首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To understand the mechanism of p56lck protein downregulation observed in human T cells infected by human T-cell leukemia virus type 1 (HTLV-1), we have investigated the ability of the 3' end of the HTLV-1 genome as well as that of the tax and rex genes to modulate p56lck protein expression and p56lck mRNA synthesis. By using Jurkat T cells stably transfected with constructs that expressed either the 3' end of the HTLV-1 genome (JK C11-pMTEX), the tax gene (JK52-Tax) or the rex gene (JK9-Rex), we found that the expression of p40tax (Tax) was sufficient to modulate p56lck protein expression. Similarly, we found that the expression of the mRNA which encoded p56lck was repressed in Jurkat T cells which expressed Tax. This downregulation was shown to be proportional to the amount of tax mRNA found in the transfected cells, as evidenced by experiments that used cells (JPX-9) stably transfected with a tax gene driven by a cadmium-inducible promoter. Furthermore, cadmium induction of Tax in JPX-9 cells transiently transfected with a construct containing the chloramphenicol acetyltransferase (CAT) gene under control of the lck distal promoter (lck DP-CAT) resulted in the downregulation of CAT gene expression. In contrast, cadmium induction of Tax in JPX-9 cells transiently transfected with a CAT construct driven by a lck DP with a deletion extending from position -259 to -253 (a sequence corresponding to a putative E-Box) did not modulate CAT gene expression, suggesting that the effect of Tax on p56lck is mediated through an E-Box binding protein.  相似文献   

2.
3.
4.
We examined cellular components which associate with p40tax, the viral transactivation molecule of human T-cell leukemia virus type I. Such molecules were searched by immunoprecipitation with polyclonal and monoclonal antibodies specific for p40tax. Two cellular proteins with molecular masses of 95 kDa (p95) and 60 kDa (p60) were specifically coprecipitated with p40tax from extracts of all p40tax-producing cell lines but not from p40tax-negative cell lines. The p60 component was also shown to associate with p40tax in vitro, by using radiolabel-chase experiments. Rabbit antisera specific for p60 and p95 were prepared by immunization with electrophoretically purified molecules. While anti-p95 antiserum coprecipitated p40tax, no p40tax could be identified in immunoprecipitates by using a polyclonal anti-p60 antiserum. The partial amino acid sequence of p60 demonstrated that p60 is identical to the human 60-kDa heat shock protein (a member of the chaperonin family of proteins). Although the biological significance of the complex formation of p40tax with p95 and p60 has yet to be determined, it may be that the complex formation is one of the mechanisms by which the biological activity of p40tax can be regulated.  相似文献   

5.
6.
7.
8.
We report that the expression of the vimentin gene, a cytoskeletal growth-regulated gene, is activated in trans by the Tax (p40x) transactivator protein encoded by the human T-cell leukemia virus type I. Expression of the Tax protein activates a number of cellular genes, such as those coding for the alpha chain of the high-affinity interleukin-2 receptor and interleukin-2. These findings indicate that the Tax protein is involved in the unregulated T-cell growth associated with human T-cell leukemia virus type I infection. Higher levels of vimentin mRNA were expressed in two human T-cell leukemia virus type I-transformed T cell lines, C91/PL and C81-66/45, when compared with that in Jurkat T cells. We demonstrate that this activation is conferred by the vimentin upstream flanking sequences. Indeed, enhanced activity was detected when constructs with the vimentin promoter linked to the chloramphenicol acetyltransferase gene were transfected in HeLa cells and in two cell lines of hematopoietic origin (Jurkat T lymphoblastoid cells and U937 promonocytic cells) together with a Tax expression plasmid. By introducing a series of deletions in the vimentin promoter, we further restrict these sequences to 30 base pairs, located between 241 and 210 base pairs upstream of the mRNA cap site. A 40-base-pair oligonucleotide containing this regulatory region proved sufficient to confer Tax inducibility upon a heterologous promoter linked to chloramphenicol acetyltransferase. Importantly, this segment includes an 11-base-pair promoter segment that has homology with the binding site for the NF-kappa B transactivating factor. Our findings indicate that constitutive expression of the vimentin gene under the control of the Tax protein may be relevant in understanding the progression of the lymphoproliferative process associated with human T-cell leukemia virus type I infection.  相似文献   

9.
10.
Expression of the gene encoding the nuclear phosphoprotein p53 (a proto-oncogene classified in the same functional family as c-myc and E1a adenovirus gene) was examined in a human T-cell leukemia (KE-37R cell line). No p53 (or a modified product) could be detected by immunoprecipitation with monoclonal antibodies P Ab 421 and P Ab 122 in KE-37R cell extracts, and no p53-specific RNA was characterized by Northern blot analysis. Southern blot using a murine p53 cDNA clone as a probe, did not reveal any gross rearrangement in the structure of the gene. However, this molecular probe was not suited for investigating the 5' end of the gene which contains the promoter and the non coding exon 1. It is interesting to notice that in KE-37R cells, c-myc has been activated by a t(8; 14) (q24; q11) translocation, suggesting that the c-myc product might substitute to some functions normally requiring p53.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Previous transgenic work demonstrated transforming activity of the human T-cell leukemia virus type I Tax protein in fibroblasts. In the present study, a Thy-1-based vector was used to express Tax in thymocytes. These mice developed no functional or neoplastic abnormalities of T cells but developed fibroblastic tumors with a longer latency than in the previous model.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号