study of the disease etiology during embryonic development.  相似文献   

3.
Oxidative stress is an important cause of cellular toxicity in the central nervous system and contributes to the pathology associated with neurodegenerative disorders including Parkinson’s disease. As such, elucidation of cellular mechanisms that enhance neuronal resistance to oxidative stress may provide new avenues for therapy. In this study we employed a simple two-state cellular model to identify genes that are associated with resistance to oxidative stress induced by 6-hydroxydopamine (6-OHDA). In this model, undifferentiated neuroblastoma cells display higher sensitivity to 6-OHDA than differentiated cells. By comparing the gene expression between these two states, we identified several genes whose expression is altered concomitant with changes in 6-OHDA sensitivity. This gene set includes cytokine receptor-like factor 1 (CRLF1), which is up-regulated during the differentiation process and has been previously implicated in neuroprotection. We show that the product of this gene is both necessary and sufficient for increased resistance to 6-OHDA in differentiated neuroblastoma cells, and that CRLF1 serves its protective role by a cell autonomous mechanism that is independent from its known role as a co-ligand for the ciliary neurotrophic factor receptor. These data provide an additional role for CRLF1 that could potentially explain its broad expression pattern and effects on cells lacking expression of this receptor.  相似文献   

4.
Neuroblastoma is a childhood tumor with a poor survival in advanced stage disease despite intensive chemotherapeutic regimes. The new histone deacetylase (HDAC) inhibitor BL1521 has shown promising results in neuroblastoma. Inhibition of HDAC resulted in a decrease in proliferation and metabolic activity, induction of apoptosis and differentiation of neuroblastoma cells. In order to elucidate the mechanism mediating the effects of BL1521 on neuroblastoma cells, we investigated the gene expression profile of an MYCN single copy (SKNAS) and an MYCN amplified (IMR32) neuroblastoma cell line after treatment with BL1521 using the Affymetrix oligonucleotide array U133A. An altered expression of 255 genes was observed in both neuroblastoma cell lines. The majority of these genes were involved in gene expression, cellular metabolism, and cell signaling. We observed changes in the expression of vital genes belonging to the cell cycle (cyclin D1 and CDK4) and apoptosis (BNIP3, BID, and BCL2) pathway in response to BL1521. The expression of 37 genes was altered by both BL1521 and Trichostatin A, which could indicate a common gene set regulated by different HDAC inhibitors. BL1521 treatment changed the expression of a number of MYCN-associated genes. Several genes in the Wnt and the Delta/Notch pathways were changed in response to BL1521 treatment, suggesting that BL1521 is able to induce the differentiation of neuroblastoma cells into a more mature phenotype.  相似文献   

5.
Expression of CD44 is repressed in neuroblastoma cells.   总被引:20,自引:2,他引:18       下载免费PDF全文
  相似文献   

6.
Treacher Collins syndrome (TCS) is a rare congenital birth disorder characterized by severe craniofacial defects. The syndrome is associated with mutations in the TCOF1 gene which encodes a putative nucleolar phosphoprotein known as treacle. An animal model of the severe form of TCS, generated through mutation of the mouse homologue Tcof1 has recently revealed significant insights into the etiology and pathogenesis of TCS (Dixon and Dixon, 2004; Dixon et al., 2006; Jones et al 2008). During early embryogenesis in a TCS individual, an excessive degree of neuroepithelial apoptosis diminishes the generation of neural crest cells. Neural crest cells are a migratory stem and progenitor cell population that generates most of the tissues of the head including much of the bone, cartilage and connective tissue. It has been hypothesized that mutations in Tcof1 disrupt ribosome biogenesis to a degree that is insufficient to meet the proliferative needs of the neuroepithelium and neural crest cells. This causes nucleolar stress activation of the p53-dependent apoptotic pathway which induces neuroepithelial cell death. Interestingly however, chemical and genetic inhibition of p53 activity can block the wave of apoptosis and prevent craniofacial anomalies in Tcof1 mutant mice [Jones NC, Lynn ML, Gaudenz K, Sakai D, Aoto K, Rey JP, et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat Med 2008;14:125–33]. These findings shed new light on potential therapeutic avenues for the prevention of not only TCS but also other congenital craniofacial disorders which share a similar etiology and pathogenesis.  相似文献   

7.
Neuroblastoma is the most common extracranial tumor and a major cause of infant cancer mortality worldwide. Despite its importance, little is known about its molecular mechanisms. A striking feature of this tumor is its clinical heterogeneity. Possible outcomes range from aggressive invasion to other tissues, causing patient death, to spontaneous disease regression or differentiation into benign ganglioneuromas. Several efforts have been made in order to find tumor progression markers. In this work, we have reconstructed the neuroblastoma regulatory network using an information-theoretic approach in order to find genes involved in tumor progression and that could be used as outcome predictors or as therapeutic targets. We have queried the reconstructed neuroblastoma regulatory network using an aggressive neuroblastoma metastasis gene signature in order to find its master regulators (MRs). MRs expression profiles were then investigated in other neuroblastoma datasets so as to detect possible clinical significance. Our analysis pointed MAX as one of the MRs of neuroblastoma progression. We have found that higher MAX expression correlated with favorable patient outcomes. We have also found that MAX expression and protein levels were increased during neuroblastoma SH-SY5Y cells differentiation. We propose that MAX is involved in neuroblastoma progression, possibly increasing cell differentiation by means of regulating the availability of MYC:MAX heterodimers. This mechanism is consistent with the results found in our SH-SY5Y differentiation protocol, suggesting that MAX has a more central role in these cells differentiation than previously reported. Overexpression of MAX has been identified as anti-tumorigenic in other works, but, to our knowledge, this is the first time that the link between the expression of this gene and malignancy was verified under physiological conditions.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Familial dysautonomia (FD) is a developmental neuropathy of the sensory and autonomous nervous systems. The IKBKAP gene, encoding the IKAP/hELP1 subunit of the RNA polymerase II Elongator complex is mutated in FD patients, leading to a tissue-specific mis-splicing of the gene and to the absence of the protein in neuronal tissues. To elucidate the function of IKAP/hELP1 in the development of neuronal cells, we have downregulated IKBKAP expression in SHSY5Y cells, a neuroblastoma cell line of a neural crest origin. We have previously shown that these cells exhibit abnormal cell adhesion when allowed to differentiate under defined culture conditions on laminin substratum. Here, we report results of a microarray expression analysis of IKAP/hELP1 downregulated cells that were grown on laminin under differentiation or non-differentiation growth conditions. It is shown that under non-differentiation growth conditions, IKAP/hELP1 downregulation affects genes important for early developmental stages of the nervous system, including cell signaling, cell adhesion and neural crest migration. IKAP/hELP1 downregulation during differentiation affects the expression of genes that play a role in late neuronal development, in axonal projection and synapse formation and function. We also show that IKAP/hELP1 deficiency affects the expression of genes involved in calcium metabolism before and after differentiation of the neuroblastoma cells. Hence, our data support IKAP/hELP1 importance in the development and function of neuronal cells and contribute to the understanding of the FD phenotype.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号