首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Chromatin in the regions between the upstream activator sequence and the 5' ends of the yeast GAL1 and GAL10 genes has been analyzed by DNase I chromosomal footprinting and micrococcal nuclease digestion using the indirect end-labeling approach. Comparison of wild type chromatin digests to naked DNA digests shows that there are specific regions of these upstream sequences which are strongly protected in chromatin. Comparison to chromatin digests from cells disrupted for the positive regulatory gene, GAL4, or the negative regulatory gene, GAL80, and thus lacking GAL4 or GAL80 function, shows that these regions of protection in wild type chromatin are GAL80-dependent but not GAL4-dependent. The protected regions include DNA lying on (GAL10) or near (GAL1) the respective TATA boxes. These protections are present in both noninduced and induced cells. Both DNA strands are equally protected. Upstream of GAL1 there is a second protected region. This protection shows considerable expression and strand dependence. These observations provide the first evidence that the GAL80 function influences chromatin structure and suggest possible mechanisms by which GAL80 modulates the GAL1 and 10 promoters in induced cells. Micrococcal nuclease digests also suggest a role for GAL80 in a distinctive higher order organization of the intergenic region, perhaps involving multiprotein complexes.  相似文献   

3.
We have used yeast strains containing a disrupted positive (GAL4) and/or a disrupted negative (GAL80) regulatory gene to investigate the relationship of these regulatory proteins to the hypersensitive sites upstream of their target genes, GAL1-10. We find that neither of these regulatory proteins is required for the formation of the hypersensitive region. There is positive regulatory protein (dependent) binding to a portion of the hypersensitive region when GAL1 and 10 are expressed. However, similar binding can also occur under conditions in which the genes are not expressed. Thus, such binding is necessary but not sufficient for expression of GAL1 and 10 and control of GAL1-10 expression must also include processes which occur subsequent to GAL4/DNA binding. The negative regulatory protein GAL80 plays a significant role in these processes.  相似文献   

4.
5.
The yeast GAL1-10 UAS region readily accepts nucleosomes in vitro   总被引:2,自引:0,他引:2  
M Rainbow  J Lopez  D Lohr 《Biochemistry》1989,28(18):7486-7490
To test if the absence of nucleosomes on the UAS region of the yeast GAL1-10 genes in vivo could be due to a low inherent affinity of this DNA for histones, DNA fragments containing the UAS and various amounts of flanking DNA were reconstituted into chromatin. Restriction enzyme and DNase I digestion analyses show that DNA in the UAS becomes protected against digestion in the reconstitutes. Thus, nucleosomes can assemble on the UAS region in vitro. The level of protection of the UAS and of the flanking DNA regions is comparable and remains so at various levels of nucleosome loading, suggesting that the UAS DNA has no tendency to exclude nucleosomes. In fact, DNase I results suggest that the UAS elements themselves preferentially bind histones.  相似文献   

6.
Intrinsically bent DNA is an alternative conformation of the DNA molecule caused by the presence of dA/dT tracts, 2 to 6 bp long, in a helical turn phase DNA or with multiple intervals of 10 to 11 bp. Other than flexibility, intrinsic bending sites induce DNA curvature in particular chromosome regions such as replication origins and promoters. Intrinsically bent DNA sites are important in initiating DNA replication, and are sometimes found near to regions associated with the nuclear matrix. Many methods have been developed to localize bent sites, for example, circular permutation, computational analysis, and atomic force microscopy. This review discusses intrinsically bent DNA sites associated with replication origins and gene promoter regions in prokaryote and eukaryote cells. We also describe methods for identifying bent DNA sites for circular permutation and computational analysis.  相似文献   

7.
8.
Nucleosome structure and repair of N-methylpurines were analyzed at nucleotide resolution in the divergent GAL1-10 genes of intact yeast cells, encompassing their common upstream-activating sequence. In glucose cultures where genes are repressed, nucleosomes with fixed positions exist in regions adjacent to the upstream-activating sequence, and the variability of nucleosome positioning sharply increases with increasing distance from this sequence. Galactose induction causes nucleosome disruption throughout the region analyzed, with those nucleosomes close to the upstream-activating sequence being most striking. In glucose cultures, a strong correlation between N-methylpurine repair and nucleosome positioning was seen in nucleosomes with fixed positions, where slow and fast repair occurred in nucleosome core and linker DNA, respectively. Galactose induction enhanced N-methylpurine repair in both strands of nucleosome core DNA, being most dramatic in the clearly disrupted, fixed nucleosomes. Furthermore, N-methylpurines are repaired primarily by the Mag1-initiated base excision repair pathway, and nucleotide excision repair contributes little to repair of these lesions. Finally, N-methylpurine repair is significantly affected by nearest-neighbor nucleotides, where fast and slow repair occurred in sites between pyrimidines and purines, respectively. These results indicate that nucleosome positioning and DNA sequence significantly modulate Mag1-initiated base excision repair in intact yeast cells.  相似文献   

9.
Controlled transcription of the yeast regulatory gene GAL80   总被引:12,自引:0,他引:12  
H Shimada  T Fukasawa 《Gene》1985,39(1):1-9
  相似文献   

10.
Nucleotide sequence of the yeast regulatory gene GAL80   总被引:20,自引:1,他引:19       下载免费PDF全文
The GAL80 gene in Saccharomyces cerevisiae encodes a negative regulatory protein for the set of inducible genes involving metabolism of galactose and melibiose. We have determined the nucleotide sequence of GAL80 and its flanking regions and assigned the 5' end of its mRNA to the sequence. The deduced coding sequence for GAL80 protein contains 1305 nucleotides and the calculated molecular weight of the peptide chain is 48309. The 5' end of the GAL80 mRNA maps about 67 nucleotides upstream from the translation initiating ATG. We have also determined the nucleotide sequence of uninducible alleles GAL80S-0, GAL80S-1 and GAL80S-2, and found single base substitution in each of these mutant genes which would lead to alteration of amino acid in GAL80 protein.  相似文献   

11.
12.
13.
14.
15.
16.
By deletion analysis of the fusion genes FBP1-lacZ and PCK1-lacZ we have identified a number of strong regulatory regions in the genes FBP1 and PCK1 which encode fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase. Lack of expression of beta-galactosidase in fusions lacking sequences from the coding regions suggests the existence of downstream activating elements. Both promoters have several UAS and URS regions as well as sites implicated in catabolite repression. We have found in both genes consensus sequences for the binding of the same regulatory proteins, such as yAP1, MIG1 or the complex HAP2/HAP3/HAP4. Neither deletion nor overexpression of the MIG1 gene affected the regulated expression of the FBP1 or PCK1 genes.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号