首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The depolymerization of starch by beta-amylase during exposure to hydrostatic pressure up to 700 MPa and within a temperature range from 20 to 70 degrees C has been investigated. Inactivation of the enzyme as well as alterations in conversion speed in response to combined pressure-temperature treatments were assessed by analyzing the kinetic rate constants. At 200 MPa a significant stabilization of the enzyme against heat inactivation was observed. However, high pressure also impedes the catalytic reaction and a progressive reduction of the conversion rate constants with increasing pressure was found at all temperatures investigated. For the overall reaction of maltose liberation from soluble starch in ACES buffer at pH 5.6 an optimum was identified at 106 MPa and at 63 degrees C, which is approximately 7 degrees C above the local maximum at ambient pressure (0.1 MPa). Gelatinization of nonsoluble starch granules in response to pressure-temperature (p-T) treatment has been inspected by phase-contrast microscopy and yielded circular curves of identical effect in the p-T plane.  相似文献   

2.
Irreversible combined pressure-temperature inactivation of the food quality related enzyme polyphenoloxidase was investigated. Inactivation rate constants (k) were obtained for about one hundred combinations of constant pressure (0.1-900 MPa) and temperature (25-77.5 degrees C). According to the Eyring and Arrhenius equation, activation volumes and activation energies, respectively, representing pressure and temperature dependence of the inactivation rate constant, were calculated for all temperatures and pressures studied. In this way, temperature and pressure dependence of activation volume and activation energy, respectively, could be considered. Moreover, for the first time, a mathematical model describing the inactivation rate constant of a food quality-related enzyme as a function of pressure and temperature is formulated. Such pressure-temperature inactivation models for food quality-related aspects (e.g., the spoilage enzyme polyphenoloxidase) form the engineering basis for design, evaluation, and optimization of new preservation processes based on the combined effect of temperature and pressure. Furthermore, the generated methodology can be used to develop analogous kinetic models for microbiological aspects, which are needed from a safety and legislative point of view, and other quality aspects, e.g., nutritional factors, with a view of optimal quality and consumer acceptance.  相似文献   

3.
Endospores of proteolytic type B Clostridium botulinum TMW 2.357 and Bacillus amyloliquefaciens TMW 2.479 are currently described as the most high-pressure-resistant bacterial spores relevant to food intoxication and spoilage in combined pressure-temperature applications. The effects of combined pressure (0.1 to 1,400 MPa) and temperature (70 to 120 degrees C) treatments were determined for these spores. A process employing isothermal holding times was established to distinguish pressure from temperature effects. An increase in pressure (600 to 1,400 MPa) and an increase in temperature (90 to 110 degrees C) accelerated the inactivation of C. botulinum spores. However, incubation at 100 degrees C, 110 degrees C, or 120 degrees C with ambient pressure resulted in faster spore reduction than treatment with 600 or 800 MPa at the same temperature. This pressure-mediated spore protection was also observed at 120 degrees C and 800, 1,000, or 1,200 MPa with the more heat-tolerant B. amyloliquefaciens TMW 2.479 spores. Inactivation curves for both strains showed a pronounced pressure-dependent tailing, which indicates that a small fraction of the spore populations survives conditions of up to 120 degrees C and 1.4 GPa in isothermal treatments. Because of this tailing and the fact that pressure-temperature combinations stabilizing bacterial endospores vary from strain to strain, food safety must be ensured in case-by-case studies demonstrating inactivation or nongrowth of C. botulinum with realistic contamination rates in the respective pressurized food and equipment.  相似文献   

4.
Lipoxygenase (LOX) in crude green bean extract was irreversibly inactivated by pressure treatments combined with subzero or elevated temperature. LOX inactivation was described accurately assuming a first-order reaction. In the entire pressure-temperature domain studied (200 to 700 MPa and -10 to 60 degrees C), an increase in pressure at constant temperature enhanced the LOX inactivation rate, whereas at constant pressure, an increase in reaction rate was obtained by either increasing or decreasing temperature at 20 degrees C. At elevated pressure, LOX exhibited the greatest stability around 20 degrees C. Also the pressure dependence of the inactivation rate constants for LOX was the highest around 20 degrees C. On the basis of the estimated LOX inactivation rate constants, an iso-rate contour diagram as a function of pressure and temperature was constructed, and an empirical mathematical model describing the combined pressure-temperature dependence of the LOX inactivation rate constants was formulated.  相似文献   

5.
The effects of pressure on cultures of Lactobacillus plantarum were characterized by determination of the viability and activity of HorA, an ATP-binding cassette multidrug resistance transporter. Changes in the membrane composition of L. plantarum induced by different growth temperatures were determined. Furthermore, the effect of the growth temperature of a culture on pressure inactivation at 200 MPa was determined. Cells were characterized by plate counts on selective and nonselective agar after pressure treatment, and HorA activity was measured by ethidium bromide efflux. Fourier transform-infrared spectroscopy and Laurdan fluorescence spectroscopy provided information about the thermodynamic phase state of the cytoplasmic membrane during pressure treatment. A pressure-temperature diagram for cell membranes was established. Cells grown at 37 degrees C and pressure treated at 15 degrees C lost >99% of HorA activity and viable cell counts within 36 and 120 min, respectively. The membranes of these cells were in the gel phase region at ambient pressure. In contrast, cells grown at 15 degrees C and pressure treated at 37 degrees C lost >99% of HorA activity and viable cell counts within 4 and 8 min, respectively. The membranes of these cells were in the liquid crystalline phase region at ambient pressure. The kinetic analysis of inactivation of L. plantarum provided further evidence that inactivation of HorA is a crucial step during pressure-induced cell death. Comparison of the biological findings and the membrane state during pressure treatment led to the conclusion that the inactivation of cells and membrane enzymes strongly depends on the thermodynamic properties of the membrane. Pressure treatment of cells with a liquid crystalline membrane at 0.1 MPa resulted in HorA inactivation and cell death more rapid than those of cells with a gel phase membrane at 0.1 MPa.  相似文献   

6.
The reversible inhibition of the sarcoplasmic-reticulum calcium-transport enzyme by pressure at room temperature is accompanied by a significant enhancement of the accessibility of the enzyme to tryptic cleavage dependent on the presence of calcium. The calcium-transport enzyme activity was monitored with dinitrophenyl phosphate as substrate. Pressure in the range 0.1-100.0 MPa affects trypsin cleavage of the control substrate N-alpha-benzoyl-L-arginine-4-nitroanilide hydrochloride little in the presence and absence of calcium. In contrast, application of 100.0 MPa to the calcium-transport enzyme at room temperature accelerates subsequent tryptic cleavage at the T2 but not at the T1 cleavage site [C. J. Brandl et al. (1986) Cell 44, 597-607]. Pressure application during tryptic digestion likewise solely affects cleavage at T2 which proceeds slowly in the absence but rapidly in the presence of calcium. At atmospheric pressure in the absence of calcium and at high pressure in the absence and presence of calcium new cleavage sites are exposed giving rise to new subfragments B1-3 in addition to the established peptides A1 and A2. Under pressure and in the presence of calcium, A1 and A2 rapidly disappear indicating the presence of calcium-binding sites in these peptides. In contrast, the B1-3 peptides which are most likely derivates of the B fragment accumulate in the presence and absence of calcium. In contrast to tryptic cleavage at atmospheric pressure, tryptic cleavage of the A as well as the B fragment tends to completion under pressure. In parallel to the disappearance of the A and B fragments calcium-dependent substrate hydrolysis vanishes. Computation of activation volumes for pressure-induced reversible enzyme inhibition and for tryptic cleavage furnished closely related volumes of opposite signs of 20-40 ml/mol and 80-100 ml/mol in the ranges 0.1-40.0 MPa and 40.0-100.0 MPa, respectively. Thus pressure produces reversible changes in the calcium-transport enzyme which activates and modifies tryptic-cleavage patterns at the T2 site of the A segment and at sites in its subfragments in the presence of calcium, i.e. if the enzyme residues in its E1 state. In contrast tryptic cleavage of the B fragment is accelerated by pressure independently of the presence of calcium.  相似文献   

7.
Extracted tomato polygalacturonase was purified by cation-exchange chromatography (and gel filtration) and characterized for molar mass, isoelectric point, as well as optimal pH for polygalacturonase activity. The enzymatic reaction of purified tomato polygalacturonase on polygalacturonic acid as substrate was investigated during a combined high-pressure/temperature treatment in a temperature range of 25 degrees to 80 degrees C and in a pressure range of 0.1 to 500 MPa at pH 4.4 (the pH of tomato-based products). The optimal temperature for initial tomato polygalacturonase activity in the presence of polygalacturonic acid at atmospheric pressure is about 55 degrees to 60 degrees C. The optimal temperature for initial tomato polygalacturonase activity during processing shifted to lower values at elevated pressure as compared with atmospheric pressure, and the catalytic activity of pure tomato polygalacturonase decreased with increasing pressure, which was mostly pronounced at higher temperatures. The elution profiles of the degradation products on high-performance anion-exchange chromatography indicated that for both thermal and high-pressure treatment all oligomers were present in very small amounts in the initial stage of polygalacturonase activity. The amounts of monomer and small oligomers increased with increasing incubation times, whereas the amount of larger oligomers decreased due to further degradation.  相似文献   

8.
The combined action of temperature (10-35 degrees C) and pressure (0. 001-2 kbar) on the catalytic activity of wild-type human butyrylcholinesterase (BuChE) and its D70G mutant was investigated at pH 7.0 using butyrylthiocholine as the substrate. The residue D70, located at the mouth of the active site gorge, is an essential component of the peripheral substrate binding site of BuChE. Results showed a break in Arrhenius plots of wild-type BuChE (at Tt approximately 22 degrees C) whatever the pressure (dTt/dP = 1.6 +/- 1.5 degrees C.kbar-1), whereas no break was observed in Arrhenius plots of the D70G mutant. These results suggested a temperature-induced conformational change of the wild-type BuChE which did not occur for the D70G mutant. For the wild-type BuChE, at around a pressure of 1 kbar, an intermediate state, whose affinity for substrate was increased, appeared. This intermediate state was not seen for the mutant enzyme. The wild-type BuChE remained active up to a pressure of 2 kbar whatever the temperature, whereas the D70G mutant was found to be more sensitive to pressure inactivation (at pressures higher than 1.5 kbar the mutant enzyme lost its activity at temperatures lower than 25 degrees C). The results indicate that the residue D70 controls the conformational plasticity of the active site gorge of BuChE, and is involved in regulation of the catalytic activity as a function of temperature.  相似文献   

9.
Maize phosphoenolpyruvate carboxylase (PEPC) was rapidly and completely inactivated by very low concentrations of trypsin at 37 degrees C. PEP+Mg2+ and several other effectors of PEP carboxylase offered substantial protection against trypsin inactivation. Inactivation resulted from a fairly specific cleavage of 20 kDa peptide from the enzyme subunit. Limited proteolysis under catalytic condition (in presence of PEP, Mg2+ and HCO3) although yielded a truncated subunit of 90 kDa, did not affect the catalytic function appreciably but desensitized the enzyme to the effectors like glucose-6-phosphate glycine and malate. However, under non-catalytic condition, only malate sensitivity was appreciably affected. Significant protection of the enzyme activity against trypsin during catalytic phase could be either due to a conformational change induced on substrate binding. Several lines of evidence indicate that the inactivation caused by a cleavage at a highly conserved C-terminal end of the subunit.  相似文献   

10.
The effect of phosphate, its analogues, and other substrates on structural features of recombinant 5'-methylthioadenosine phosphorylase from Sulfolobus solfataricus (SsMTAP) was investigated. Phosphate was found to exert a significant stabilizing effect on the protein against the inactivation caused by temperature, sodium dodecyl sulfate (SDS), urea, and proteolytic enzymes. In the presence of 100 mM phosphate: (i) the apparent transition temperature (Tm) of recombinant SsMTAP increased from 111 degrees to 118 degrees C; and (ii) the enzyme still retained 40% and 30% activity, respectively, after 30 min of incubation at 90 degrees C with 2% SDS or 8 M urea. The structure modification of SsMTAP by phosphate binding was probed by limited proteolysis with subtilisin and proteinase K and analysis of polypeptide fragments by SDS-PAGE. The binding of the phosphate substrate protected SsMTAP against protease inactivation, as proven by the disappearance of a previously accessible proteolytic cleavage site that was localized in the N-terminal region of the enzyme. The conformational changes of SsMTAP induced by phosphate and ribose-1-phosphate were analyzed by fluorescence spectroscopy, and modifications of the protein intrinsic fluorophore exposure, as a consequence of substrate binding, were evidenced.  相似文献   

11.
The apparent second-order rate constant of hydrolysis of Fua-Gly-LeuNH2 by vimelysin, a neutral protease from Vibrio sp. T1800, was measured in a variable pressure-temperature gradient (0. 1-400 MPa and 5-40 degrees C). The apparent maximum rate was observed at approximately 15 degrees C and 150-200 MPa; the pressure-activation ratio (kcat/Km(max)/kcat/Km(0.1 MPa)) was reached about sevenfold. The pressure dependence of the kcat and Km parameters at constant temperature (25 degrees C) revealed that the pressure-activation below 200 MPa was mainly caused by a change in the kcat parameter. The change in the intrinsic fluorescence intensity of vimelysin was also measured in a pressure-temperature plane (0.1-400 MPa and -20 to +60 degrees C). The fluorescence intensity was found to decrease by increasing pressure and temperature, and the isointensity contours were more or less circular. The tangential lines to the contours at high temperatures and low to medium pressures seem to have slightly positive slopes, which was reflected by the higher residual activities left after incubations at higher temperatures and medium pressure (200 MPa and 50 degrees C) and by the almost intact secondary structure left after 1 h of incubation at 200 MPa and 40 degrees C, as studied by circular dichroism. These results were compared with the corresponding results for thermolysin, a moderately thermostable protease from Bacillus thermoproteolyticus. Apparent differences that might be related to the temperature adaptations of the respective source microbes are also discussed.  相似文献   

12.
The irreversible thermal inactivation of Bacillus licheniformis alpha-amylase was studied. A two-step behaviour in the irreversible denaturation process was found. Our experimental results are consistent only with the two-step model and rule out the two-isoenzyme one. They suggest that the deactivation mechanism involves the existence of a temperature-dependent intermediate form. Therefore the enzyme could exist in a great number of active conformational states. We have shown that Ca2+ is necessary for the structural integrity of alpha-amylase. Indeed, dialysis against chelating agents leads to a reversible enzyme inactivation, though molecular sieving has no effect. Further, the key role of Ca2+ in the alpha-amylase thermostability is reported. The stabilizing effect of Ca2+ is reflected by the decrease of the denaturation constants of both the native and the intermediate forms. Below 75 degrees C, in the presence of 5 mM-CaCl2, alpha-amylase is completely thermostable. Neither other metal ions nor substrate have a positive effect on enzyme thermostability. The effect of temperature on the native enzyme and on one intermediate form was studied. Both forms exhibit the same optimum temperature. Identical activation parameters for the hydrolytic reaction catalysed by these two forms were found.  相似文献   

13.
High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35 degrees C, to high-hydrostatic-pressure treatment at 200 MPa and 65 degrees C, or to heat treatment at 0.1 MPa and 85 degrees C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95 degrees C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95 degrees C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95 degrees C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95 degrees C was more effective than treatment at 95 degrees C alone.  相似文献   

14.
Optimizing production of alpha-amylase production by Thermoactinomyces vulgaris isolated from Egyptian soil was studied. The optimum incubation period, temperature and initial pH of medium for organism growth and enzyme yield were around 24 h, 55 degrees C and 7.0, respectively. Maximum alpha-amylase activity was observed in a medium containing starch as carbon source. The other tested carbohydrates (cellulose, glucose, galactose, xylose, arabinose, lactose and maltose) inhibited the enzyme production. Adding tryptone as a nitrogen source exhibited a maximum activity of alpha-amylase. Bactopeptone and yeast extract gave also high activity comparing to the other nitrogen sources (NH4CI, NH4NO3, NaNO3, KNO3, CH3CO2NH4). Electrophoresis profile of the produced two alpha-amylase isozymes indicated that the same pattern at about 135-145 kDa under different conditions. The optimum pH and temperature of the enzyme activity were 8.0 and 60 degrees C, respectively and enzyme was stable at 50 degrees C over 6 hours. The enzyme was significantly inhibited by the addition of metal ions (Na+, Co2+ and Ca2+) whereas CI- seemed to act as activator. The enzyme was not affected by 0.1 mM EDTA while higher concentration (10 mM EDTA) totally inactivated the enzyme.  相似文献   

15.
A soil isolate of Bacillus stearothermophilus was found to synthesize thermostable alpha-amylase. The enzyme was purified to homogeneity by ammonium sulfate fractionation and IECC on DEAE-cellulose column. The purified enzyme was considered to be a monomeric protein with a molar mass of 64 kDa, as determined by SDS-PAGE. The enzyme showed a wide range of pH tolerance and maximum activity at pH 7.0. The temperature tolerance was up to 100 degrees C with more than 90% catalytic activity; the maximum activity was observed at 50 degrees C. Divalent metal ions exhibited inhibitory effect on the enzyme activity. However, proteinase inhibitor did not react positively.  相似文献   

16.
Fungi were screened for their ability to produce alpha-amylase by a plate culture method. Penicillium chrysogenum showed high enzymatic activity. Alpha-amylase production by P. chrysogenum cultivated in liquid media containing maltose (2%) reached its maximum at 6-8 days, at 30 degrees C, with a level of 155 U ml(-1). Some general properties of the enzyme were investigated. The optimum reaction pH and temperature were 5.0 and 30-40 degrees C, respectively. The enzyme was stable at a pH range from 5.0-6.0 and at 30 degrees C for 20 min and the enzyme's 92.1% activity's was retained at 40 degrees C for 20 min without substrate. Hydrolysis products of the enzyme were maltose, unidefined oligosaccharides, and a trace amount of glucose. Alpha-amylase of P. chrysogenum hydrolysed starches from different sources. The best hydrolysis was determined (98.69%) in soluble starch for 15 minute at 30 degrees C.  相似文献   

17.
High-pressure (HP) inactivation kinetics of pectin methyl esterase (PME) in apple juice were evaluated. Commercial PME was dispensed in clarified apple juice, sealed in dual peel sterilizable plastic bags, and subjected to different high-pressure processing conditions (200-400 MPa, 0-180 min). Residual enzyme activity was determined by a titration method estimating the rate of free carboxyl group released by the enzyme acting on pectin substrate at pH 7.5 (30 degrees C). The effects of pressure level and pressure holding time on enzyme inactivation were significant (p < 0.05). PME from the microbial source was found to be more resistant (p < 0.05) to pressure inactivation than PME from the orange peel. Almost a full decimal reduction in the activity of commercial PME was achieved by HP treatment at 400 MPa for 25 min. Inactivation kinetics were evaluated on the basis of a dual effect model involving a pressure pulse effect and a first-order rate model, and the pressure sensitivity of rate constants was modeled by using the z-value concept.  相似文献   

18.
The thermal and the combined high pressure–thermal inactivation kinetics of almond β-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21) were investigated at pressures from 0.1 to 600 MPa and temperatures ranging from 30 to 80 °C. Thermal treatments at temperatures higher than 50 °C resulted in significant inactivation with complete inactivation after 2 min of treatment at 80 °C. Both the thermal and high pressure inactivation kinetics were described well by first-order model. Application of pressure increased the inactivation kinetics of the enzyme except at moderate temperatures (50 to 70 °C) and pressures between 0.1 and 100 MPa where slight pressure stabilisation of the enzyme against thermal denaturation was observed. The activation energy for the inactivation of the enzyme at atmospheric pressure was estimated to be 216.2?±?8.6 kJ/mol decreasing to 55.2?±?3.9 kJ/mol at 600 MPa. The activation volumes were negative at all temperature conditions excluding the temperature–pressure range where slight pressure stabilisation was observed. The values of the activation volumes were estimated to be ?29.6?±?0.6, ?29.8?±?1.7, ?20.6?±?3.2, ?41.2?±?4.8, ?36.5?±?1.8, ?39.6?±?4.3, ?31.0?±?4.5 and ?33.8?±?3.9 cm3/mol at 30, 35, 40, 45, 50, 60, 65 and 70 °C, respectively, with no clear trend with temperature. The pressure–temperature dependence of the inactivation rate constants was well described by an empirical third-order polynomial model.  相似文献   

19.
The effects of high-pressure treatment on the reaction rates of horseradish peroxidase (HRP) with guaethol or guaiacol as a hydrogen donor were evaluated from direct transmission measurements in a high-pressure optical cell at 435 nm. Peroxidases are known to be very barostable and insensitive to heat. With guaethol the reaction velocity was independent of pressure up to 500 MPa, but with guaiacol the cytochrome c oxidase underwent a mechanism-based irreversible inhibition of catalytic activity when subjected to pressure; in the resting states (fully oxidized or reduced), it was insensitive to pressure. The enzyme inactivation took place with an inactivation rate constant of 5.15 x 10(-1) min(-1) at 500 MPa, 25 degrees C and pH 7. The degree of inactivation was correlated to the concentration of guaiacol. This is the first report on a mechanism-based pressure inactivation of HRP triggered at moderate pressure and temperature and mediated by the hydrogen donor.  相似文献   

20.
High hydrostatic pressure induced cold inactivation of carboxypeptidase Y. Carboxypeptidase Y was fully active when exposed to subzero temperature at 0.1 MPa; however, the enzyme became inactive when high hydrostatic pressure and subzero temperature were both applied. When the enzyme was treated at pressures higher than 300 MPa and temperatures lower than -5 degrees C, it underwent an irreversible inactivation in which nearly 50% of the alpha-helical structure was lost as judged by circular dichroism spectral analysis. When the applied pressure was limited to below 200 MPa, the cold inactivation process appeared to be reversible. In the presence of reducing agent, this reversible phenomenon, observed at below 200 MPa, diminished to give an inactive enzyme; the agent reduces some of disulfide bridge(s) in an area of the structure that is newly exposed area because of the cold inactivation. Such an area is unavailable if carboxypeptidase Y is in its native conformation. Because all the disulfide bridges in carboxypeptidase Y locate near the active site cleft, it is suggested that the structural destruction, if any, occurs preferentially in this disulfide rich area. A possible mechanism of pressure-dependent cold inactivation of CPY is to destroy the alpha-helix rich region, which creates an hydrophobic environment. This destruction is probably a result of the reallocation of water molecules. Experiments carried out in the presence of denaturing agents (SDS, urea, GdnHCl), salts, glycerol, and sucrose led to a conclusion consistent with the idea of water reallocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号